
Live Migration-based Resource Managers for Virtualized Environments:

A Survey

Omar Abdul-Rahman

Graduate School of Information Science & Technology

Hokkaido University

Sapporo, Japan

omar@ist.hokudai.ac.jp

Masaharu Munetomo and Kiyoshi Akama

Information Initiative Center

Hokkaido University

Sapporo, Japan

munetomo@iic.hokudai.ac.jp, akama@iic.hokudai.ac.jp

Abstract— Virtualization is a technology originally developed

for mainframe computing. However, recent developments in

the virtualization makes it a key technology to address the

problems of modern distributed infrastructure like cloud

platforms. Perhaps, one of the most important mechanisms

provided by virtualization is the ability to migrate running

applications without affecting the end user in a seamless

manner. So, virtual machine migration is a promising

approach to realize the objectives of efficient, adaptive and

dynamic resource manager for virtualized environments. In

this the paper, we present the state of art migration based

resource managers for virtualized environments, compare and

discuss different types of the underlying management

algorithms from algorithmic issues standpoint.

Keywords- virtualization; live migration; management

algorithms; consolidation; orchestration

I. INTRODUCTION

Virtualization has attracted considerable interest in recent
years, particularly from the datacenters, could platforms and
cluster computing communities. By defining an intermediate
layer that decouples the operating systems (that is in direct
control of the hardware) and the applications, virtualization
can address the problems of modern distributed
infrastructures like load balancing, high availability, rapid
infrastructure deployment and application isolation. Perhaps,
the biggest advantage of employing virtualization is the
ability to flexibly control resource allocations. The dynamic
resource allocation requirements of workload can be satisfied
by altering the capacity of a virtual machine at runtime.
While, the ability to power-on/off, archive, migrate
containers and their workloads enhance the capability of the
resource manager to work around resource bottlenecks and
faults. [1]

Despite virtualization capabilities, a still challenging
question is how an intelligent infrastructure should optimally
maps workload and resource requests onto available
virtualized resources utilizing theses capabilities? It is
possible to identify four different trends to realize dynamic
resource management systems in virtualized environments.
A large part of the literature is based on request distribution
policies [2][3][4][5][6]. In this trend, a controller adopts a

policy that dynamically adjusts requests distribution to share
resource among the running applications. By using virtual
machine slicing [7][8], a controller manages resources by
dynamically change virtual machines allocations (or
fractions of usage).Then, we have resource management
using virtual machine replication/instantiation technique [9].
Replication/instantiation entails the creation of a local virtual
machine’s replica (or instantiate a new virtual machine) in
the target physical server. The load would be shared between
the two instances, diminishing the stress on the local physical
server. Finally, we have resource management by virtual
machine migration.

The successive developments in the field of virtualization
technology greatly reduced downtime overhead associated
with migration. For example, support for migrating groups
of processes across OSs was presented in [10], but
applications had to be suspended and it did not address the
problem of maintaining open network connections. In [11]
Virtualization support for commodity operating systems led
towards techniques for virtual machine migration over long
time spans, suitable for WAN migration [12]. More recently,
the most two popular modern virtualization technologies
products from VMware [13] and Xen [14] have realized the
notion of live or seamless migration of VMs that involve
extremely short downtimes ranging from tens of
milliseconds to a second. Thus, virtual machine migration is
emerged as a promising technique to be utilized by resource
management algorithms to rapidly resolve resource
allocation problems in the virtualized environments.
However, up to date this approach has received a little
attention. Thus, we limit the scope of this survey to the
dynamic resource manager based on the live migration
technique. The remaining part of this paper is organized as
the follows. A general live migration based resource
manager system is presented in Section II. Different types of
underlying management algorithms is presented and
discussed in Section III. We conclude the paper and highlight
possible directions of future research in Section IV.

II. GENERAL LIVE MIGRATION BASED RESOURCE

MANAGER

In this section, architecture is presented that highlights
the main phases of processing for a general live migration

32

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

based resource manager. There are different levels of
virtualization; however, we are care here for operating
system level virtualization, which supports the scenario
shown in Figure 1; on each physical machine (PM) there is a
Virtual Machine Monitor (VMM), also called hypervisor that
allows for many virtual machines (VMs) to share the
physical resources. A dynamic resource manager imposes a
fair resource sharing policy on the competing VMs by
producing suitable migration orders, which are implemented
by VMM. The widely testified assumption is that each
application is represented by a single VM running in a shared
hosting model. Exceptions are [15], where each application
can be represented by one or more VMs, [16][17] that
support the notion of virtual clusters of VMs, while, [18] is
designed for multi-tier distributed infrastructure. The
resource manger is usually processed in an iterative manner.
In each iteration, there are three main phases of processing
that can be described as follows:

1. Pre-allocation Phase; the duty of the resource
manager here is to collect usage data from the
running nodes within a specific measurement
interval employing a specific monitoring engine. The
details of this engine depend largely on the
employed virtualization technology and the required
data to be collected. Through these data, the manger
can keep a general view about the performance level
in the running nodes. It triggers re-allocation if the
there is violation(s) for the predefined triggering
conditions.

2. Migration Planning phase; this is the most critical
part of the processing, since it is the duty of the
resource manager to produce a suitable migration
plan or orders for a new placement that can eliminate
or minimally violate the triggering conditions. The
migration plan usually consists of sender PMs,
migrated VMs and receiver PMs.

3. Migration execution phase; it is the duty of the
VMM to implement the migration plan or orders
produce by the resource manager. The specifics of
this phase depend on the employed virtualization
technology.

The above mentioned architecture is widely used in the
literature. It can be described as a single-tier architecture,
which differs from multi-tier architecture used in [19] or
arbitrator architecture used in [20][21].

III. TYPES OF MANAGEMENT ALGORITHMS

In this section, the underlying algorithms that are used to
the implement the surveyed live migration based resource
manager are discussed. In order to classify the different
algorithms properly, design model was adopted as
classification criteria from algorithmic issues stand point.
By design model, we refer to the standard procedure
followed by an algorithm to solve a given problem. Taking
design model into consideration, it is possible to broadly
classify the surveyed algorithms into ordering algorithms,
Constraint Programming (CP) based algorithms and Genetic
Algorithms (GAs). Moreover, we discuss the differences in
key concepts or techniques that exist among the same class

Figure 1. Architecture of a general live migration based resource manager.

of algorithms. These key techniques can be described as
an ad hoc techniques or modifications that are introduced
into a specific algorithm to enhance its performance against
the weakness that may exist into the standard procedure to
solve a given problem. They give a specific algorithm the
unique features and merits against other algorithms. On the
other hand, the existed differences among the surveyed
algorithms in key techniques do not affect the above
mentioned classification into three groups, as long as they
follow the same underlying design model. Therefore, the
discussion in this section is centered on design model, which
give us a brief picture about the processing method, and
algorithms features, which give us an idea about the design
goals that a specific resource manager is able to satisfy. In
addition, experimental results are presented whenever
possible. Both experimental results and algorithm features
gives an insight about suitability and the ability of a specific
resource manager in solving the problems of resource
allocation in virtualized environments.

A. Ordering Algorithms

VMs resource allocation problem is NP hard problem
that is usually formulated as a generalization of knapsack or
generalization of its special form of bin packing problem.
Therefore, the literature is dominated by ordering algorithms,
which is a popular heuristic approach to address such class of
problems. The resource manager under such kind of
algorithms should resort for a specific ordering model to
answer the questions of; From where to migrate? Which VM
to migrate? Where to migrate? These questions are the core
of the migration plan discussed in Section II. The assignment
of a candidate VM to a candidate PM is done only when
assignment conditions are met, while, VMM receives
migration orders when stopping criteria are met.

The comparison of these algorithms is summarized in
Table I, while, these algorithms can be discussed as the
follows.

Verma et al., in [22], proposed Dynamic Management
Algorithm (DMA) that it is based on Polynomial-Time
Approximation Scheme (PTAS) heuristic algorithm. The
algorithm operates by maintaining two types of ordering lists,
which are migration cost list (VMs on each PM is arranged
in non-decreasing order according to their migration cost)

33

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

TABLE I. COMPARISION OF ORDERING ALGORITHMS

and residual capacity list (all PMs are arranged in non-
decreasing order according to their residual capacity, which
reflects the unused portion of resources). One of the features
of this management algorithm is the ability to minimize the
migration cost. This is achieved by employing a migration
cost function that ranks possible new placements. High
rankings will be given for those placements as close as from
the current one, while, low rankings will be given for far
placements or placements that initiates idle PMs. Another
feature is the ability to minimize power consumption by
detecting underutilization in the managed system. This
achieved by using Max-Min thresholds selection model.
When the resource usage of a running PM violates a
minimum predefined threshold value, the algorithm tries to
pack the running VMs as close as possible thus trying to
minimize the number of running PMs.

Comparison experiments were held between the
proposed DMA and an exact or optimal DMA. The optimal
DMA outperforms the exact one only in the in the optimality
of solutions, i.e., mapping VMs onto fewer PMs. However,
the proposed DMA has a better time performance and
minimum migration cost. In addition, the proposed DMA has
the ability to adapt the running resources toward workload
variability, while, optimal DMA lacks this adaptability merit.
The main limitation of this algorithm is the CPU-memory

resource model. Under this model it is not possible to judge
the performance of the resource manager under network
intensive applications.
Tarighi el al in [23] formulate resource allocation problem as
a multi-criteria decision problem and employed fuzzy
Decision Making Model (FDM) based on TOPSIS
techniques. Fuzzy TOPSIS is a technique for ordering
preference by similarity to an ideal solution. Adopting this
technique gives the authors the flexibility to include beside
the usual deterministic information another kind of
information in the form of linguistic and fuzzy parameters.
For example, like Sandpiper in [26] the authors used volume
or ordering function to detect the degree of overloading in
the running PMs. However, unlike the volume in Sandpiper,
which usually processes deterministic data of resource usage
(CPU, memory and network), volume here is able to process
for example Quality of Service (QoS) as a linguistic
parameter and temperature of the PM as a fuzzy parameter.
By including the temperature, the manager becomes able to
forecast failure for a specific node and takes fault tolerance
migration actions. This an advantage compared with other
resource managers. Another point of comparison with
Sandpiper [26] is VMs ordering functions. Both of them
using the same kind of function, however, the function here
is included further data of memory footprint size to arrange
VMs. That adds flexibility to the performance of the resource

Resource

manager

Design model

From where to

migrate

Which VM to migrate where to migrate Assignment conditions Stopping criteria

DMA [22] Max-Min thresholds
violating PM

Lowest utilization VM
(migration cost)

Lowest PM (unused
portion of resources)

Resource constraints
satisfaction

Repeat migrations until
Overload or underutilization

elimination

TOPSIS

Algorithm [23]

overloaded PM

(threshold breaking
volume value)

Best VM candidate

(migration cost)

Lowest PM (volume) Resource constraints

satisfaction

Repeat migrations until

Overload elimination

Andreolini et

al., algorithm
[24]

Overloaded PMs

(CUSUM
algorithm)

Highest loaded VM

(Sorting algorithm)

lowest loaded PM

(Sorting algorithm)

Each receiver must

accept one guest VM in
a greedy manner

When all guest VMs are

assigned to the receivers

MFR algorithm

[25]

 All VMs are sorted in

descending order

according to resource
demand forecast

Bin packing heuristic

is used to map VMs

onto the PMs

Resource constraints

satisfaction

Construct a new placement that

satisfied assignment condition

or minimally violated it

pMapper [20]

(power
manager)

Overloaded PMs

(SLA violations)

Lowest VM (application

size)

Bin packing heuristic

is used to map VMs
onto the PMs

Resource constraints

satisfaction

Construct a new placement that

satisfied SLA requirements

Sandpiper [26] Overloaded PM

(threshold breaking
volume value)

Highest VM

(VSR)

Lowest PM (volume) Resource constraints

satisfaction

Repeat Until overloading is

eliminated by migration or
swap

Ruth et al.,

algorithm [16]

 Heuristic is used to

determine over and under

utilization VMs

Lowest loaded PM

in the same domain

or other domain

Resource constraints

satisfaction in same

domain or other
domains

Repeat migrations until

overloading and

underutilization is eliminated

vGreen [19]

(MPC balance)

Overloaded PM

(threshold breaking
nMPC value)

Lowest VM (vMPC) lower than

overloaded PM
(nMPC)

Resource constraints

satisfaction and system
balance

Repeat migrations until MPC

violations are eliminated

vGreen [19]

(IPC balance)

Overloaded PM

(threshold breaking

nIPC value)

Lowest VM

(vIPC)

A node that has a

lower nMPC value

than the sender one

Resource constraints

satisfaction and system

balance

Repeat migrations until MPC

violations are eliminated

34

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

manager by giving priority to specified VMs during
migration.

Experimental investigation validates the performance of
the system under different critical scenarios. However, the
results showed that method suffers from the problem of time-
consuming calculations.

Andreolini et al., in [24], proposed management
algorithms for cloud computing context. One of interesting
part of this algorithm is that of using a selective CUSUM
algorithm to detect the critical nodes instead than the widely
used threshold violation selection model. An important
feature of this algorithm is the ability to capturing significant
changes of running PMs load. Thus, limiting the number of
sender nodes and avoid needless migrations generated by
false alarms due to many instantaneous spikes, non-
stationary effects, and unpredictable and rapidly changing
load. Another part is using a load trend-based sorting
algorithm to select the candidate VMs for migrations and the
receiver nodes. An important feature of this algorithm is the
ability to clearly classify the trend of the running VMs load
to increasing, decreasing, oscillating or stabilizing, Thus,
contributes to limiting number of migrated VMs to only few
critical ones. Finally, the algorithm distribute the migrated
VMs by assigning each receiver only one VM. Thus, we can
avoid load imbalance shifting, which is undesirable effect
that generates frequent fluctuations negatively impact system
performance and stability. The authors confirmed the
performance of their system by experiments on traces
coming from cloud platforms, however, no experimental
details are provided in this paper.

Bobroff et al., in [25], proposed a dynamic server
migration and consolidation algorithm introduced as
Management-Forecast-Reallocation or MRF algorithm. The
interesting part of this algorithm is maintaining a gain
formula that it is used to combine online resource
measurements with resource demand forecast. This gain
formula is the core of VMs ordering list. Using of
forecasting technique gives MFR the ability to adapt the
available resource to the workload variability in a proactive
manner, thus providing probabilistic SLA guarantees. In
addition, it can minimize the number of running PMs at the
time of decreasing workload behavior thus minimize power
consumption. However, the downside of forecasting
technique is the increased sensitivity of MFR performance
toward remapping interval. For longer remapping intervals,
the performance of MFR is degraded. This is showed by the
experimental results. Another feature of this algorithm is the
ability to deal with the critical scenario of high workload
utilizations. When it is impossible to totally eliminate
capacity violations, it generates a placement that minimizes
violations as much as possible.

The experimental results were based on workload traces
across a variety of operating systems, applications, and
industries. The results were proved that MFR outperforms
static allocation in term of reducing the physical resource
consumption for a specific SLA violations rate by 50% and
reducing SLA violations at a fixed capacity by 20%. On the
other side, the main limitations is in the resource model
(CPU only), thus we could not get the full picture of the

resource manager performance under memory and network
intensive applications.

Sandpiper is a resource manager proposed in [26]. An
interesting feature of Sandpiper is that of using a score
function or volume to measure the degree of overloading in
the running PMs. This function is designed to capture
overloading along three dimensions of CPU, memory and
network. In addition, another score function or Volume Size
Ratio (VSR) is designed to order VMs in a descending order
according to their memory size, thus minimize the migration
overhead. Moreover, Sandpiper, like [25], is designed to deal
with critical scenario of high workload utilization but using a
different approach. Sandpiper first tries to mitigate a hotspot
by migration. If failed, it tries to swap a high VSR VM in the
overloaded node with one or more of low VSR VMs in the
destination node. The experimental results showed that
migration overhead is less than that of swapping overhead;
however, swapping increases the chances of mitigating
hotspots in clusters with high average utilization. Another
feature is the ability of Sandpiper to address system stability
by avoiding needless, wasteful and thrashing migrations.
Sandpiper avoids needless migrations generated by false
alarms by triggering migrations only if thresholds or SLAs
are exceeded for sustained time. In case of increasing
number of hotspots, Sandpiper either implements a partial
solution or gives up entirely wasteful migrations. However,
monitoring techniques is the most interesting part of the
paper. Here, the authors proposed black box and gray box
monitoring techniques. In the gray box technique, it is
possible for Sandpiper to relay on some OS level statistics
beside external usage to infer SLA violations. However, in
the black box technique, Sandpiper depends only on the
external usage to infer the SLA violations. This ability to use
some OS level statistics gives gray box based Sandpiper an
edge performance over black box one. Experimental results
showed that gray box based Sandpiper behaves proactively.
So, it produces fewer swaps, resolve situations faster and
balance system more quickly compared with black box
Sandpiper. By comparing with static allocation, Sandpiper
eliminates all hotspots, while static allocation failed. In
addition, Sandpiper reduces the number of intervals
experiencing sustained overload by 61%. the experiments
showed that the system overhead has insignificant CPU and
I/O requirements and has a negligible impact on performance,
while, the system can scaled up to 500 VMs with
computational complexity of less than 5 seconds. For very
large data centers with thousands of VMs, authors proposed
that computation could be split up across multiple nodes, or
the center’s servers can be broken up into pools, each
controlled independently by its own control plane. On the
other hand, results showed that the quality of Sandpiper
degrades for long measurements interval.

Ruth et al., in [16], presented a resource manager for a
system called Violin, which composed of virtual network of
VMs. An important feature of this manager is the ability to
identify and eliminate underutilization by employing max-
min threshold violations detecting heuristic. Thus, reduce
power consumption. However, the novel part of this paper is
in the employing two different virtualization techniques of

35

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

VM slicing and VM migration to resolve resource allocation
problem. By VM slicing, the manager first performs fine-
grained control over per-host memory and CPU allocation
utilizing memory ballooning and CPU scheduling techniques
provided by VMware and Xen technologies. If failed to
resolve resource allocation problem, it adopts the VM
migration option. This hybrid approach is an efficient
method for limiting the number of migrations, thus minimize
migration cost.

The experimental study reported a small migration
overhead and concentrated mainly on validating the
performance of the system under different critical scenarios.
However, the main limitation is in the consideration of only
two dimensions of CPU and memory as a sources model.

Dhiman et al., in [19], presented vGreen, a multi-tiered
software system, for energy efficient computing in
virtualized environments. The innovative part of this system
is in the using of novel hierarchal parameters processed in a
novel multi-tier architecture. The authors developed the idea
of the hierarchal parameters from experiments on
benchmarks from SPEC-CPU 2000 suite, namely mcf and
perl. Experiential results showed that co-scheduling of VMs
with heterogeneous characteristics on the same PM is
beneficial from both energy efficiency and performance
point of view. In order to capture these characteristics,
authors developed two kinds of parameters which are
memory accesses per cycle (MPC) and instructions per cycle
(IPC). These parameters are maintained in two hierarchal
levels of node (nMPC, nIPC) and VM (vMPC,vIPC). On the
other hand, the multi-tier architecture is shown in Fig. 2. In
contrast to the single tier architecture that it is shown in Fig.
1, where the migration planning phase is implemented in a
single-tier or step, the migration phase in multi-tier
architecture is implemented in four sequential steps. Both of
the above mentioned architecture and parameters gives
vGreen the merit of addressing performance and power
balancing requirements more accurately compared with other
systems presented in this survey. Therefore, when the
manager implements MPC balance tier (Table I), this results
in a better overall performance and energy efficiency across
the cluster. While balancing of IPC metric values in the IPC
balance tier (Table I) results in better balance of power
consumption across the PMs. The performance goals are
further checked in the Uitl balance tier which eliminates
overcommitted nodes from the cluster. Finally, VM
consolidation tier contributes in the resource adaptation
ability of the manager by eliminating underutilization from
the cluster. By comparing vGreen with VM scheduler that
mimics the Eucalyptus, which is a state of art strategy for
cloud context, and under heterogamous workload conditions,
the experimental results showed that vGreen outperforms
along author`s developed metrics of energy savings, which
captures energy consumption reduction, Weighted Speedup,
which captures migration overhead and Reduction in Power
Imbalance, which captures the power consumption variance
within the machines of the cluster. An overall performance
and system level energy savings by 20% and 15%
improvement were achieved. However, under homogenous
workload condition both performed the same. On other hand,

Figure 2. Multi-tier architecture of vGreen system.

the limitation of this manager is in the two dimensions
CPU-memory resource model.

In [20], Verma et al. propose the power aware application
placement framework or pMapper as the resource manager.
The novelty in this resource manager is the architecture
which consists of arbitrator that issues migration orders
based on the information communicated by performance,
power and migration managers. This novel architecture gives
pMapper the ability to serve many of management objectives
at the same time. The system operation can be described as
follows. The performance manager continuously checks the
performance level in the running nodes against the
performance targets specified by SLA. The Power manager
utilized an experimental developed CPU based power model
in the generation of power-minimizing new placements (as
shown in Table I). While, the migration manager utilized an
experimental developed migration cost model that quantify
migration cost from the decrease in throughput because of
live migration and estimate the revenue loss because of the
decreased performance (as given by SLA). Finally, the
arbitrator constructs a new placement by picking up the
optimal migrations that trade-offs power-migration targets
and achieve SLA goals.

In [21] the authors modified their pMapper. The core of
their modifications is proposing a new power models that
related power consumption to the CPU, memory footprint
and caches usage characteristics of the application. The
essence of their new proposal is to sort all applications in
ascending order by their memory usage. Then, classify them
to three categories. Category 1 or small applications can be
packed together respecting memory and CPU limits. Thus,
avoid performance degrade. Category 2 or large applications
can be packed only based on the CPU limit. Thus, achieve

36

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

maximum power savings. Finally, category 3 or medium
applications can be packed either as category 1 or category 2
applications.

The experiments were performed to compare the new

CPU-Cache based pMapper with the old CPU based

pMapper. Both algorithms succeed in reducing the number

of the running nodes from 11 to 4. However, CPU-Cache

based pMapper outperforms in term of performance

overhead. Then CPU-Cache based pMapper is compared

with cache-oblivious strategies. For CPU-Cache based

pMapper only Category 3 applications have performance

impact, while for cache-oblivious strategies more than half

of the applications have performance impact. However, this

CPU-memory resource model is still limited since it ignores

the effect of network dimension of the resources.

B. Constraint Programming

The main idea of the constraint programming based
resource manger is to formulate the VM resource allocation
problem as a constraint stratification problem then applies a
constraint solver to solve the optimization problem. The
ability of this solver to find the global optimum is the main
motivation to adopt this approach. In the literature, we have
identified two papers. The comparison is presented in Table
II, while, the discussion can be presented as follows.
Entropy resource manager [27] utilizes Choco constraint
solver to achieve the objectives of minimizing the number of
the running nodes and minimizing migration cost. The
operation of the algorithm can be described as follows.
Entropy iteratively checks optimality constrain, i.e., the
current placement uses minimum number of the running
nodes. If Entropy at VM packing problem (VMPP) phase
success in constructing a new optimal placement (uses fewer
running nodes), it will activate the re-allocation. In addition,
Entropy employs a novel experimental developed migration
cost model that relates memory and CPU usage with
migration context. High parallelism migration steps reduce
the cost, while sequential and infeasible migration steps
increases cost. Using of constraint programming techniques
facilitate the task of capturing such context. However,
considering only viable processing nodes (a running node
can support only a single active VM, while other co-
allocated VMs should be inactive) and CPU-Memory
resources model are the limitations of Entropy model.

In order to speed up the computation process that can be
expensive, authors used many optimization techniques.
Some of the techniques used in the VMPP phase are used to
detect and exclude partially constructed solutions as soon as
possible if they violate the optimality and viability
constraints. Others used to reduce search space, by limiting
the search for the promising region near from the optimal
value by imposing upper and lower bounds. In addition, the
authors devise a metric of the number of active VMs divided
by the number of nodes to calculate the lower bound, while
the upper bound is identified by using First Fit Decreasing
(FFD) heuristic. Finally, authors devised equivalence classes
metric (VMs memory size to the CPU states), which is
exploited to reduce the size of search tree. Moreover,

TABLE II. COMPARISION OF CONSTRAINT PROGRAMMING

ALGORITHMS

Equivalence classes are also exploited as an optimization
technique in VM replacement problem phase with more
strict constraints.

Scalability experimental results showed that the system
complexity is directly related to the characteristics of running
VMs and the underlying PMS. More computation time is
required for configurations sets that have many VMs
memory requirements and many CPU states. Moreover, the
scalability of the system is showed to be related to number of
VMs per node. Higher the ratio, longer the time required to
compute a solution. On the other hand, when compared with
First Fit Decreasing heuristic (FFD), Entropy outperforms in
term of minimizing the number of unsatisfied VMs and
producing reconfiguration plan with better cost. In addition,
Entropy outperforms static allocation by 50% and FFD by
25% in term of minimizing the number of running nodes
over a collection of NASGrid benchmarks.

Van et al., in [15], proposed an architecture and
management algorithms for cloud computing contexts. The
management algorithms are based on Entropy resource
manager [27]. However, the main advantage over Entropy
resource manager is in the novel architecture that separate
the management decisions among a Local Decision Module
(LDM) associated with each application and a Global
decision Module (GDM). The ability of the resource
manager here to combine and automated application
provisioning problem with resource adaptation problem is
the outcome of this architecture. Another advantage is in the
including of operations costs in the migration planning
model. However, like Entropy the resource model is limited
to the CPU-memory dimensions. The architecture and the
algorithms are validated through simulation experiments.
The attempt is still in the early development phase.

C. Genetic Algorithms

GAs are metaheurstics that are inspired by evolutionary
biology. It starts the evolution process from a population of
initial solutions and changes them very fast by applying the
usual selection and recombination operators. The rate of
change reduces gradually when we reach the optimal
solution. This incremental behavior, besides the simplicity
of implementation and the ability of parallelization makes
GAs a promising approach for VMs resource allocation

Resource

manager

Design model Constraint Solver phases of

processing

Entropy [27] Initialization Optimality and viability constraints
violations.

Processing VM packing problem

VM replacement problem

Stopping
criteria

Can be aborted at any time

Van et al.,
algorithms [15]

Initialization GDM receives inputs from LDM
and monitoring probe

Processing GDM VM Provisioning

VM Packing and
replacement

Stopping
criteria

Can be aborted at any time

37

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

problem. In the literature, we have identified two papers.
Table III presents and compare the design model for these
algorithms, which can be discussed as follows.

Campegiani in [18] used GA to find the optimal
allocation of virtual machines in a multi-tier distributed
environment. The innovative part of this work is the formal
model that addresses beside the usual quantitative resources
(CPU, memory and network), qualitative resource like
physical position awareness. In addition, this model allows
for multiple-SLA representation for each VM. This scheme
gives the proposed GA the ability to capture multi-tier
distributed infrastructure, by a signing a profit for specific
SLA. Maximize the profit through evolution is translated
into maximization of physical resources efficiency, while
accommodating for transient workload surges. However, the
challenge for GA comes from the infeasible solutions that
can be appeared as a byproduct of the evolution process. The
author addressed this challenge by devised penalty function
that differentiates feasible solutions, while penalize
unfeasible ones. These infeasible solutions are fixed using a
repair operator. Simulation Experiments on arbitrary dataset
were held to validate the algorithm which is still in the early
development phase.

Nakada et al., in [17], implemented a prototype Virtual
Machine packing optimization mechanism on Grivon, which
is a virtual cluster management system for Hardware as a
Service (HaaS) cloud system type. The most interesting part
of this algorithm is the penalty function with the objective of
packing VMs tightly onto the PMs to minimize the number
of the running nodes, while attempting to minimize
migration cost and respecting SLA performance levels at
same time. Experiments were held to validate the
performance of the system. According to the authors,
experimental results showed that the GA based approach is
flexible and fast enough for VM packing problems and
represent a promising approach.

IV. CONCLUSION AND FUTURE RESEARCH

Virtualization is a re-emerged technology that offers
powerful resource management mechanisms that can cope
with the challenges of modern distributed infrastructures like
datacenters and cloud platforms. Live migration based
resource management systems is a promising approach for
efficiently manage resources and rapidly eliminate hostpots
in the virtualized environments. In this paper, we surveyed
state of art resource managers describing them using general
resource manager architecture and presenting different types
of the resource management algorithms which classified to
ordering, constrain programming and genetic algorithms. We
compared and discussed these algorithms from the design
model and key concepts and techniques standpoints.

It is possible to highlight the below mentioned fully
unexploited recent trends; we believe that they will attract a
greater attention in the future directions of research by
developing more formal models, trying alternative
approaches, devising metrics or performing feasibility
experiments.

• Qualitative resources are an important recent trend,
which gives a resource manager the merit to handle

TABLE III. CPMPARISIOON OF GENETIC ALGORITHMS

The design model of

GA

the resource manager

 Campegiani [18] Nakada et al [17]

Chromosome
representation

Binary representation Integer sequence

Initial population Applying First fit, next
fit and best fit
heuristic on the input
configuration.

Repeatedly applying
mutation on the input
configuration.

Selection operator tournament selection
scheme

regular normalized
weighted roulette
method

Crossover operator Uniform crossover One point cross over

Mutation operator Fix rate mutation
operator

Mutations will cause
real change in the
individual by
reordering two
randomly chosen
numbers.

Type of fitness
function

Penalty function Penalty function

Replacement scheme Inject new individual,
remove lowest fitness
one.

Special operators Repair operator

qualitative requirements of resource allocation. For
example, physical position awareness, which is
described as a qualitative resource, is an important
requirement for multi-site virtual clusters. In the
survey, we have identified only one paper [18],
which is still in the early development phase, which
addresses such theme.

• Developing a resource manager that has the ability to
combine on-the-fly (or dynamic) application
provisioning with dynamic application consolidation
at the same time is an important recent trend
especially for cloud contexts. We have identified in
the survey only one paper [15], which still in the
early development stage, that address such theme.

• Developing a hybrid resources manager that uses
more than one virtualization techniques (like VM
migration and VM slicing) is an important trend that
can combine the benefit of both techniques. VM
slicing can contributes into migration cost limitation
or minimization. In addition, it is useful to capture
the structure of modern multi-domain or multi-tier
infrastructures. On the other hand, VM migration,
that finds global solutions for resource allocation
problems, can enhance the performance of VM
slicing technique, which is useful in finding local
solutions for resource allocation problem. We have
identified in the survey only one paper [16] that
apply this method for a grid computing platform.

• According to the survey, ordering and CP
approaches are suffers from time-consuming
calculations. It requires innovative techniques and
complex architectures to overcome this difficulty.
We believe that the future research developments
will turn toward more robust and faster metaheuristic
algorithms. Multi-objective GA is a possible

38

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

promising candidate algorithm for future cloud
systems.

• Hybriding CP and GA approaches can be seen as a
possible direction of future research. The combined
approach can benefit from their different aspects.
From one side, constraint programming is a good
approach to model complex constraints. On the other
side, GA can greatly fasten CP expensive processing.

• Dataset is important for algorithm development. It is
usually used to test algorithms against it. It have
been noted from the surveyed papers that many
researchers resort to the randomized configurations
for developing their algorithms. This field of
research lacks suitable dataset that captures
virtualized infrastructure. Therefore, future
development in this field will be largely affected by
the development of suitable dataset by specialized
community like operational research or integer
programming.

• Finally, future development in this field is largely
related to simulation and experimentation
procedures. It has been noted from the surveyed
papers, that there is a need to define standard
benchmarks applications, standard metrics to
measure the goodness of the resource managers and
to perform experimental tests under large
configurations of VMs and PMs and comparing
among different states of art resource managers.

ACKNOWLEDGMENT

First author is supported by the Japanese Government
(Monbukagakusho) Scholarship program to complete his
PHD study. In addition, I would like to thank the anonymous
for their efforts, which contributes much to the development
of this paper.

REFERENCES

[1] C. Clark, K. Fraser, A. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” In Proc. of
the 2nd conference Symposium on Networked Systems Design and
Implementation, vol. 2, pp. 273 – 286, 2005.

[2] K. Appleby, S. Fakhouri, L. Fong, M. Goldszmidt, S. Krishnakumar,
D. Pazel, J. Pershing, and B. Rochwerger, “Oceano - SLA-Based
Management of a Computing Utility,” In Proc. of IFIP/IEEE
Symposium on Integrated network management, Seattle, WA , USA,
pp. 855 – 868, May 2001.

[3] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle,
“Managing Energy and Server Resources in Hosting Centers,” In
ACM SIGOPS Operating Systems Review, vol. 35, issue 5, pp. 103 –
116, December 2001.

[4] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic
Provisioning for Multi-Tier Internet Applications,” In Proc. of the
2nd IEEE International Conference on Autonomic Computing,
Seattle, WA , June 2005.

[5] K. Rajamani and C. Lefurgy, “On Evaluating Request-Distribution
Schemes for Saving Energy in Server Clusters,” Proc. IEEE
International Symp. Performance Analysis of Systems and Software,
pp. 111 – 122, 2003.

[6] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M.
Sviridenko, and A. Tantawi, “Dynamic Placement for Clustered Web

Applications,” In Proc. of the 15th international conference onWorld
WideWeb, Edinburgh, Scotland, pp. 595 - 604, 2006.

[7] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian,
“Resource Management in the Autonomic Service-Oriented
Architecture,” In Proc. of International Conference on Autonomic
Computing,pp. 84-92, 2006.

[8] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, and K. Salem, “Adaptive Control of Virtualized Resources
in Utility Computing Environments,” In EuroSys ’07: Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems, Lisbon, Portugal, pp. 289 – 302, 2007.

[9] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen and Q. Wang,
“Appliance-based Autonomic Provisioning Framework for
Virtualized Outsourcing Data Center. Autonomic Computing,” Fourth
International Conference on Autonomic Computing, Jacksonville,
Florida, USA, pp. 29 – 29, 2007.

[10] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Geiger:
Monitoring the Buffer Cache in a Virtual Machine Environment,” In
Proc. ASPLOS' 06, pp. 13-23, October 2006.

[11] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular
Disco: Resource Management using Virtual Clusters on Shared
Memory Multiprocessors,” In Proc. SOSP'99, Dec.1999. pp. 154-169.

[12] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and M.
Rosenblum, “Optimizing the Migration of Virtual Computers,” In
Proc. of the 5th symposium on Operating systems design and
implementation, Vol. 36 , Issue SI, pp. 377 – 390, 2002.

[13] VMware, http://www.vmware.com. Last access on 2010.08.22.

[14] Xen, http://www.xen.org, Last access on 2010.08.22.

[15] H. Van and J. Menaud, “Autonomic Virtual Resource Management
for Service Hosting Platforms,” In Proc. of the 2009 ICSE Workshop
on Software Engineering Challenges of Cloud Computing, pp. 1-8,
2009.

[16] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic
Live Adaptation of Virtual Computational Environments in a Multi-
Domain Infrastructure,” In Proc. IEEE ICAC '06, pp. 5 – 14, June,
2006.

[17] H. Nakada, T. Hirofuchi, H. Ogawa and S. Itoh, “Toward Virtual
Machine Packing Optimization Based on Genetic Algorithm”,
Proceedings of the 10th International Work-Conference on Artificial
Neural Networks: Part II: Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted
Living, Salamanca, Spain, pp. 651 – 654, 2009.

[18] P. Campegiani, “A Genetic Algorithm to Solve the Virtual Machines
Resources Allocation Problem in Multi-tier Distributed Systems,”
Second International Workshop on Virtualization Performance:
Analysis, Characterization, and Tools (VPACT’09), Boston,
Massachusett, April, 2009.

[19] G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: a System for
Energy Efficient Computing in Virtualized Environments,” In
Proceedings of the 2009 International Symposium on Low-Power
Electronics and Design (ISLPED'09), pages 243-248, New York, NY,
USA, 2009.

[20] A. Verma, P. Ahuja, and A. Neogi. “pMapper: Power And Migration
Cost Aware Application Placement in Virtualized Systems,” In Proc.
of 9th ACM/IFIP/USENIX International Conference on Middleware,
Leuven, Belgium, pp. 243-264, 2008.

[21] A. Verma, P. Ahuja and A. Neogi, “Power-Aware Dynamic
Placement Of HPC Applications,” In Proc. of the f the 22nd annual
international conference on Supercomputing, Island of Kos, Greece,
pp. 175-184, 2008.

[22] G Khanna, K Beaty, G Kar, A Kochut, “Application Performance
Management in Virtualized Server Environments,” Network
Operations and Management Symposium 2006 NOMS 2006 10th
IEEEIFIP, pp. 373 – 381, April, 2006.

[23] M.Tarighi, S.A.Motamedi and S.Sharifian, “A New Model for Virtual
Machine Migration in Virtualized Cluster Server Based on Fuzzy

39

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Decision Making,” Journal of Telecommunications, vol. 1, issue 1, pp.
40-51, Feb. 2010.

[24] M. Andreolini, S. Casolari, M. Colajanni and M. Messori, “Dynamic
Load Management of Virtual Machines in a Cloud Architectures,”
First International Conference on Cloud Computing (ICST
CLOUDCOMP2009), Munich, Germany, October 19-21, 2009.

[25] N. Bobroff, A. Kochut and K. Beaty, “Dynamic Placement of Virtual
Machines for Managing SLA Violations,” IEEE/IFIP International
Symposium on Integrated Network Management (IM), Munich,
Germany, pp. 119 – 128,May 21-25, 2007.

[26] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, “Black-Box and
Gray-Box Strategies for Virtual Machine Migration,” 4th USENIX
Symposium on Networked Systems Design USENIX Association &
Implementation, pp. 229–242, 2007.

[27] F. Hermenier, X. Lorca, J. Menaud, G. Muller and L. Lawall,
“Entropy: a Consolidation Manager for Clusters,” In proc. of the 2009
International Conference on Virtual Execution Environments
(VEE'09), Washington, DC, USA, pp. 41-50, Mar. 2009.

40

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

