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Abstract— Virtualization is a technology originally developed 

for mainframe computing. However, recent developments in 

the virtualization makes it a key technology to address the 

problems of modern distributed infrastructure like cloud 

platforms. Perhaps, one of the most important mechanisms 

provided by virtualization is the ability to migrate running 

applications without affecting the end user in a seamless 

manner. So, virtual machine migration is a promising 

approach to realize the objectives of efficient, adaptive and 

dynamic resource manager for virtualized environments. In 

this the paper, we present the state of art migration based 

resource managers for virtualized environments, compare and 

discuss different types of the underlying management 

algorithms from algorithmic issues standpoint. 

Keywords- virtualization; live migration; management 

algorithms; consolidation; orchestration  

I.  INTRODUCTION  

Virtualization has attracted considerable interest in recent 
years, particularly from the datacenters, could platforms and 
cluster computing communities. By defining an intermediate 
layer that decouples the operating systems (that is in direct 
control of the hardware) and the applications, virtualization 
can address the problems of modern distributed 
infrastructures like load balancing, high availability, rapid 
infrastructure deployment and application isolation. Perhaps, 
the biggest advantage of employing virtualization is the 
ability to flexibly control resource allocations. The dynamic 
resource allocation requirements of workload can be satisfied 
by altering the capacity of a virtual machine at runtime. 
While, the ability to power-on/off, archive, migrate 
containers and their workloads enhance the capability of the 
resource manager to work around resource bottlenecks and 
faults. [1] 

Despite virtualization capabilities, a still challenging 
question is how an intelligent infrastructure should optimally 
maps workload and resource requests onto available 
virtualized resources utilizing theses capabilities?  It is 
possible to identify four different trends to realize dynamic 
resource management systems in virtualized environments. 
A large part of the literature is based on request distribution 
policies [2][3][4][5][6]. In this trend, a controller adopts a 

policy that dynamically adjusts requests distribution to share 
resource among the running applications. By using virtual 
machine slicing [7][8], a controller manages resources by 
dynamically change virtual machines allocations (or 
fractions of usage).Then, we have resource management 
using virtual machine replication/instantiation technique [9]. 
Replication/instantiation entails the creation of a local virtual 
machine’s replica (or instantiate a new virtual machine) in 
the target physical server. The load would be shared between 
the two instances, diminishing the stress on the local physical 
server. Finally, we have resource management by virtual 
machine migration.  

The successive developments in the field of virtualization 
technology greatly reduced downtime overhead associated 
with migration.  For example, support for migrating groups 
of processes across OSs was presented in [10], but 
applications had to be suspended and it did not address the 
problem of maintaining open network connections. In [11] 
Virtualization support for commodity operating systems led 
towards techniques for virtual machine migration over long 
time spans, suitable for WAN migration [12]. More recently, 
the most two popular modern virtualization technologies 
products from VMware [13] and Xen [14] have realized the 
notion of live or seamless migration of VMs that involve 
extremely short downtimes ranging from tens of 
milliseconds to a second. Thus, virtual machine migration is 
emerged as a promising technique to be utilized by resource 
management algorithms to rapidly resolve resource 
allocation problems in the virtualized environments. 
However, up to date this approach has received a little 
attention. Thus, we limit the scope of this survey to the 
dynamic resource manager based on the live migration 
technique. The remaining part of this paper is organized as 
the follows. A general live migration based resource 
manager system is presented in Section II. Different types of 
underlying management algorithms is presented and 
discussed in Section III. We conclude the paper and highlight 
possible directions of future research in Section IV. 

II. GENERAL LIVE MIGRATION BASED RESOURCE 

MANAGER 

In this section, architecture is presented that highlights 
the main phases of processing for a general live migration 
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based resource manager. There are different levels of 
virtualization; however, we are care here for operating 
system level virtualization, which supports the scenario 
shown in Figure 1; on each physical machine (PM) there is a 
Virtual Machine Monitor (VMM), also called hypervisor that 
allows for many virtual machines (VMs) to share the 
physical resources. A dynamic resource manager imposes a 
fair resource sharing policy on the competing VMs by 
producing suitable migration orders, which are implemented 
by VMM. The widely testified assumption is that each 
application is represented by a single VM running in a shared 
hosting model. Exceptions are [15], where each application 
can be represented by one or more VMs, [16][17] that 
support the notion of virtual clusters of VMs, while, [18] is 
designed for multi-tier distributed infrastructure. The 
resource manger is usually processed in an iterative manner. 
In each iteration, there are three main phases of processing 
that can be described as follows: 

1. Pre-allocation Phase; the duty of the resource 
manager here is to collect usage data from the 
running nodes within a specific measurement 
interval employing a specific monitoring engine. The 
details of this engine depend largely on the 
employed virtualization technology and the required 
data to be collected. Through these data, the manger 
can keep a general view about the performance level 
in the running nodes. It triggers re-allocation if the 
there is violation(s) for the predefined triggering 
conditions.  

2. Migration Planning phase; this is the most critical 
part of the processing, since it is the duty of the 
resource manager to produce a suitable migration 
plan or orders for a new placement that can eliminate 
or minimally violate the triggering conditions. The 
migration plan usually consists of sender PMs, 
migrated VMs and receiver PMs. 

3. Migration execution phase; it is the duty of the 
VMM to implement the migration plan or orders 
produce by the resource manager. The specifics of 
this phase depend on the employed virtualization 
technology. 

The above mentioned architecture is widely used in the 
literature. It can be described as a single-tier architecture, 
which differs from multi-tier architecture used in [19] or 
arbitrator architecture used in [20][21].   

III. TYPES OF MANAGEMENT ALGORITHMS 

In this section, the underlying algorithms that are used to 
the implement the surveyed live migration based resource 
manager are discussed. In order to classify the different 
algorithms properly, design model was adopted as 
classification criteria from algorithmic issues stand point.  
By design model, we refer to the standard procedure 
followed by an algorithm to solve a given problem. Taking 
design model into consideration, it is possible to broadly 
classify the surveyed algorithms into ordering algorithms, 
Constraint Programming (CP) based algorithms and Genetic 
Algorithms (GAs).  Moreover, we discuss the differences in 
key concepts or techniques that exist among the same class  

Figure 1.  Architecture of a general live migration based resource manager. 

of algorithms.  These key techniques can be described as 
an ad hoc techniques or modifications that are introduced 
into a specific algorithm to enhance its performance against 
the weakness that may exist into the standard procedure to 
solve a given problem. They give a specific algorithm the 
unique features and merits against other algorithms.  On the 
other hand, the existed differences among the surveyed 
algorithms in key techniques do not affect the above 
mentioned classification into three groups, as long as they 
follow the same underlying design model. Therefore, the 
discussion in this section is centered on design model, which 
give us a brief picture about the processing method, and 
algorithms features, which give us an idea about the design 
goals that a specific resource manager is able to satisfy.  In 
addition, experimental results are presented whenever 
possible. Both experimental results and algorithm features 
gives an insight about suitability and the ability of a specific 
resource manager in solving the problems of resource 
allocation in virtualized environments.  

A. Ordering Algorithms 

VMs resource allocation problem is NP hard problem 
that is usually formulated as a generalization of knapsack or 
generalization of its special form of bin packing problem. 
Therefore, the literature is dominated by ordering algorithms, 
which is a popular heuristic approach to address such class of 
problems. The resource manager under such kind of 
algorithms should resort for a specific ordering model to 
answer the questions of; From where to migrate? Which VM 
to migrate? Where to migrate? These questions are the core 
of the migration plan discussed in Section II. The assignment 
of a candidate VM to a candidate PM is done only when 
assignment conditions are met, while, VMM receives 
migration orders when stopping criteria are met.  

The comparison of these algorithms is summarized in 
Table I, while, these algorithms can be discussed as the 
follows. 

Verma et al., in [22], proposed Dynamic Management 
Algorithm (DMA) that it is based on Polynomial-Time 
Approximation Scheme (PTAS) heuristic algorithm. The 
algorithm operates by maintaining two types of ordering lists, 
which are migration cost list (VMs on each PM is arranged 
in non-decreasing order according to their migration cost)  
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TABLE I.  COMPARISION OF ORDERING ALGORITHMS 

 
and residual capacity list (all PMs are arranged in non-
decreasing order according to their residual capacity, which 
reflects the unused portion of resources). One of the features 
of this management algorithm is the ability to minimize the 
migration cost. This is achieved by employing a migration 
cost function that ranks possible new placements. High 
rankings will be given for those placements as close as from 
the current one, while, low rankings will be given for far 
placements or placements that initiates idle PMs. Another 
feature is the ability to minimize power consumption by 
detecting underutilization in the managed system. This 
achieved by using Max-Min thresholds selection model. 
When the resource usage of a running PM violates a 
minimum predefined threshold value, the algorithm tries to 
pack the running VMs as close as possible thus trying to 
minimize the number of running PMs.  

Comparison experiments were held between the 
proposed DMA and an exact or optimal DMA. The optimal 
DMA outperforms the exact one only in the in the optimality 
of solutions, i.e., mapping VMs onto fewer PMs. However, 
the proposed DMA has a better time performance and 
minimum migration cost. In addition, the proposed DMA has 
the ability to adapt the running resources toward workload 
variability, while, optimal DMA lacks this adaptability merit. 
The main limitation of this algorithm is the CPU-memory  
 

 
resource model. Under this model it is not possible to judge 
the performance of the resource manager under network 
intensive applications. 
Tarighi el al in [23] formulate resource allocation problem as 
a multi-criteria decision problem and employed fuzzy 
Decision Making Model (FDM) based on TOPSIS 
techniques. Fuzzy TOPSIS is a technique for ordering 
preference by similarity to an ideal solution. Adopting this 
technique gives the authors the flexibility to include beside 
the usual deterministic information another kind of 
information in the form of linguistic and fuzzy parameters. 
For example, like Sandpiper in [26] the authors used volume 
or ordering function to detect the degree of overloading in 
the running PMs. However, unlike the volume in Sandpiper, 
which usually processes deterministic data of resource usage 
(CPU, memory and network), volume here is able to process 
for example Quality of Service (QoS) as a linguistic 
parameter and temperature of the PM as a fuzzy parameter. 
By including the temperature, the manager becomes able to 
forecast failure for a specific node and takes fault tolerance 
migration actions. This an advantage compared with other 
resource managers. Another point of comparison with 
Sandpiper [26] is VMs ordering functions. Both of them 
using the same kind of function, however, the function here 
is included further data of memory footprint size to arrange 
VMs. That adds flexibility to the performance of the resource 

Resource 

manager 

Design model 

From where to 

migrate 

Which VM  to migrate where to migrate Assignment conditions Stopping criteria 

DMA [22] Max-Min thresholds 
violating PM 

Lowest  utilization VM 
(migration cost) 

Lowest  PM (unused 
portion of resources ) 

Resource constraints 
satisfaction  

Repeat migrations  until 
Overload or underutilization  

elimination  

TOPSIS 

Algorithm [23] 

overloaded  PM 

(threshold breaking 
volume value) 

Best  VM candidate 

(migration cost) 

Lowest PM (volume) Resource constraints 

satisfaction 

Repeat migrations until 

Overload elimination  

Andreolini et 

al., algorithm 
[24] 

Overloaded PMs 

(CUSUM 
algorithm) 

Highest loaded VM 

(Sorting algorithm)  

lowest loaded PM  

(Sorting algorithm) 

Each receiver must 

accept one guest VM in 
a greedy manner  

When all guest VMs are 

assigned to the receivers  

MFR algorithm 

[25] 

 All VMs are sorted in 

descending order 

according to resource 
demand forecast  

Bin packing heuristic 

is used to map VMs 

onto the PMs 

Resource constraints 

satisfaction 

Construct a new placement that 

satisfied assignment condition 

or minimally violated it  

pMapper [20] 

(power 
manager) 

Overloaded PMs 

(SLA violations) 

Lowest  VM (application 

size)  

Bin packing heuristic 

is used  to map VMs 
onto the PMs  

Resource constraints 

satisfaction 

Construct a new placement that 

satisfied SLA requirements  

Sandpiper [26] Overloaded  PM 

(threshold breaking 
volume value) 

Highest VM 

(VSR) 

Lowest PM (volume) Resource constraints 

satisfaction 

Repeat Until overloading  is 

eliminated by  migration or 
swap  

Ruth et al., 

algorithm [16] 

 Heuristic  is used to 

determine over and under 

utilization VMs  

Lowest loaded PM  

in the same domain 

or other domain   

Resource constraints 

satisfaction in same 

domain or other 
domains  

Repeat migrations until 

overloading and 

underutilization is eliminated  

vGreen [19] 

(MPC balance) 

Overloaded PM 

(threshold breaking 
nMPC value) 

Lowest VM (vMPC) lower than 

overloaded PM 
(nMPC)  

Resource constraints 

satisfaction and system 
balance  

Repeat migrations until MPC 

violations are eliminated  

vGreen [19] 

(IPC balance) 

Overloaded PM 

(threshold breaking 

nIPC value) 

Lowest VM  

(vIPC) 

A node that has a 

lower nMPC value 

than the sender one 

Resource constraints 

satisfaction and system 

balance 

Repeat migrations until MPC 

violations are eliminated 
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manager by giving priority to specified VMs during 
migration. 

Experimental investigation validates the performance of 
the system under different critical scenarios. However, the 
results showed that method suffers from the problem of time-
consuming calculations. 

Andreolini et al., in [24], proposed management 
algorithms for cloud computing context. One of interesting 
part of this algorithm is that of using a selective CUSUM 
algorithm to detect the critical nodes instead than the widely 
used threshold violation selection model. An important 
feature of this algorithm is the ability to capturing significant 
changes of running PMs load. Thus, limiting the number of 
sender nodes and avoid needless migrations generated by 
false alarms due to many instantaneous spikes, non-
stationary effects, and unpredictable and rapidly changing 
load. Another part is using a load trend-based sorting 
algorithm to select the candidate VMs for migrations and the 
receiver nodes. An important feature of this algorithm is the 
ability to clearly classify the trend of the running VMs load 
to increasing, decreasing, oscillating or stabilizing, Thus, 
contributes to limiting number of migrated VMs to only few 
critical ones. Finally, the algorithm distribute the migrated 
VMs by assigning each receiver only one VM. Thus, we can 
avoid load imbalance shifting, which is undesirable effect 
that generates frequent fluctuations negatively impact system 
performance and stability. The authors confirmed the 
performance of their system by experiments on traces 
coming from cloud platforms, however, no experimental 
details are provided in this paper. 

Bobroff et al., in [25], proposed a dynamic server 
migration and consolidation algorithm introduced as 
Management-Forecast-Reallocation or MRF algorithm. The 
interesting part of this algorithm is maintaining a gain 
formula that it is used to combine online resource 
measurements with resource demand forecast. This gain 
formula is the core of VMs ordering list. Using of 
forecasting technique gives MFR the ability to adapt the 
available resource to the workload variability in a proactive 
manner, thus providing probabilistic SLA guarantees. In 
addition, it can minimize the number of running PMs at the 
time of decreasing workload behavior thus minimize power 
consumption. However, the downside of forecasting 
technique is the increased sensitivity of MFR performance 
toward remapping interval. For longer remapping intervals, 
the performance of MFR is degraded. This is showed by the 
experimental results. Another feature of this algorithm is the 
ability to deal with the critical scenario of high workload 
utilizations. When it is impossible to totally eliminate 
capacity violations, it generates a placement that minimizes 
violations as much as possible.  

The experimental results were based on workload traces 
across a variety of operating systems, applications, and 
industries. The results were proved that MFR outperforms 
static allocation in term of reducing the physical resource 
consumption for a specific SLA violations rate by 50% and 
reducing SLA violations at a fixed capacity by 20%. On the 
other side, the main limitations is in the resource model 
(CPU only), thus we could not get the full picture of the 

resource manager performance under memory and network 
intensive applications. 

Sandpiper is a resource manager proposed in [26]. An 
interesting feature of Sandpiper is that of using a score 
function or volume to measure the degree of overloading in 
the running PMs. This function is designed to capture 
overloading along three dimensions of CPU, memory and 
network. In addition, another score function or Volume Size 
Ratio (VSR) is designed to order VMs in a descending order 
according to their memory size, thus minimize the migration 
overhead. Moreover, Sandpiper, like [25], is designed to deal 
with critical scenario of high workload utilization but using a 
different approach. Sandpiper first tries to mitigate a hotspot 
by migration. If failed, it tries to swap a high VSR VM in the 
overloaded node with one or more of low VSR VMs in the 
destination node. The experimental results showed that 
migration overhead is less than that of swapping overhead; 
however, swapping increases the chances of mitigating 
hotspots in clusters with high average utilization. Another 
feature is the ability of Sandpiper to address system stability 
by avoiding needless, wasteful and thrashing migrations. 
Sandpiper avoids needless migrations generated by false 
alarms by triggering migrations only if thresholds or SLAs 
are exceeded for sustained time. In case of increasing 
number of hotspots, Sandpiper either implements a partial 
solution or gives up entirely wasteful migrations. However, 
monitoring techniques is the most interesting part of the 
paper. Here, the authors proposed black box and gray box 
monitoring techniques. In the gray box technique, it is 
possible for Sandpiper to relay on some OS level statistics 
beside external usage to infer SLA violations. However, in 
the black box technique, Sandpiper depends only on the 
external usage to infer the SLA violations. This ability to use 
some OS level statistics gives gray box based Sandpiper an 
edge performance over black box one. Experimental results 
showed that gray box based Sandpiper behaves proactively. 
So, it produces fewer swaps, resolve situations faster and 
balance system more quickly compared with black box 
Sandpiper. By comparing with static allocation, Sandpiper 
eliminates all hotspots, while static allocation failed. In 
addition, Sandpiper reduces the number of intervals 
experiencing sustained overload by 61%.  the experiments 
showed that the system overhead has insignificant CPU and 
I/O requirements and has a negligible impact on performance, 
while, the system can scaled up to 500 VMs with 
computational complexity of less than 5 seconds. For very 
large data centers with thousands of VMs, authors proposed 
that computation could be split up across multiple nodes, or 
the center’s servers can be broken up into pools, each 
controlled independently by its own control plane. On the 
other hand, results showed that the quality of Sandpiper 
degrades for long measurements interval. 

Ruth et al., in [16], presented a resource manager for a 
system called Violin, which composed of virtual network of 
VMs. An important feature of this manager is the ability to 
identify and eliminate underutilization by employing max-
min threshold violations detecting heuristic. Thus, reduce 
power consumption. However, the novel part of this paper is 
in the employing two different virtualization techniques of 

35

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



 

VM slicing and VM migration to resolve resource allocation 
problem. By VM slicing, the manager first performs fine-
grained control over per-host memory and CPU allocation 
utilizing memory ballooning and CPU scheduling techniques 
provided by VMware and Xen technologies. If failed to 
resolve resource allocation problem, it adopts the VM 
migration option. This hybrid approach is an efficient 
method for limiting the number of migrations, thus minimize 
migration cost.  

The experimental study reported a small migration 
overhead and concentrated mainly on validating the 
performance of the system under different critical scenarios. 
However, the main limitation is in the consideration of only 
two dimensions of CPU and memory as a sources model. 

Dhiman et al., in [19], presented vGreen, a multi-tiered 
software system, for energy efficient computing in 
virtualized environments. The innovative part of this system 
is in the using of novel hierarchal parameters processed in a 
novel multi-tier architecture. The authors developed the idea 
of the hierarchal parameters from experiments on 
benchmarks from SPEC-CPU 2000 suite, namely mcf and 
perl. Experiential results showed that co-scheduling of VMs 
with heterogeneous characteristics on the same PM is 
beneficial from both energy efficiency and performance 
point of view. In order to capture these characteristics, 
authors developed two kinds of parameters which are 
memory accesses per cycle (MPC) and instructions per cycle 
(IPC). These parameters are maintained in two hierarchal 
levels of node (nMPC, nIPC) and VM (vMPC,vIPC). On the 
other hand, the multi-tier architecture is shown in Fig. 2. In 
contrast to the single tier architecture that it is shown in Fig. 
1, where the migration planning phase is implemented in a 
single-tier or step, the migration phase in multi-tier 
architecture is implemented in four sequential steps. Both of 
the above mentioned architecture and parameters gives 
vGreen the merit of addressing performance and power 
balancing requirements more accurately compared with other 
systems presented in this survey. Therefore, when the 
manager implements MPC balance tier (Table I), this results 
in a better overall performance and energy efficiency across 
the cluster. While balancing of IPC metric values in the IPC 
balance tier (Table I) results in better balance of power 
consumption across the PMs. The performance goals are 
further checked in the Uitl balance tier which eliminates 
overcommitted nodes from the cluster. Finally, VM 
consolidation tier contributes in the resource adaptation 
ability of the manager by eliminating underutilization from 
the cluster. By comparing vGreen with VM scheduler that 
mimics the Eucalyptus, which is a state of art strategy for 
cloud context, and under heterogamous workload conditions, 
the experimental results showed that vGreen outperforms 
along author`s developed metrics of energy savings, which 
captures energy consumption reduction, Weighted Speedup, 
which captures migration overhead and Reduction in Power 
Imbalance, which captures the power consumption variance 
within the machines of the cluster. An overall performance 
and system level energy savings by 20% and 15% 
improvement were achieved. However, under homogenous 
workload condition both performed the same. On other hand,  

Figure 2.  Multi-tier architecture of vGreen system. 

the limitation of this manager is in the two dimensions 
CPU-memory resource model. 

In [20], Verma et al. propose the power aware application 
placement framework or pMapper as the resource manager. 
The novelty in this resource manager is the architecture 
which consists of arbitrator that issues migration orders 
based on the information communicated by performance, 
power and migration managers. This novel architecture gives 
pMapper the ability to serve many of management objectives 
at the same time. The system operation can be described as 
follows. The performance manager continuously checks the 
performance level in the running nodes against the 
performance targets specified by SLA. The Power manager 
utilized an experimental developed CPU based power model 
in the generation of power-minimizing new placements ( as 
shown in Table I). While, the migration manager utilized an 
experimental developed migration cost model that quantify 
migration cost from the decrease in throughput because of 
live migration and estimate the revenue loss because of the 
decreased performance (as given by SLA). Finally, the 
arbitrator constructs a new placement by picking up the 
optimal migrations that trade-offs power-migration targets 
and achieve SLA goals. 

In [21] the authors modified their pMapper. The core of 
their modifications is proposing a new power models that 
related power consumption to the CPU, memory footprint 
and caches usage characteristics of the application. The 
essence of their new proposal is to sort all applications in 
ascending order by their memory usage. Then, classify them 
to three categories. Category 1 or small applications can be 
packed together respecting memory and CPU limits. Thus, 
avoid performance degrade. Category 2 or large applications 
can be packed only based on the CPU limit. Thus, achieve 
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maximum power savings. Finally, category 3 or medium 
applications can be packed either as category 1 or category 2 
applications. 

The experiments were performed to compare the new 

CPU-Cache based pMapper with the old CPU based 

pMapper. Both algorithms succeed in reducing the number 

of the running nodes from 11 to 4. However, CPU-Cache 

based pMapper outperforms in term of performance 

overhead. Then CPU-Cache based pMapper is compared 

with cache-oblivious strategies. For CPU-Cache based 

pMapper only Category 3 applications have performance 

impact, while for cache-oblivious strategies more than half 

of the applications have performance impact. However, this 

CPU-memory resource model is still limited since it ignores 

the effect of network dimension of the resources. 

B. Constraint Programming  

The main idea of the constraint programming based 
resource manger is to formulate the VM resource allocation 
problem as a constraint stratification problem then applies a 
constraint solver to solve the optimization problem. The 
ability of this solver to find the global optimum is the main 
motivation to adopt this approach. In the literature, we have 
identified two papers. The comparison is presented in Table 
II, while, the discussion can be presented as follows. 
Entropy resource manager [27] utilizes Choco constraint 
solver to achieve the objectives of minimizing the number of 
the running nodes and minimizing migration cost. The 
operation of the algorithm can be described as follows. 
Entropy iteratively checks optimality constrain, i.e., the 
current placement uses minimum number of the running 
nodes. If Entropy at VM packing problem (VMPP) phase 
success in constructing a new optimal placement (uses fewer 
running nodes), it will activate the re-allocation.  In addition, 
Entropy employs a novel experimental developed migration 
cost model that relates memory and CPU usage with 
migration context. High parallelism migration steps reduce 
the cost, while sequential and infeasible migration steps 
increases cost. Using of constraint programming techniques 
facilitate the task of capturing such context. However, 
considering only viable processing nodes (a running node 
can support only a single active VM, while other co-
allocated VMs should be inactive) and CPU-Memory 
resources model are the limitations of Entropy model. 

In order to speed up the computation process that can be 
expensive, authors used many optimization techniques. 
Some of the techniques used in the VMPP phase are used to 
detect and exclude partially constructed solutions as soon as 
possible if they violate the optimality and viability 
constraints. Others used to reduce search space, by limiting 
the search for the promising region near from the optimal 
value by imposing upper and lower bounds. In addition, the 
authors devise a metric of the number of active VMs divided 
by the number of nodes to calculate the lower bound, while 
the upper bound is identified by using First Fit Decreasing 
(FFD) heuristic. Finally, authors devised equivalence classes 
metric (VMs memory size to the CPU states), which is 
exploited to reduce the size of search tree. Moreover,  

TABLE II.  COMPARISION OF CONSTRAINT PROGRAMMING 

ALGORITHMS 

 
Equivalence classes are also exploited as an optimization 
technique in VM replacement problem phase with more 
strict constraints. 

Scalability experimental results showed that the system 
complexity is directly related to the characteristics of running 
VMs and the underlying PMS.   More computation time is 
required for configurations sets that have many VMs 
memory requirements and many CPU states. Moreover, the 
scalability of the system is showed to be related to number of 
VMs per node. Higher the ratio, longer the time required to 
compute a solution. On the other hand, when compared with 
First Fit Decreasing heuristic (FFD), Entropy outperforms in 
term of minimizing the number of unsatisfied VMs and 
producing reconfiguration plan with better cost. In addition, 
Entropy outperforms static allocation by 50% and FFD by 
25% in term of minimizing the number of running nodes 
over a collection of NASGrid benchmarks. 

Van et al., in [15], proposed an architecture and 
management algorithms for cloud computing contexts. The 
management algorithms are based on Entropy resource 
manager [27]. However, the main advantage over Entropy 
resource manager is in the novel architecture that  separate 
the management decisions among a Local Decision Module 
(LDM) associated with each application and a Global 
decision Module (GDM). The ability of the resource 
manager here to combine and automated application 
provisioning problem with resource adaptation problem is 
the outcome of this architecture. Another advantage is in the 
including of operations costs in the migration planning 
model. However, like Entropy the resource model is limited 
to the CPU-memory dimensions. The architecture and the 
algorithms are validated through simulation experiments.  
The attempt is still in the early development phase. 

C. Genetic Algorithms  

GAs are metaheurstics that are inspired by evolutionary 
biology. It starts the evolution process from a population of 
initial solutions and changes them very fast by applying the 
usual selection and recombination operators. The rate of 
change reduces gradually when we reach the optimal 
solution.  This incremental behavior, besides the simplicity 
of implementation and the ability of parallelization makes 
GAs a promising approach for VMs resource allocation 

Resource 

manager 

Design model Constraint Solver phases of 

processing 

Entropy [27] Initialization  Optimality and viability constraints 
violations.   

Processing   VM packing problem  

VM replacement problem  

Stopping 
criteria  

Can be aborted at any time  

Van et al., 
algorithms [15] 

Initialization    GDM receives inputs from LDM  
and monitoring probe 

Processing   GDM  VM Provisioning  

VM Packing  and 
replacement 

Stopping 
criteria   

Can be aborted at any time 
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problem. In the literature, we have identified two papers. 
Table III presents and compare the design model for these 
algorithms, which can be discussed as follows.   

Campegiani in [18] used GA to find the optimal 
allocation of virtual machines in a multi-tier distributed 
environment. The innovative part of this work is the formal 
model that addresses beside the usual quantitative resources 
(CPU, memory and network), qualitative resource like 
physical position awareness. In addition, this model allows 
for multiple-SLA representation for each VM. This scheme 
gives the proposed GA the ability to capture multi-tier 
distributed infrastructure, by a signing a profit for specific 
SLA. Maximize the profit through evolution is translated 
into maximization of physical resources efficiency, while 
accommodating for transient workload surges. However, the 
challenge for GA comes from the infeasible solutions that 
can be appeared as a byproduct of the evolution process. The 
author addressed this challenge by devised penalty function 
that differentiates feasible solutions, while penalize 
unfeasible ones. These infeasible solutions are fixed using a 
repair operator. Simulation Experiments on arbitrary dataset 
were held to validate the algorithm which is still in the early 
development phase. 

Nakada et al., in [17], implemented a prototype Virtual 
Machine packing optimization mechanism on Grivon, which 
is a virtual cluster management system for Hardware as a 
Service (HaaS) cloud system type. The most interesting part 
of this algorithm is the penalty function with the objective of 
packing VMs tightly onto the PMs to minimize the number 
of the running nodes, while attempting to minimize 
migration cost and respecting SLA performance levels at 
same time. Experiments were held to validate the 
performance of the system. According to the authors, 
experimental results showed that the GA based approach is 
flexible and fast enough for VM packing problems and 
represent a promising approach. 

IV. CONCLUSION AND FUTURE RESEARCH 

Virtualization is a re-emerged technology that offers 
powerful resource management mechanisms that can cope 
with the challenges of modern distributed infrastructures like 
datacenters and cloud platforms.  Live migration based 
resource management systems is a promising approach for 
efficiently manage resources and rapidly eliminate hostpots 
in the virtualized environments. In this paper, we surveyed 
state of art resource managers describing them using general 
resource manager architecture and presenting different types 
of the resource management algorithms which classified to 
ordering, constrain programming and genetic algorithms. We 
compared and discussed these algorithms from the design 
model and key concepts and techniques standpoints.  

It is possible to highlight the below mentioned fully 
unexploited recent trends; we believe that they will attract a 
greater attention in the future directions of research by 
developing more formal models, trying alternative 
approaches, devising metrics or performing feasibility 
experiments. 

• Qualitative resources are an important recent trend, 
which gives a resource manager the merit to handle  

TABLE III.  CPMPARISIOON OF GENETIC ALGORITHMS 

The design model of 

GA 

the resource manager 

 Campegiani [18] Nakada et al [17] 

Chromosome  
representation  

Binary representation  Integer sequence  

Initial population  Applying First fit, next 
fit and best fit 
heuristic on the input 
configuration. 

Repeatedly applying 
mutation on the input 
configuration.  

Selection operator  tournament selection 
scheme 

regular normalized 
weighted roulette 
method 

Crossover operator  Uniform crossover  One point cross over 

Mutation operator  Fix rate mutation 
operator  

Mutations will cause 
real change in the 
individual by 
reordering two 
randomly chosen 
numbers.  

Type of fitness 
function  

Penalty function  Penalty function  

Replacement scheme Inject new individual, 
remove lowest fitness 
one.  

 

Special operators  Repair operator   

 
qualitative requirements of resource allocation.  For 
example, physical position awareness, which is 
described as a qualitative resource, is an important 
requirement for multi-site virtual clusters. In the 
survey, we have identified only one paper [18], 
which is still in the early development phase, which 
addresses such theme.  

• Developing a resource manager that has the ability to 
combine on-the-fly (or dynamic) application 
provisioning with dynamic application consolidation 
at the same time is an important recent trend 
especially for cloud contexts. We have identified in 
the survey only one paper [15], which still in the 
early development stage, that address such theme.   

• Developing a hybrid resources manager that uses 
more than one virtualization techniques (like VM 
migration and VM slicing) is an important trend that 
can combine the benefit of both techniques. VM 
slicing can contributes into migration cost limitation 
or minimization. In addition, it is useful to capture 
the structure of modern multi-domain or multi-tier 
infrastructures.  On the other hand, VM migration, 
that finds global solutions for resource allocation 
problems, can enhance the performance of VM 
slicing technique, which is useful in finding local 
solutions for resource allocation problem. We have 
identified in the survey only one paper [16] that 
apply this method for a grid computing platform. 

• According to the survey, ordering and CP 
approaches are suffers from time-consuming 
calculations. It requires innovative techniques and 
complex architectures to overcome this difficulty. 
We believe that the future research developments 
will turn toward more robust and faster metaheuristic 
algorithms. Multi-objective GA is a possible 
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promising candidate algorithm for future cloud 
systems. 

• Hybriding CP and GA approaches can be seen as a 
possible direction of future research. The combined 
approach can benefit from their different aspects. 
From one side, constraint programming is a good 
approach to model complex constraints. On the other 
side, GA can greatly fasten CP expensive processing.  

• Dataset is important for algorithm development. It is 
usually used to test algorithms against it. It have 
been noted from the surveyed papers that many 
researchers resort to the randomized configurations 
for developing their algorithms. This field of 
research lacks suitable dataset that captures 
virtualized infrastructure. Therefore, future 
development in this field will be largely affected by 
the development of suitable dataset by specialized 
community like operational research or integer 
programming.  

• Finally, future development in this field is largely 
related to simulation and experimentation 
procedures. It has been noted from the surveyed 
papers, that there is a need to define standard 
benchmarks applications, standard metrics to 
measure the goodness of the resource managers and 
to perform experimental tests under large 
configurations of VMs and PMs and comparing 
among different states of art resource managers. 
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