
An Efficient Job Scheduling Technique in Trusted Clusters for Load Balancing
Shakti Mishra, Dharmender Singh.Kushwaha, Arun Kumar Misra

CSED, MNNIT Allahabad India
{shaktimishra,dsk,akm}@mnnit.ac.in

Abstract—Although there has been tremendous increase in
PC power and most of it is not fully harnessed, yet certain
computation intensive application tend to migrate their process
with the aim of reducing the response time. Cluster computing
is the area that aims just at this. Clustering provides means to
improve availability of services, sharing computational
workload and performing computation intensive application.
However, these benefits can only be achieved if the computing
power of cluster is used efficiently and allocated fairly among
all the available nodes. As is the case with our desktops, it is
usually seen that clusters also suffer from underutilization. A
number of approaches proposed in the past share only idle
CPU cycles and not use the resources of systems when the
machine has its own local processes to execute. We propose a
priority-based scheduling approach for run queue and
multilevel feedback queue scheduling approach for migrated
tasks that doesn’t degrade the performance of local jobs too.
Simulation and experimental results have been able to show
that priority-based run queue management and multilevel
feedback queue scheduling for migrated tasks can increase
overall throughput by about 28-33 percent.

Keywords- Cluster;Load Balancing; Scheduling; Priority;
Multilevel feedback Queue.

I. INTRODUCTION & SURVEY OF RELATED WORK

Clustering provides a better alternative to High
Performance Computing (HPC) since the cost of highly
available machines such as idle workstations and personal
computers is significantly low in comparison to traditional
supercomputers [1]. It has potential to improve availability
of services, sharing computational workload and performing
computation intensive application through efficient resource
usage. The computational requirement of various
applications can be met using cluster technology in an
effective manner. However, these benefits can only be
achieved if the computing power of clusters used efficiently
and allocated fairly among all the available nodes.

Most of the machines do not use their full CPU capacity
at any point of time. So, the fundamental policy of each
machine in computer supported co-operative working
(CSCW) is to share idle CPU cycles of these machines with
any remote process which is demanding for CPU while not
deteriorating the performance of original machine. But at
the same time, the proposal has a constraint that the
resources of systems can’t be shared when the machine has
its own local processes to execute. This becomes bottleneck
when real time processes arrives on a machine. These
remote real time processes begin to starve since they can’t
be scheduled on machine until unless CPU becomes idle.

Thus, proper mixing of local and remote processes ensures
no starvation policy for both.

Scheduling and interleaving of tasks in an optimal
manner is mandatory for utilizing full capability of
computing nodes with reduced completion time. The goal of
the scheduling is to exploit the true potential of the system.

Cluster based distributed systems resolves complex
problems by partitioning the task into sub tasks and then
scheduling them in such a way so that each machine is
assigned equal work and thus, balancing the load across the
cluster with reduced waiting and response time, while
ensuring little migration overhead.

The computing environment of nodes depends upon the
cluster usage pattern that is broadly classified as Network of
Workstations (NOW) and PMMPP (poor man’s Massively
Parallel Processors) (Table 1). NOW mode of cluster usage
pattern is based on using idle cycles of personal computers
or workstations and this implies an infinitely higher priority
for workstations owner processes over remote processes
(migrated processes from other workstations) [8]. MPP
mode involves dedicated cluster for execution of high
performance application.

TABLE I. CLUSTER USAGE PATTERN

Mode Type Of
Workload

Workstations
Usage

 Major
Projects

Network of
Workstations
(NOW)

Regular
Workload
HPC Workload

 Idle Cycles CONDOR,
MOSIX

MPP
(Massively
Parallel
Processors)

HPC Workload Dedicated cluster
for HPC
application

Beowulf, RWC
PC

Typically, the jobs arrived on various workstations as a
result of load balancing, contains different processes that
may be dependent or independent from each other.

Depending upon these different type of processes,
scheduling decisions may vary. Basically, scheduling
choices are based upon two facts; (a) Number of processors
available, (b) Process type (typically involves
communication and synchronization pattern of processes).
Number of processors available is further categorized as
bounded number of processors or unbounded number of
processors [3].

The author in [7] discusses about minimization of
migration cost and defines a strategy as to which parts of the
program should migrate. Many of the researchers [10] have
tried to resolve issues like longer freeze time that may be
due to unavailability of competing resources but their
approach resolves pre-fetching of memory pages for process
migration.

26

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Although various approaches for scheduling tasks in
clusters have been proposed and implemented by previous
researchers [6, 9]. We find that each scheduling approach
has its own assumption; however, for a load balancing
system, we propose a combined approach, priority-based
run queue management and multilevel feedback queue
(MLFQ) scheduling approach for migrated tasks. Authors in
[11, 12] claim that Multilevel Feedback Queue (MLFQ)
scheduling proves viable for general purpose systems,
however in this scheme CPU intensive processes suffers
from starvation. MLFQ scheduling is chosen because of the
several advantages as following:

• MLFQ uses priorities to decide which job should
run at a given time: a job with higher priority (i.e.,
a job on a higher queue) is the one that will run.

• MLFQ uses the history of the job to predict its
future behavior.

• MLFQ scheduling uses priority boost technique to
raise the priority of processes to ensure that no
process starves due to lower priority.

The proposed scheduling approach tries to resolve
following issues:

• To prevent frequent migration of process due to
unavailability of nodes by ensuring proper mixing
of local and remote processes in run queue.

• Identification of critical processes by assigning
highest priority and scheduling these processes
immediately on one of the available processors.

• No starvation policy for any process while
considering the priority and criticality of process.

• Scheduling local and remote jobs in run queue with
same priority in round robin fashion so that neither
of these processes may starve.

• Boosting priority of computation intensive remote
processes in MLFQ to reduce remigration and
congestion across the network.

The rest of the paper is organized as follows. Section 2

describes system model. In Section 3, process scheduling
algorithms investigated in this paper are discussed. The
performance analysis of algorithms is carried out in Section
4, followed by conclusion.

II. SYSTEM MODEL

A. Base Model

In our previous work [14], we have proposed that the
cluster contains group of trusted nodes. A common node
between two clusters is selected as Process Migration Server
which we will now referred as Process Management Server
(PMS). In case, if no node overlaps in two cluster, then a
least loaded node would be referred as PMS as discussed in
[13] . In order to reduce the overhead of polling and
broadcasting periodically, each node of the cluster sends its
load status information to PMS, when it changes. As node
sends their load statistics, PMS updates its

Node_Status_Table (NST) (Fig.1). PMS has several daemon
processes which handle following functions:

1. Collecting load statistics from all other nodes and
maintaining and updating NST.

2. Registering each node via registration module and
maintaining trust among all nodes [4, 5].

3. Group multicasting the list of least loaded nodes to
overloaded nodes.

Figure 1. Base Model of JMM with MLFQ

This has been illustrated in Fig. 1 in which trusted
nodes send their status updates information to PMS. A local
process scheduler computes various parameters on each
node like CPU utilization, resource availability including
input / output resources, network bandwidth and memory
usage including the number of processes in the process
queue. CPU utilization refers to the CPU contribution to the
functioning of a node. It is considered to be high if less
number of CPU cycles is wasted. Each node also has an
updated status of resources available in the system.

B. Local Scheduler

A local scheduler is responsible for maintaining
multilevel queues on each node as shown in Fig. 2. The
objective is to locate a process in the highest priority queue
and assign the CPU to it. It is invoked, directly or in a lazy
way, by several kernel routines. The scheduler keeps track
of what processes are doing and adjusts their priorities
periodically. When a resource request or migration request
arrives from some node, the scheduler keeps these
processes in the highest priority queue and adjusts their
priority repeatedly and also checks whether the resource
needed by the process is available; if not, it yields the CPU
to some other process by invoking scheduler [2].

27

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 2. Design of Local Scheduler

The local scheduler must have information about

available and occupied resources. There may be some jobs
in which node status is underloaded while the node is
suffering from memory unavailability. In this case, the
process would migrate due to insufficient memory.

III. PROCESS SCHEDULING STRATEGIES

A. Node Selection Strategy

• Least Busy CPU First (LBCF): On the basis of
information provided by PMS, an overloaded node
may choose least busy node for migration.

• Neighbor CPU First (NCF): PMS maintains a closest
vector node for each of the node in the state table.
The criteria may be chosen as minimum number of
hops from overloaded node to an idle node.

• Random Selection: An overloaded node can
randomly choose any idle node for process migration.
The selection criteria may be the resource
availability, memory availability, network bandwidth,
compatibility among system and many other factors.
This random selection is based upon greedy
approach.

B. Scheduling Strategy

Our proposed scheduling strategy is partitioned into two
sections. The first section deals with dynamic run queue
management by appropriately loading processes to main
memory from process pool while second one deals with run
queue CPU allocation to processes. CPU scheduler is a
critical piece of the operating system software that manages
the CPU resource allocation to tasks. It typically strives for
maximizing system throughput, minimizing response time,
and ensuring fairness among the running tasks in the system
[16]. Our proposed scheduling strategy is based on the
priority and criticality of the processes. The term critical
process refers to a process whose execution should not be
delayed or the process which has strict time constraints.
Such processes carry highest priority. We propose that if the
process is critical, its execution should only be suspended if
the node that receives this process is executing its own
critical local/remote process.

1) Priority-based Run Queue Management

Based on the above discussion, we have four types of
processes. The convention for these processes is listed in
Table 2.

TABLE II. PROCESS CONVENTION

S. No. Process Type Convention

1 Local Process Li
2 Remote Process Ri
3 Local Critical Process C Li
4 Remote Critical Process CRi

The process scheduler selects the job from the pool

using one of the following cases:
[Case A] When an idle node receives a migration

request of (local or remote) critical process, it is
immediately chosen for execution.

[Case B] When a remote process (Ri) gets migrated on
idle node, it executes on remote machine until unless a
critical local process arrives.

If a critical local process arrives on the same machine
while execution of a remote process, then it preempts the
remote process to waiting queue. However, if in the mean
time, local process waits for an I/O resource, the remote
process dequeues from waiting queue and get chance to
execute. Linger-Longer approach [8] provides this facility
for fine-grained idle periods to run foreign jobs with very
low priority.

[Case C] An underloaded node has critical local process
to execute and simultaneously it gets a migration request
of critical remote process. Then, it simply rejects the
request.
[Case D] A local process arrives on an underutilized
node currently executing an remote process, then both
processes start their execution in round robin fashion.
We consider the case where a remote job is being

executed on an idle node and simultaneously local process
arrives. Condor [15] uses pre-emption technique to resolve
this problem while the approach does not consider the case
of starvation of remote process if the frequency of local
process is too high. Here, we follow the round robin
scheduling. This approach scores over previous systems that
support collaborative working while utilizing resources and
CPU efficiently with no starvation. The scenarios discussed
in CASE A and CASE B can be described by the data
shown Table 3 which shows different processes with equal
priority and their arrival time with their execution time.

TABLE III. SCHEDULING DATA FOR CASE[A]

Process Arrival Time Execution Time
L1 0 3
L2 1 1
L3 4 4
CR1 5 2
R1 6 1

The scheduling policy for above shown processes can be
described as Fig. 3. Initially, the local process executes as
per round-robin fashion. However, at time unit 5 when
Critical remote process (CR1) arrives, scheduler preempts
the CPU from local process L3 and CR1 starts its execution.

28

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

As CR1 finishes its execution, local process L3 and remote
process R1 continue their execution in the round robin
order.

Let us consider another case with different processes and
their characteristics as depicted in the table (Table 4) given
below. Here the initial execution of local and remote
processes is same as Fig. 4 until remote critical process R1
arrives. As CL1 arrives, all local and remote processes are
put to waiting queue and CL1 starts its execution. Now, if
at the same time critical remote process (CR1) arrives, the
request is discarded by scheduler.

TABLE IV. SCHEDULING DATA FOR CASE [B] & CASE [C]

Process Arrival T ime Execution Time
L1 0 3
L2 1 1
L3 4 4
R1 5 2
CL1 6 3
CR1 7 1

Now, consider Table 5. with different type of processes
and their priority with their arrival and execution time,

TABLE V. SCHEDULING DATA FOR CASE[D]

Process Arrival Time Execution
Time

Priori ty

L1 0 3 1
L2 1 1 2
L3 4 4 2
R1 5 2 3
CL1 6 3 0

The scheduling mechanism (Fig. 5) depends upon the
priority of processes. At time interval 0, L1 starts its
execution. At time interval 1, L2 arrives. Since, the priority
of L1 is greater than from L2, L1 continues its execution
and L2 waits. At time interval 3, L2 starts its execution and
then L3. Remote process R1 arrives at 5 unit of time,
scheduler compares the priority of R1 and L3, since R1
carries lower priority, it is put in to the waiting queue. At
time interval 6, critical local process (CL1) arrives,
scheduler preempts the CPU from local process L3 and CL1
starts its execution. As CL1 finishes its execution, local
process L3 finishes first and then and remote process R1
continues its execution.

2) Multilevel Feedback Queue Approach for Migrated
Tasks

A remote job aware multilevel feedback queue based
scheduling for migrated tasks is shown in Fig. 6.

A multilevel feedback queue consisting of five queues;
each assigned a different time quantum, the CPU switching
time and the priority levels are given in the Table 6.

Figure 6. Multilevel feedback queue Scheduling for Migrated Tasks

TABLE VI. MLFQ FOR MIGRATED TASK PARAMETES

Queue CPU switching
time (ms)

Priority level

Q1 16 Highest
Q2 32 Upper Middle
Q3 64 Middle
Q4 128 Lower Middle
Q5 256 Lowest

IV. PERFORMANCE EVALUATION

We computed the average waiting time and mean
response time for local and remote processes. Migration
overhead is considered negligible in this analysis to simplify
the model and simulations.

0
2
4
6
8

10

AWT(p) AWT(n) ATA(p) ATA(n)

T
im

e
(i

n
 m

s)

Local Remote

Figure 7. Average Waiting & Turnaround Time Comparison of

previous approach with proposed new approach for data given in Table3.

29

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

0

2

4

6

8

10

AWT(p) AWT(n) ATA(p) ATA(n)

T
im

e
(i

n
 m

s)

Local Remote

Figure 8. Average Waiting & Turnaround Time Comparison of previous
approach with proposed new approach for data given in Table5.

Fig. 7 shows the comparison of average waiting &
turnaround time of proposed new approach (AWT (n) &
(ATA(n)) with previous approaches (AWT(p) & ATA(p)).
We observe from the encircled values in Fig. 7 that
proposed approach is able to reduce the average waiting and
turnaround time of local and remote processes by 28-33%.

The simulation analysis proves that for data set given in
Table 5, previously proposed approaches didn’t accept any
remote process when the machine had its own local
processes to be executed. With our approach, the system is
able to accommodate remote process along with local
process with marginal increment in the waiting &
turnaround time of local processes.

The values enclosed in square area in Fig. 8 shows that
using our proposed approach, the average waiting time of
remote processes is decreased in comparison to others, and
significantly lowered as compared to local processes. From
the values encircled in the same, we also observe the
reduced turn around time of remote process with allowable
increment in the turnaround time of local processes.

V. CONCLUSION

This paper presents an optimized scheduling approach for
trusted cluster environment that resolves important issues of
remote process starvation in case of local processes arrival,
frequent migration of remote processes and selection criteria
of idle node.
The experimental results establish that priority-based
scheduling increases overall throughput by about 28-33
percent. In some cases, we also find that the proposed
approach is able to accommodate more number of remote
processes than the previous approaches with marginal
increment in waiting and turnaround time of local processes.
This in turn shall allow more users going the cluster
computing way without the concern of degraded system
performance and further investments in scalability and
redundancy.

REFERENCES
[1] R. Buyya, “High Performance Cluster Computing: Architecture and

Systems” Vol. 1. Pearson Education, pp. 61-68.

[2] O’Reilly, “Understanding the Linux Kernel”, O’Reilly Media, 2002.

[3] S. Pasham and W. Lin, “Efficient task scheduling with duplication of
bounded number of processors”, 11th International Conference on
Parallel and Distributed Systems (ICPADS'05)vol. 1, pp. 543-549.
2005

[4] Shakti Mishra, D.S.Kushwaha, and A.K.Misra,“ A Cooperative Trust
Management Framework for Load Balancing in Cluster Based
Distributed Systems”, In IEEE proceedings of International
Conference on Recent Trends in Information, Telecommunication
and Computing, ITC 2010. pp. 121-125. March 2010

[5] Shakti Mishra, D.S.Kushwaha, and A.K.Misra,“ A Novel Approach
for Building a Dynamically Reconfigurable Trustworthy Systems”,
Information Processing and Management: Proc. of International
Conference on Recent Trends in Business Administration and
Information Processing, BAIP 2010, CCIS 70, Springer-Verlag,
Berlin Heidelberg, pp. 258-262. March 2010.

[6] H. Rajaei, “Simulation of Job scheduling for small scale clusters”,
Proc. of Winter Simulation Conference, pp. 1195-1201. 2006.

[7] H. Karatza, “A comparison of load sharing and job scheduling in
Network of workstations”, I. J. of Simulation Vol. 4 (3-4), pp. 4-11.
2003.

[8] K. D. Ryu and J. K. Hollingsworth, “Exploiting Fine-Grained Idle
Periods in Network of Workstations”, IEEE Transactions on Parallel
and Distributed Systems, Vol.11, No.7,, pp. 683-698. July 2000.

[9] T. Akgun, “BAG Distributed Real-Time Operating System and Task
Migration”, Turkish Journal Electrical Engineering, Vol. 9, NO. 2,
pp.123-136. 2001.

[10] Ho, R.S.C., Cho-Li Wang, and Lau, F.C. “Lightweight Process
Migration and Memory Prefetching in Open MOSIX”, IEEE
International Symposium on Parallel and Distributed Processing
IPDPS, pp. 1-12. 2008.

[11] Arpaci Dusseau, “Scheduling Multilevel feedback Queue”, Operating
System, Ch. 7, pp. 1-8.

[12] K. Hoganson, “Reducing MLFQ Starvation with Feedback and
Exponential Averaging”, Southeastern Conference on Consortium for
Computer Science in Colleges (CCSC), Vol.25 Issue 2. pp. 196-202.
Dec’ 2009.

[13] Shakti Mishra, D.S.Kushwaha, and A.K.Misra, “Hybrid Load
Balancing in Auto-configurable Trusted Clusters”, Journal of
Computer Science and Engineering, Vol. 2 (1), pp. 16-25. July 2010.

[14] Shakti Mishra, D.S.Kushwaha, and A.K.Misra,“ Jingle- Mingle: A
Hybrid Reliable Load Balancing Approach for a Trusted Distributed
Environment”. 5th IEEE International Joint Conference on INC, IMS
& IDC, NCM 2009, pp. 117-122. Aug’ 2009.

[15] M. J. Litzkow, M.Livny, M. W. Mutka, “Condor-A Hunter of Idle
Workstations”, 8th IEEE International Conference of Dstributed
Computing and Systems, pp. 104-111. 1988.

[16] Siddha S., Pallipadi V., Mallick A., “Process Scheduling Challenges
in Multicore Processors”, Intel Technology Journal, Vol. 11 , Issue
04, pp. 361-369. 2007

30

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

L1 L2 L1 L1 L3 CR1 CR1 L3 R1 L3

------- -------- -------- -------- -------- L3 L3 ------- L3 --------

Figure 3. Proposed Scheduling Mechanism for CASE A

L1 L2 L1 L1 L3 R1 CL1 L3 R1 L3

--

--

--

--

--

L3 L3 ----

L3 --------

Figure 4. Proposed Scheduling Mechanism for CASE B & CASE C

L1 L1 L1 L2 L3 L3 CL1 L3 R1 R1

------ L2 L2 ------ ----- R1 R1
L3

R1
L3

R1
L3

R1

Figure 5. Proposed Scheduling mechanism for CASE D

R1

R1

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

CR1

Preempt L3

Immediate
execution

R1

Waiting Queue

Round-Robin between L3 &R1

Run Queue

Preempt L3

Immediate
execution

Waiting Queue

Run Queue

0 1 2 3 4 5 6 9 10 11 13

0 1 2 3 4 5 6 7 12 13

Preempt R1

7

8 9 11

CR1
Discard CR1

Round-Robin between L3 &R1

Immediate
execution

3

Switch L2
Waiting Queue

Run Queue

0 1 2 4 5 6 9 10 12

0 1 2 3 4 5 6 7 11 12

Preempt L3

8 9 10

CL1 R1

11

L2

Switch L3 Switch R1

31

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

