CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

An Efficient Job Scheduling Technique

in Trusted Qlisters for Load Balancing

Shakti Mishra, Dharmender Singh.Kushwaha, Arun Kuklisra
CSED, MNNIT Allahabad India

{shaktimishra,dsk

Abstract—Although there has been tremendous increase in
PC power and most of it is not fully harnessed, yetertain
computation intensive application tend to migrate heir process
with the aim of reducing the response time. Clustecomputing
is the area that aims just at this. Clustering proides means to
improve availability of services, sharing computatnal
workload and performing computation intensive applcation.
However, these benefits can only be achieved if ttemputing
power of cluster is used efficiently and allocatediairly among
all the available nodes. As is the case with our sletops, it is
usually seen that clusters also suffer from underiization. A
number of approaches proposed in the past share gnlidle
CPU cycles and not use the resources of systems whihe
machine has its own local processes to execute. \M®pose a
priority-based scheduling approach for run queue ad
multilevel feedback queue scheduling approach for igrated
tasks that doesn't degrade the performance of locgbbs too.
Simulation and experimental results have been able® show
that priority-based run queue management and multiével
feedback queue scheduling for migrated tasks can dnease
overall throughput by about 28-33 percent.

Keywords- Cluster;Load Balancing; Scheduling; Priority;
Multilevel feedback Queue.

l. INTRODUCTION& SURVEY OF RELATED WORK

Clustering provides a better alternative to Hig
Performance Computing (HPC) since the cost of kigh
available machines such as idle workstations amdopel
computers is significantly low in comparison toditeonal
supercomputers [1]. It has potential to improvaikability

,akm}@mnnit.ac.in

Thus, proper mixing of local and remote processesies
no starvation policy for both.

Scheduling and interleaving of tasks in an optimal
manner is mandatory for utilizing full capabilityf o
computing nodes with reduced completion time. Toal gf
the scheduling is to exploit the true potentialhaf system.

Cluster based distributed systems resolves complex
problems by partitioning the task into sub taskd #men
scheduling them in such a way so that each macisine
assigned equal work and thus, balancing the loeasadhe
cluster with reduced waiting and response time, levhi
ensuring little migration overhead.

The computing environment of nodes depends upon the
cluster usage pattern that is broadly classifieNetsvork of
Workstations (NOW) and PMMPP (poor man’s Massively
Parallel Processors) (Table 1). NOW mode of clussaige
pattern is based on using idle cycles of persooalputers
or workstations and this implies an infinitely heghpriority
for workstations owner processes over remote pseses
(migrated processes from other workstations) [8]PRV
mode involves dedicated cluster for execution ofhhi
performance application.

TABLE I. CLUSTERUSAGE PATTERN
Mode Type Of Workstations Major
Workload Usage Projects

Network of | Regular Idle Cycles CONDOR,
hWorkstations | Workload MOSIX
| (NOW) HPC Workload

MPP HPC Workload | Dedicated clustgr Beowulf, RWC

(Massively for HPC | PC

Parallel application

Processor:

of services, sharing computational workload andgoering

computation intensive application through efficieesource
usage. The computational requirement of
applications can be met using cluster technologyain
effective manner. However, these benefits can digy
achieved if the computing power of clusters usditiently
and allocated fairly among all the available nodes.

Most of the machines do not use their full CPU citga
at any point of time. So, the fundamental policyeaich
machine
(CSCW) is to share idle CPU cycles of these mashimith
any remote process which is demanding for CPU winte
deteriorating the performance of original machiBet at

Typically, the jobs arrived on various workstaticas a

variougesult of load balancing, contains different preessthat

may be dependent or independent from each other.
Depending upon these different type of processes,
scheduling decisions may vary. Basically, schedulin
choices are based upon two facts; (a) Number afgssors
available, (b) Process type (typically involves
communication and synchronization pattern of preess

in computer supported co-operative workindNumber of processors available is further categarias

bounded number of processors or unbounded number of
processors [3].
The author in [7] discusses about minimization of

the same time, the proposal has a constraint that t migration cost and defines a strategy as to whartsf the
resources of systems can’t be shared when the neblais program should migrate. Many of the researcher lih0e
its own local processes to execute. This becomttiebeck tried to resolve issues like longer freeze tithat may be
when real time processes arrives on a machine. eTheslue to unavailability of competing resources hihieir
remote real time processes begin to starve sireg¢hn’t approach resolves pre-fetching of memory pagepruoress
be scheduled on machine until unless CPU becomies id migration.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9 26

CLOUD COMPUTING 2010 : The First International Conference on Clou

d Computing, GRIDs, and Virtualization

Although various approaches for scheduling tasks ilNode_Status_Table (NST) (Fig.1). PMS has seveanda

clusters have been proposed and implemented byopsev
researchers [6, 9]. We find that each schedulingragch

has its own assumption; however, for a load batenci
system, we propose a combined approach, priorisgda

run queue management and multilevel feedback queue

(MLFQ) scheduling approach for migrated tasks. Auahin
[11, 12] claim that Multilevel Feedback Queue (MLFQ
scheduling proves viable for general purpose system
however in this scheme CPU intensive processesrsuff
from starvation. MLFQ scheduling is chosen becafdbe
several advantages as following:
MLFQ uses priorities to decide which job should
run at a given time: a job with higher prioritye(i,
a job on a higher queue) is the one that will run.
MLFQ uses the history of the job to predict its
future behavior.
MLFQ scheduling uses priority boost technique to
raise the priority of processes to ensure that nc
process starves due to lower priority.

The proposed scheduling approach tries to resolv
following issues:
To prevent frequent migration of process due ta
unavailability of nodes by ensuring proper mixing
of local and remote processes in run queue.
Identification of critical processes by assigning
highest priority and scheduling these processe
immediately on one of the available processors.
No starvation policy for any process while
considering the priority and criticality of process
Scheduling local and remote jobs in run queue witk
same priority in round robin fashion so that naithe
of these processes may starve.
Boosting priority of computation intensive remote

processes which handle following functions:

1. Collecting load statistics from all other nodes and
maintaining and updating NST.
2. Registering each node via registration module and
maintaining trust among all nodes [4, 5].
3. Group multicasting the list of least loaded nodes t
overloaded nodes.
Node_ 2
Status_
Table
(NST)
N Q \

.«'//
<

™

(@
L/

f
{

Load Stafistics Collection

Group Multicast

Mutilevel feedback Quene

Maintenance & Updation
messages to PMS Node
Status table

Figure 1. Base Model of JIMM with MLFQ

This has been illustrated in Fig. 1 in which tedst

processes in MLFQ to reduce remigration andnodes send their status updates information to PM8cal

congestion across the network.

The rest of the paper is organized as follows. i8e@
describes system model. In Section 3, process stihgd
algorithms investigated in this paper are discusSédte
performance analysis of algorithms is carried auéction
4, followed by conclusion.

Il. SYSTEMMODEL

A. Base Model

In our previous work [14], we have proposed tha th
cluster contains group of trusted nodes. A commoden
between two clusters is selected as Process Migr&gerver
which we will now referred as Process Managememniese
(PMS). In case, if no node overlaps in two clustben a
least loaded node would be referred as PMS ass$isdun
[13] . In order to reduce the overhead of pollingda
broadcasting periodically, each node of the clustéerds its

process scheduler computes various parameters cm ea
node like CPU utilization, resource availabilitycinding
input / output resources, network bandwidth and orgm
usage including the number of processes in theegsoc
queue. CPU utilization refers to the CPU contribaitio the
functioning of a node. It is considered to be hifjless
number of CPU cycles is wasted. Each node alsoahas
updated status of resources available in the system

B. Local Scheduler

A local scheduler is responsible for maintaining
multilevel queues on each node as shown in Figrhz
objective is to locate a process in the highestripyi queue
and assign the CPU to it. It is invoked, directhyima lazy
way, by several kernel routines. The scheduler ek
of what processes are doing and adjusts their ifei®r
periodically. When a resource request or migratemuest
arrives from some node, the scheduler keeps these
processes in the highest priority queue and adjinss

load status information to PMS, when it changes.néde _ priority repeatedly and also checks whether theues

sends their load statistics, PMS updates

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

heeded by the process is available; if not, itdgghe CPU

to some other process by invoking scheduler [2].

27

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Highest Priority Queue

— T T [[

[+

Based on the above discussion, we have four types o
processes. The convention for these processestésl lin
Table 2.

‘J TABLE II. PROCESSCONVENTION
— 1 L [[[T] :
S. No. Process Type Convention
1 Local Process Li
—* | | | | | ‘ “J 2 Remote Process Ri
3 Local Critical Process CLi
' | 4 Remote Critical Process CRi
I N A
The process scheduler selects the job from the pool
Lowest Priority Queue using one of the following cases:
i) [Case A] When an idle node receives a migration
Figure 2. Design of Local Scheduler request of (local or remote) critical process, & i
immediately chosen for execution.
The local scheduler must have information about

available and occupied resources. There may be solns
in which node status is underloaded while the n&xle
suffering from memory unavailability. In this casthe
process would migrate due to insufficient memory.

I1l. PROCESSSCHEDULING STRATEGIES

A. Node Selection Srategy
Least Busy CPU First (LBCF): On the basis of

information provided by PMS, an overloaded nod

may choose least busy node for migration.
Neighbor CPU First (NCF): PMS maintains a closest

vector node for each of the node in the state table
The criteria may be chosen as minimum number of

hops from overloaded node to an idle node.
Random Sdection: An overloaded node can

randomly choose any idle node for process migration
resource

The selection criteria may be the
availability, memory availability, network bandwidt

[Case B]When a remote process;Rets migrated on
idle node, it executes on remote machine until ssla
critical local process arrives.

If a critical local process arrives on the same ree
while execution of a remote process, then it prasntpe
remote process to waiting queue. However, if in rean
time, local process waits for an 1/O resource, tbmote
process dequeues from waiting queue and get chtance
execute. Linger-Longer approach [8] provides thasility
for fine-grained idle periods to run foreign jobsthwvery

Clow priority.

[Case C]An underloaded node has critical local process

to execute and simultaneously it gets a migratéjuest

of critical remote process. Then, it simply rejette
request.

[Case O A local process arrives on an underutilized
node currently executing an remote process, théh bo

processes start their execution in round robiniéesh

We consider the case where a remote job is being

executed on an idle node and simultaneously locadgss

compatibility among system and many other factorsgyrives. Condor [15] uses pre-emption techniquestmlve
This random selection is based upon greedyhis problem while the approach does not considercase

approach.

B. Scheduling Srategy

Our proposed scheduling strategy is partitioned fnio
sections. The first section deals with dynamic gueue

management by appropriately loading processes tm ma

memory from process pool while second one deals mwih

critical piece of the operating system software thanages
the CPU resource allocation to tasks. It typicaliyves for
maximizing system throughput, minimizing responiseet

and ensuring fairness among the running taskseirsystem
[16]. Our proposed scheduling strategy is basedtian
priority and criticality of the processes. The teaonitical

process refers to a process whose execution simalthe
delayed or the process which has strict time caims.

Such processes carry highest priority. We proplaeit the

process is critical, its execution should only bspended if
the node that receives this process is executimgowtn

critical local/remote process.

1) Priority-based Run Queue Management

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

of starvation of remote process if the frequencylaxfal
process is too high. Here, we follow the round mobi
scheduling. This approach scores over previougsysthat
support collaborative working while utilizing resoas and
CPU efficiently with no starvation. The scenaritiscussed

in CASE A and CASE B can be described by the data

: . sh Table 3 which sh diff t ithal
queue CPU allocation to processes. CPU scheduler |sS own Table 3 which shows different processes agtia

priority and their arrival time with their executisime.

TABLE III. SCHEDULING DATA FOR CASE[A]
Proces: | Arrival Time Execution Time
L1 0 3
L2 1 1
L3 4 4
CR1 5 2
R1 6 1

The scheduling policy for above shown processesean
described as Fig. 3. Initially, the local procegeaeites as
per round-robin fashion. However, at time unit 5ewh
Critical remote process (CR1) arrives, scheduleempts
the CPU from local process L3 and CR1 starts iecetion.

28

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

As CRL1 finishes its execution, local process L3 esrdote
process R1 continue their execution in the rounkinro
order.

Let us consider another case with different preeessd
their characteristics as depicted in the table @4 given
below. Here the initial execution of local and remo
processes is same as Fig. 4 until remote criticatgss R1
arrives. As CL1 arrives, all local and remote peses are
put to waiting queue and CL1 starts its executow, if
at the same time critical remote process (CR1yesrithe
request is discarded by scheduler.

Qt

Highest Priority Queue

Lower Middle

TABLE IV. SCHEDULING DATA FOR CASE[B] & CASE]C] Al Non.cicalVigated Jobs. Priorty Cueg
Proces: Arrival T ime Execution Time | |E)
L2 1 1 I Lowest Priority Queue '
L3 4 4 e =
R1 5 2 Figure 6. Multilevel feedback queue SchedulingMigrated Tasks
CL1 6 3
CR1 7 1
Now, consider Table 5. with different type of pesses TABLEVI. MLFQ FOR MIGRATED TASK PARAMETES
and their priority with their arrival and executitime, Queue CPU switching | Priority level
time (ms)
TABLE V. SCHEDULING DATA FOR CASE[D] Q1 16 Highes

_ _ _ _ Q2 32 Upper Middle
Proces: Arrival Time E_xecut|on Priori ty Q3 64 Middle
=) 13')|me 1 Q4 128 Lower Middle

Q5 256 Lowest

L2 1 1 2
L3 4 4 2
R1 5 2 3
CLL 5 3 0 IV. PERFORMANCEEVALUATION

The scheduling mechanism (Fig. 5) depends upon the We computed the average waiting time and mean
priority of processes. At time interval 0, L1 starits response time for local and remote processes. kiigra
execution. At time interval 1, L2 arrives. Sintee priority overhead is considered negligible in this analisisimplify
of L1 is greater than from L2, L1 continues its @x®on the model and simulations.
and L2 waits. At time interval 3, L2 starts its emgon and
then L3. Remote process R1 arrives at 5 unit ofetim
scheduler compares the priority of R1 and L3, sifRde

|—l— Local —e—Remote |

carries lower priority, it is put in to the waitirgueue. At 10

time interval 6, critical local process (CL1) aedy g 8 /\Q
scheduler preempts the CPU from local process d3Girl - 6 c\a/ *)
starts its execution. As CL1 finishes its executitocal o 4 ¥ /'_k"\/
process L3 finishes first and then and remote mE®del E 2 "7__@/

continues its execution. — : : :

2) Multilevel Feedback Queue Approach for Migrated
Tasks

A remote job aware multilevel feedback queue based
scheduling for migrated tasks is shown in Fig. 6.

A multilevel feedback queue consisting of five gegu
each assigned a different time quantum, the CPltking
time and the priority levels are given in the Table

AWT(p) AWT(n) ATA(p) ATA(Nn)

Figure 7. Average Waiting & Turnaround Time Conigam of
previous approach with proposed new approach fiar gigen in Table3.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9 29

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

=—&—|ocal —#—Remote | (1]
8 [3]
x v
T L [4]
NE— e
AWT(p) AWT(n) ATA(p) ATA(n)
[5]

Figure 8. Average Waiting & Turnaround Time Compani of previous
approach with proposed new approach for data giva@iable5.

Fig. 7 shows the comparison of average waiting &
turnaround time of proposed new approach (AWT (n) &
(ATA(n)) with previous approaches (AWT(p) & ATA(p)) [6]
We observe from the encircled values in Fig. 7 that

proposed approach is able to reduce the averagmgvand [7]
turnaround time of local and remote processes by328.
The simulation analysis proves that for data setrgin .

Table 5, previously proposed approaches didn't gtcaay
remote process when the machine had its own local
processes to be executed. With our approach, sterayis

able to accommodate remote process along with Iocé?]
process with marginal increment in the waiting &
turnaround time of local processes. [10]

The values enclosed in square area in Fig. 8 shioats
using our proposed approach, the average waitng tf
remote processes is decreased in comparison tespted
significantly lowered as compared to local processeom
the values encircled in the same, we also obsenee t
reduced turn around time of remote process wittmalble
increment in the turnaround time of local processes

V.

This paper presents an optimized scheduling appréac
trusted cluster environment that resolves imporigsues of
remote process starvation in case of local prosesséval,
frequent migration of remote processes and selectiteria

of idle node.

The experimental results establish that prioritgdzh
scheduling increases overall throughput by abou328
percent. In some cases, we also find that the pgeipo
approach is able to accommodate more number ofteemo
processes than the previous approaches with mérgina
increment in waiting and turnaround time of locedqesses.
This in turn shall allow more users going the aust
computing way without the concern of degraded syste
performance and further investments in scalabibityd
redundancy.

[11]

[12]

CONCLUSION

(15]

[16]

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

REFERENCES

R. Buyya, “High Performance Cluster Computing: Atetture and
Systems” Vol. 1. Pearson Education, pp. 61-68.

O'Reilly, “Understanding the Linux Kernel”’, O'RejliMedia, 2002.

S. Pasham and W. Lin, “Efficient task schedulinghvduplication of
bounded number of processors”, 11th Internationahf€ence on
Parallel and Distributed Systems (ICPADS'05)vol.pp, 543-549.
2005

Shakti Mishra, D.S.Kushwaha, and A.K.Misra,” A Ceogtive Trust
Management Framework for Load Balancing in ClusBased
Distributed Systems”, In IEEE proceedings of Ingiwnal
Conference on Recent Trends in Information, Telgoanication
and Computing, ITC 2010. pp. 121-125. March 2010

Shakti Mishra, D.S.Kushwaha, and A.K.Misra,” A Nbvgproach
for Building a Dynamically Reconfigurable Trustwloyt Systems”,
Information Processing and Management: Proc. oérirational
Conference on Recent Trends in Business Administragnd
Information Processing, BAIP 2010, CCIS 70, Sprifderlag,
Berlin Heidelberg, pp. 258-262. March 2010.

H. Rajaei, “Simulation of Job scheduling for smsdlale clusters”,
Proc. of Winter Simulation Conference, pp. 11984.2006.

H. Karatza, “A comparison of load sharing and jameduling in
Network of workstations”, I. J. of Simulation Vat. (3-4), pp. 4-11.
2003.

K. D. Ryu and J. K. Hollingsworth, “Exploiting Fir@rained Idle
Periods in Network of Workstations”, IEEE Transans on Parallel
and Distributed Systems, Vol.11, No.7,, pp. 683-GR8y 2000.

T. Akgun, “BAG Distributed Real-Time Operating Sgist and Task
Migration”, Turkish Journal Electrical Engineeringpl. 9, NO. 2,
pp.123-136. 2001.

Ho, R.S.C., Cho-Li Wang, and Lau, F.C. “LightweigRtocess
Migration and Memory Prefetching in Open MOSIX", BE

International Symposium on Parallel and Distributedbcessing
IPDPS, pp. 1-12. 2008.

Arpaci Dusseau, “Scheduling Multilevel feedback Qele Operating
System, Ch. 7, pp. 1-8.

K. Hoganson, “Reducing MLFQ Starvation with Feedband

Exponential Averaging”, Southeastern Conferenc€onsortium for
Computer Science in Colleges (CCSC), Vol.25 Issugp2 196-202.
Dec’ 2009.

Shakti Mishra, D.S.Kushwaha, and A.K.Misra, “Hybridoad

Balancing in Auto-configurable Trusted Clusters’puthal of
Computer Science and Engineering, Vol. 2 (1), §23. July 2010.

Shakti Mishra, D.S.Kushwaha, and A.K.Misra,” Jingldlingle: A

Hybrid Reliable Load Balancing Approach for a TeasDistributed
Environment”. 5th IEEE International Joint Confezeron INC, IMS
& IDC, NCM 2009, pp. 117-122. Aug’ 2009.

M. J. Litzkow, M.Livny, M. W. Mutka, “Condor-A Humtr of Idle
Workstations”, 8th IEEE International Conference D$tributed
Computing and Systems, pp. 104-111. 1988.

Siddha S., Pallipadi V., Mallick A., “Process Schlitj Challenges
in Multicore Processors”, Intel Technology Journadl. 11 , Issue
04, pp. 361-369. 2007

30

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Cr1 R1
‘\ Rounc-Robin between L3 &R
R Immediate '
un Queue xecutior ‘\‘ A
) s N
| Ly | Lo | Ly | Ly | Ls 1 Cra | Gr1 | Ls Ry | Ls |
0 1 2 3 4 5%, 6 N\ 7 8 9 10
i Preempt b K
Waiting Queue \ h |
Ry
[[g — (38 [138 [(3 [
0 1 2 3 4 5 6 7 8 9 10
Figure 3. Proposed Scheduling Mechanism for CASE A
Run Queue Immediate _ Rounc-Robin baween I3 &R,
execttiol Discarc Cry AN
. a N
Ly L, |Li |Li [Ls |Ry [iCu [Ls |Ry | L3
0o 1 2 3 4N 5 6 7 9 10 11 13
. N \. Preemnth
Waiting Queue Preemnt b -
<4 R1
----- L3 [L3 [-— [L3 |-
0 1 2 3 4 5 6 7 8 9 11 12 13
Figure 4. Proposed Scheduling Mechanism for CASE BASE C
Run Queue ,/1-’ R1 imi Gt
/ ! execiitior
Ly L [, le |Ls |Ls | Cu l'—s ‘| RR. |Ri |
o 1 /2 3 4 ‘5 6 o 110 11 12
- / ' i Pré(\emnt h ' '
Waiting Q;Jeue 1 Switch L> E ‘* SwitchLa Switck R:
------ L, Ly |- |— VR RI |Rl |Rl |R;
L3 L3 L3
0 1 2 3 4 5 6 7 9 10 11 12

Copyright (c) IARIA, 2010

ISBN: 978-1-61208-106-9

Figure 5. Proposed Scheduling mechanism for CASE D

