
CrossBit: A Multi-Sources and Multi-Targets DBT

Yindong Yang, Haibing Guan, Erzhou Zhu, Hongbo Yang, Bo Liu
School of Electronic, Information and Electrical Engineering

Shanghai Jiao Tong University
Shanghai, China

{yasaka, hbguan, ezzhu, yanghongbo819, boliu}@sjtu.edu.cn

Abstract—Dynamic binary translator (DBT) is typically
used for software migration or binary code optimization. In
this paper, we describe the design and implementation of a
multi-sources and multi-targets DBT–CrossBit, which aims
at fast migrating existing executable source code from one
platform to another alien target platform with lower cost.
In order to support code translation among multi-sources
and multi-targets better, a new intermediate instruction set–
VInst, which is independent of any specific machine instruc-
tions, has been introduced. Unlike many other existing DBTs
which directly translate the binary code of one instruction
set architecture (ISA) to another ISA, CrossBit first converts
source binary code to VInst specifications, and then trans-
forms them into target platform code, using a granularity of
a basic block (BB) as the unit of translation. Additionally,
to address the performance issue, we adopt several generic
optimization methods to optimize the translated code. Finally,
our experimental result indicates that, for the SPECint2000
benchmarks, CrossBit’s performance is pleasant and can
meet the design requirement.

Keywords-DBT; intermediate instruction; CrossBit; basic
block;

I. INTRODUCTION

Cloud computing, a relatively romantic term, builds on
decades of research in virtualization, distributed comput-
ing, grid computing, utility computing, and so on. For
cloud computing becomes wildly popular and has the
potential to transform a large part of the IT industry, devel-
opers with innovative ideas inevitably take it into account.
As a new evolution of on-demand information technology
services and products, cloud computing has become pop-
ular until IBM and Google announced a collaboration in
this domain in October 2007 [19]. Thus, there are still
lots of obstacles to the growth of cloud computing. One
of them is performance unpredictability, which caused by
the use of virtual machines (VM). Cloud computing moves
data and computing away from desktop and portable PCs
into large data centers. It involves applications based
on different instruction set architectures (ISA), as well
as different hardware platforms. VMs have proved to
be ideally suitable for the needs of the heterogeneous
computing. Not surprisingly, VMs are likely to be common
at multiple levels of the data center or server farm.

Virtualization is a core technology for enabling cloud
resource sharing. To a large extent, cloud computing will
be based on virtualized resources. In the recent 30 years,
the computing machinery technology, both hardware and
software, has been developing at a tremendous pace. On

one hand, the processing speed of processor gets faster,
and accordingly there needs less time to perform each
certain unit task. On the other hand, the framework of
the processor (e.g., x86, MIPS, PowerPC) also becomes
multiplex in order to satisfy various requirements and be
applicable in different scenarios. Different processors usu-
ally base on different ISAs. This leads a problem, one kind
of processor can only support one appointed or specific
operating system (OS) and applications without virtualiza-
tion technology. However, due to historical reasons, some
of these legacy processor architectures (like x86) fail to
comply with classical virtualization criteria or hardware
support. Though it is quite a challenge to migrate existing
OSes or applications running on one platform to another
platform, binary translation overcomes the obstacles and
successfully improves migrating efficiency.

Binary translation technology proposes a transparent
and inexpensive approach to migrate applications or OSes
compiled for one processor to another. Binary translation
can be implemented in either static or dynamic way, more
technical detail can be found in [17]. Binary transla-
tion techniques are still in infancy compared with their
compiler counterparts, plus many binary translators have
been proved that they were handcrafted from scratch. For
example, commercial binary translators are always closely
bound to the underlying machine, or cannot generate code
for more than one source and target machine pair, and
hence it is difficult to reuse. To solve this problem, this
paper proposes a new DBT–CrossBit, which takes “multi-
sources” and “multi-targets” as its design goal. With the
help of CrossBit, the applications compiled for a specific
processor can run on different processors easily, without
bringing too much overhead.

In the academic and commercial fields, many binary
translators have achieved some success. In terms of im-
proving the performance of applications, the original HP
Dynamo system [2] is a dynamic software optimization
system that is capable of transparently improving the
performance of a source instruction stream as it exe-
cutes on the native processor. Microsoft dynamic software
optimization system Mojo [3], is capable of handling
a wide range of programs, including multi-threaded ap-
plications that make use of exception handling. In the
aspect of migrating applications, Digital FX!32 provides
fast transparent execution of 32-bit x86 applications on
Alpha systems running Windows NT [1]. IA-32 Execution

41

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

layer is designed to support IA-32 applications on Itanium-
based systems [16]. The UQBT (University of Queensland
Binary Translator) [4], is a reusable, component-based
binary-translation framework which lets engineers quickly
and inexpensively migrate existing software from one pro-
cessor to the other. Other translators are designed to save
power, like Transmeta’s Code Morphing technology which
is used for unmodified Intel IA-32 binaries to run on the
low-power VLIW Crusoe processor [5]. More discussions
on extensive prior work can be found in Altman et al. [6],
[7].

Different from binary translators mentioned above,
CrossBit doesn’t translate source code into specific target
code directly. Instead, CrossBit dynamically translates one
BB of source code into VInst specifications and then into
a BB of target code each time. A BB refers to a block of
contiguous instructions, starting at the first instructions of
the executable file or the instruction executed immediately
after the end of last block, and ending with a branch
or jump instruction. In particular, it is to be noted that
using intermediate instructions bring many benefits. First,
it becomes easier to add other source ends and target ends.
Second, the workload and complexity of development
can be reduced. For example, to translate n kinds of
different source ISAs to n kinds of different target ISAs,
theoretically, the complexity can be reduced from O(n∗n)
to O(n), as depicted in Figure 1. Third, intermediate
instruction blocks can offer better opportunities for op-
timization and thus make optimization easier.

x86

MIPS

SPARC

ARM

PowerPC

IA 64

x86

MIPS

SPARC

ARM

PowerPC

IA 64

IR

Source code Source codeTarget code Target code

Figure 1. traditional translation model vs. CrossBit’s translation model

In this paper, our aim is to to develop a multi-
sources and multi-targets DBT with reasonable perfor-
mance. Specifically, main technical contributions are as
follows:
• We design a new DBT–CrossBit, which translates

binary code based on different ISAs to other ISAs
conveniently;

• We design a new intermediate instruction set–VInst
for CrossBit, which involves no specific machine
instructions;

• We give a comprehensive experimental evaluation of
CrossBit for translating MIPS to x86, and MIPS to
POWER.

The rest of this paper is organized as follows. Section II
describes the framework of CrossBit and how it works in
detail. Section III focuses on the design of intermediate in-
structions. Section IV discusses some optimization tactics
adopted by CrossBit. Section V discusses the main issues
relevant to our approach to DBT. Section VI presents the
preliminary performance of CrossBit, using SPECint2000

as our benchmarks. Section VII gives the summary of this
paper and the future research on DBT.

II. THE FRAMEWORK OF CROSSBIT

Dynamic binary translation is an attractive technology
for running legacy applications and OSes on the platforms
that the software is not originally compiled for. However,
the dynamic binary translation technology itself is very
complex and difficult to implement. For one thing, devel-
oping a complete application-level translator from scratch
always takes a lot of manpower and material resources, let
alone the development of a system-level translator [18].
Moreover, if one wants to run binary code of one popular
platform (like x86) on a less popular platform (still in
use currently), e.g., SPARC, PowerPC, and MIPS, he has
to develop a translator for each of these platforms. In
contrast, it is appreciated if there is a translator that can
add source ends or target ends easily without repeating the
development work. CrossBit is such a translator, and the
design goal of CrossBit is retargetable and extensible. We
hope that CrossBit will be a promising and reliable basic
research platform for studying application-level DBT in
the future.

We divide the framework of CrossBit roughly into three
parts:
• Front end: loads binary executable code into memory

and transforms the source binary code into VInst
specifications;

• Intermediate layer: forms the VInst specifications to
blocks and realizes optimization;

• Back end: transforms the intermediate blocks to target
instructions and executes them immediately.

Figure 2 shows a high-level view of CrossBit. The
rectangular boxes related to front end and back end, while
the dotted boxes belong to the intermediate layer. We first
give a brief overview of all the main components, and then
explain how they interact with each other.

Memory Image

Loader

Execution

Engine

VInst

BB Builder

Optimizer

Source Machine

Decoder

Target Machine

Encoder

Target Machine

Block Generator
Translated Code Cache

Figure 2. The framework of CrossBit

42

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

The names and functions of these components are given
as follows:
• Memory Image Loader: loads the source binary code

into the memory of the target platform, and maps the
guest application address space to the host virtual
address space;

• Source Machine Decoder: analyzes and decodes the
source binary code, and converts it to VInst specifi-
cations;

• BB Builder: constructs VInst specification blocks;
• Optimizer: optimizes VInst specification blocks;
• Target Machine Encoder: encodes intermediate in-

struction blocks to target machine instructions;
• Target Machine Block Generator: manages SPC

(Source Program Counter) and TPC (Target Program
Counter) in a hash table and updates their relationship
when necessary, so as to speed up the lookup process
of target blocks;

• Translated Code Cache: caches the translated code
so as to save the time of retranslation;

• Execution Engine: the commander of CrossBit, in
charge of scheduling all components.

The workflow of the entire CrossBit system is as follow:
1) Get the SPC of the first instruction in the next BB,

and check whether its corresponding TPC exists in
hash table;

2) If the TPC exists, indicating that BB has been
already translated and cached, jumps to that TPC
and executes that BB directly; Otherwise, turn to
3);

3) Source Machine Decoder decodes the following
source instructions until the last BB is met, where
the decoded instructions will be the input to BB
Builder;

4) BB Builder constructs intermediate instruction
blocks;

5) Optimizer conducts optimization on the intermediate
instruction blocks, e.g., elimination of redundant
load instructions, BB linking and so on;

6) Target Machine Encode encodes intermediate in-
structions to target machine instructions which are
cached in Translated Code Cache, and then Target
Machine Block Generator updates hash table.

Execute Engine executes 1)∼6) repeatedly until the end
of the program. CrossBit takes one BB at a time, keeps
doing the job of “translate-execute” cycle, as shown in
Figure 3.

III. INTERMEDIATE INSTRUCTION SET

The challenge of designing an intermediate instruction
set is how to provide enough high-level run time infor-
mation about program behavior, as well as be appropriate
as an architecture interface for all external applications,
libraries, and operating systems. There are many virtual
machines using intermediate instructions as a transition
layer, such as JVM and Microsoft’s Common Language
Infrastructure (CLI). However JVM and CLI have some

New

SPC

TBlock

TPC==hash(SPC)?

decode to
VInst

update TPC to

hash table

block linking

construct

VInst blocks

TCache

Thin Client

yes

no

encode VInst

SPC for next

block

Translation

Server

Figure 3. The workflow of CrossBit

limitations. Both of them use complex, high-level oper-
ations with large runtime libraries, and they are tailored
for object-oriented languages with a particular inheritance
model and their complex runtime systems require signifi-
cant OS support in practice [15].

An intermediate instruction set can include rich program
information for optimization, and can be independent of
most implementation–specific design choices, but it is
not suitable for a certain hardware implementation. Take
LLVA [15] for example, LLVA is a good intermediate
instruction set for C++ high level language, but LLVA not
suitable for CrossBit to handle low level binary code. Of
course, we know that it’s impossible to design a universal
intermediate instruction set for all conceivable architecture
designs. Instead of designing VInst (Virtual Instruction)
as the intermediate instruction set that is suitable for
DBT to handle low level binary code. VInst must be
designed to be regular and simple, for the reason that
source instructions and target instructions are all low level
machine instructions, and the performance of CrossBit is
sensitive to the cost of translation. In a sense, VInst is a
kind of low-level ISA. It is similar to RISC ISA and has
main characteristics as follows:

• unlimited numbers of 32-bit virtual registers, marked
by Vn, wherein the value of V0 always returns zero;

• “Load-Store” style, that is only ‘load’ or ‘store’
instruction can access the memory;

• base plus displacement is the only addressing mode;
• instructions of VInst only exist in memory;
• every instruction of VInst is orthogonal, in other

words, each instruction can’t be replaced by other
VInst instructions.

The design of VInst affects the quality of generated
target code, and therefor affects the efficiency of CrossBit.
When designing VInst, we seek the balance between the
performance and the cost. On one hand, VInst is kept as
simple as possible so as to reduce the cost of translation.
On the other hand, the sematic of VInst should be rich
enough to support various characteristics of different ISAs.
Thus, by studying the design of some popular ISAs,
we have picked up 27 most commonly used instructions
to compose VInst. The translation effort is in combing
VInst instructions into more complex specific machine
instructions.

VInst comprises six kinds of basic instructions which

43

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

are compatible with most popular ISAs. They include
arithmetic/logical, control transfer, data transfer, memory
access, register state mapping and special instructions.
Every kind of instructions is shown in Table I.

Table I
THE MOST COMMONLY USED IRS

Type Instruction Name
register state mapping GET PUT

memory access LD ST
data transfer MOV LI

arithmetic/logic
ADD SUB AND NOT XOR
OR MUL MULU DIV DIVU

SLL SRL SRA CMP SEXT ZEXT
control transfer JMP BRANCH

special HALT SYSCALL CALL

According to the original version of CrossBit we devel-
oped, CrossBit translates binary code compiled for PISA
(Portable Instruction Set Architecture) into x86. That is,
CrossBit translates binary PISA code into x86 instructions.
CrossBit reads the memory at the address indicated by
SPC to produce intermediate representation objects, where
each intermediate representation object represents one
source instruction, not binary representation actually. The
translation from a source instruction to VInst takes three
steps:
• via GET instruction, mapping source machine regis-

ters which the PISA instruction requires to read to
virtual registers;

• use one or more VInst instructions to implement the
function of each PISA instruction;

• via PUT instruction, mapping the result from virtual
registers to source machine registers.

So far, we have used GCC compiler to generate binary
executable file. A simple “hello world” C++ source pro-
gram leads almost 20 thousands of VInst instructions, the
details are omitted herein for brevity it’s impractical to
present a whole example here. A key issue of translation
is semantic matching. Instruction swelling is inevitable be-
cause the translation policy we adopt here is to be correct
first then better. Thus, there needs later optimization to
offset the cost.

IV. OPTIMIZATION

Binary translation always serves as an alternative way to
execute legacy software. The performance of the translated
code should be competitive with the legacy architecture’s
performance. However, overhead is inevitably lost during
the process of translation, because the legacy software has
the luxury of being produced using an optimizing compi-
lation. In lack of high-level language code, binary trans-
lators cannot perform available optimizations compared
to compilers. In this case, optimization is particularly
important to dynamic binary translation. One common
approach to improving binary translation performance
is profile-guided optimization. Profiling is a process for
dynamically collecting program information (instruction
and data statistics) that is used to guide optimization

during the translation process. As a DBT, CrossBit can
do some optimization at the run-time according to the
profile information. The profile information that CrossBit
collects is the number of executing times of each BB,
which can be used to find out hotspots. A hotspost is a
region of contiguous code which is frequently executed.
In CrossBit, a hotspot is taken as a super block, which
consists of numbers of basic blocks. Because the opti-
mization process itself is time-consuming and potentially
performance degrading, it should be applied to the hot
code (e.g., superblocks) instead of the cold code.

With the profile information, i.e., the number of exe-
cuting times of each BB, a BB is determined to be hot if
its number of times reaches a threshold, like 2000, as in
the case of dynamo [13]. Once a BB becomes hot and it
is not part of some superblocks, a new superblock can be
constructed beginning from that BB. If the BB ends with
a branch instruction, the next BB is chosen to add to the
superblock according to their numbers of executing times,
reversing the branch condition if necessary, like Figure
4 depicts [9]. Otherwise, it is easy to find out the next
BB. This process repeats until the termination condition
is met, e.g., the last instruction of the BB is an indirect
jump. When the next encountered BB belongs to other
superblock, the numbers of BBs reach the maximal value.

BB A

 R3

 R7

 R1 R2 + R3

 Br L1 if R3==0

BB B

 R6 R1 + R6

BB C

L1: R1 0

Superblock

 R3

 R7

 Br L1 if R3==0

L1: R1 0

Compensation code

 R1 R2 + R3

BB B

 R6 R1 + R6

Figure 4. Build superblock based on profiling.

Another optimization tactic we adopt is modifying the
direct jump instructions and indirect jump instructions. As
direct jump instructions are executed frequently (nearly
one in seven instructions is the direct jump), the Execution
Engine has to look up into the hash table to find out the
next BB after the execution of each direct jump, which
leads to a bottleneck in the performance of CrossBit.
A simple solution to this problem is to modify the in-
structions to jump directly to the next basic block, for
there is only one target address for each jump. Instead of
transferring the control to the Execution Engine, the modi-

44

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

fied instruction simply jumps to the translated instructions
corresponding to the source machine instructions. This
mechanism is called BB chaining and avoids significant
overhead associated with returning to the Execution En-
gine after every instruction executed.

One of the major sources of overhead in CrossBit
stems from handling indirect jumps. Experimental evi-
dence shows that the effect of methods that handle indirect
jumps depends on the features of the target architecture
such as addressing modes, branch predictors, cache sizes
and the ability to preserve architecture state efficiently. To
tackle indirect jumps in CrossBit efficiently, we take two
methods. One uses hash table to keep the target address
of an indirect jump. The other mechanism is taken when
some indirect jumps have only a few exits for most of the
time. It uses indirect jump inlining, and the TPC of the
next basic block can be obtained by comparing the jump
target address to the inlined target one.

V. OTHER ISSUES

In this section, we discuss the other main issues relevant
to our approach to DBT.

A. Self-Modifying Code

Self-modifying code which refers to those programs
modify parts of their source code during the translation
processes, though it is uncommon. When this happens,
translated target code stored in the code cache would no
longer correspond to the modified source code. The mech-
anism we adopt to handle this problem in the CrossBit
is setting the original source code region write-protected.
That is, any attempt to write a page in the protection
area will be trapped and the delivery of a signal to the
CrossBit. This can be done via a system call made by the
Execution Engine. Consequently, the translated code will
be discarded and the CrossBit invokes retranslation.

B. Address Space

Address space management is an very important aspect
of DBT. In the development of CrossBit, we don’t allow
specific code to be placed on different regions of the
memory space, like Figure 5 depicts. Because CrossBit is
a process VM, it views memory as a logical address space
supported by the target machine’s OS. Where regions of
the source memory address space could map onto regions
of the target memory address space.

VI. PERFORMANCE

In this section, we present preliminary results of Cross-
Bit. Of course, no single benchmark characterizes the per-
formance of a system, we adopt the most common method
of testing, and that is running the SPECint2000 test
benchmarks. Rather than giving the performance results
of all the front ends and back ends we have developed,
we choose two typical pairs, MIPS–x86 and x86–Power,
and make an evaluation of them. The experiment of MIPS–
x86 was taken on Intel R© Pentium R© 4 CPU 2.0GHz with

Figure 5. CrossBit runtime address space layout.

1.5GB PC3700 DDR SDRAM Memory, while the exper-
iment of x86–POWER was performed on POWER R©6 1-
core 4.2GHz CPU with 2 x 512 DRAM 667MHz Memory.
The bottom of the charts is the executing time (sec) that
every benchmark consumes to finish the testing.

Figure 6 and Figure 7 give the test results of
SPECint2000 benchmarks for CrossBit translating MIPS-
x86, and x86-POWER respectively. The rest of the bench-
marks failed to run successfully which might be due to
the lack of complete support for all Linux system calls.
We still deal with these issues now. Meanwhile, in order
to evaluate the performance of CrossBit, we have chosen
QEMU as a reference for comparison. QEMU [12] is
a multi-sources and multi-targets DBT and also using
intermediate instructions. QEMU got its reputation for
multi-function, not performance. QEMU itself didn’t take
much optimization measures.

Figure 6. Performance comparison of the CrossBit with QEMU. The
bars represent the time (sec) consumed by them from translating MIPS-
x86 (shorter is better).

As the figures shown in Figure 6 and Figure 7, we can

45

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 7. Performance comparison of the CrossBit with QEMU. The
bars represent the time (sec) consumed by them from translating x86-
POWER (shorter is better).

see that performance of CrossBit consistently outperforms
than QEMU for nearly all these benchmarks. When com-
pared with the QEMU, CrossBit performs better, since
QEMU is not famous for its performance. We continue
to optimization issue. Poor performance is due to code
swelling. Take an example where CrossBit translates x86
ISA to POWER ISA, x86 is CISC ISA, with variable-
length instructions. During the translation, from source x86
instructions to VInst, and from VInst to target POWER
instructions, the code swelling is very big, even dozens
of times. After the optimization to VInst blocks is per-
formanced, a striking result shows that the performance
of optimized code efficiency is more than 1 time faster
than the natively translated code (as seen in Figure 8
and Figure 9). As CrossBit has introduced an intermediate
layer to support multi-sources and multi-targets, this result
is acceptable.

Figure 8. Performance comparison of the CrossBit after optimization
(called CrossBit’) with QEMU. The bars represent the time (sec)
consumed by them from translating MIPS-x86 (shorter is better).

Meanwhile, we study the relationship between perfor-
mance improvement and profiling overhead in Figure 10
and Figure 11. Profiling could enhance the performance of
CrossBit, and also brings the extra overhead to the system.

Figure 9. Performance comparison of the CrossBit after optimization
(called CrossBit’) with QEMU. The bars represent the time (sec)
consumed by them from translating x86-POWER (shorter is better).

The final optimization result is obtained by the updating
performance minus the overhead. Sometimes we should
balance the depth of optimization and the performance
of the system. From these figures, we can see that the
profiling process only increases part of overheads for the
CrossBit, but it does improve the quality of translated code
and the execution efficiency of the whole system.

Figure 10. The relationship between performance improvement and
profiling overhead of CrossBit compared with the natively translated code
from MIPS-x86.

VII. CONCLUSION AND FUTURE WORK

Our initial primary goal is to build a DBT platform
that runs the same applications on different architectures
with reasonable performance. The foundation of applica-
tion migration is that instruction set should be translated
correctly first. So far, we have implemented several front
ends and back ends. The front ends included MIPS, x86
and SPARC while the back ends included x86, POWER
and SPARC. Right now, we are focusing on improving the
performance of CrossBit, so as to rival the other popular
binary translators.

Our system is yet still in the absence of exceptions
(traps and interrupts), and some of benchmarks fail to run

46

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 11. The relationship between performance improvement and
profiling overhead of CrossBit compared with the natively translated code
from x86-POWER.

correctly. In the future, we wish these problems would be
solved.

VIII. ACKNOWLEDGMENTS

We would like to thank Yue Xu and Wei Fan for
numerous discussions and for their helpful comments on
how to improve the paper. Our research is supported
by the National Natural Science Foundation of China
(Grant No.60773093, 60970107, 60970108), the Science
and Technology Commission of Shanghai Municipality
(09510701600).

REFERENCES

[1] Anton Chernoff and Ray Hookway, “Running 32-Bit x86
Applications on Alpha NT,” Proc. USENIX Windows NT
Workshop, Usenix Association, Seattle, Washington, August
1997, pp. 17-23.

[2] Bala Vasanth, Duesterwald Evelyn, and Banerjia Sanjeev,
“Transparent dynamic optimization: The design and imple-
mentation of Dynamo,” Hewlett-Packard Laboratories Tech-
nical Report HPL-1999-78, June 1999.

[3] Wen Ke Chen, Sorin Lerner, Ronnie Chaiken, and David
Gillies, “Mojo: A dynamic optimization system,” ACM
Workshop on Feedback-Directed and Dynamic Optimiza-
tion, December 2000, pp. 81-90.

[4] Cifuentes Cifuentes and Van Emmerik Mike, “UQBT:
Adaptable binary translation at low cost,” Computer, vol.33,
March 2000, pp. 60-66.

[5] James Dehnert, Brian Grant, John Banning, Richard John-
son, Thomas Kistler, Alexander Klaiber, and Jim Mattson,
“The Transmeta Code MorphingTM Software: using specu-
lation, recovery, and adaptive retranslation to address real-
life challenges,” International Symposium on Code Genera-
tion and Optimization, March 2003, pp. 15-24.

[6] Erik Altman, David Kaeli, and Yaron Sheffer, “Welcome to
the Opportunities of Binary Translation,” IEEE Computer,
vol. 33, March 2000, pp. 40-45.

[7] Kemal Ebcioglu, Erik Altman, Michael Gschwind and
Sumedh Sathaye, “Dynamic Binary Translation and Opti-
mization,” IEEE Trans, on Computers, vol. 50, June 2001,
pp. 529-548.

[8] Yuncheng Bao, Haibing Guan, Jun Li and Alei Liang,
“Mobilizing Native machine Code via Dynamic Binary
Translation,” Proceedings of the 3rd International Workshop
on Software Development Methodologies for Distributed
Systems, Shanghai, China, 2006, pp. 73-78.

[9] James Smith and Ravi Nair, Virtual Machines: Versatile
Platforms for Systems and Processes, Morgan Kaufmann,
2005.

[10] Nicholas Nethercote and Julian Seward, “Valgrind: A pro-
gram supervision framework,” Electronic Notes in Theoret-
ical Computer Science, vol.89(2), 2003, pp. 89-100.

[11] Raymond Hookway and Mark Herdeg, “Digital fx!32:
combining emulation and binary translation,” Digital Tech.J,
vol.9(1), 1997, pp. 3-12.

[12] Fabrice Bellard, “QEMU: a Fast and Portable Dynamic
Translator,” Proceedings of the USENIX Annual Technical
Conference, 2005, pp. 41-46.

[13] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia,
“Dynamo: A Transparent Dynamic Optimization System,”
Conf. on Programming Language Design and Implementa-
tion (PLDI), June 2000, pp. 1-12.

[14] Kevin Scott and Jack Davidson, “Strata: A software dy-
namic translation infrastructure,” Technical Report, UMI
Order Number: CS-2001-17, University of Virginia.

[15] Vikram Adve, Chris Lattner, Michael Brukman, Anand
Shukla, and Brian Gaeke, “LLVA: A Low-level Virtual
Instruction Set Architecture,” Proceedings of the 36th annual
ACM/IEEE international symposium on Microarchitecture
(MICRO-36), San Diego, California, December 2003, pp.
201-216.

[16] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Golden-
berg, Alex Skaletsky, Yun Wang, and Yigal Zemach, “IA-
32 execution layer: a two-phase dynamic translator designed
to support IA-32 applications on Itanium R©-based systems,”
Proceedings of the 36th annual ACM/IEEE international
symposium on Microarchitecture (MICRO-36), San Diego,
California, December 2003, pp. 191-201.

[17] Mark Probest, “Dynamic binary translation,”
http://www.complang.tuwien.ac.at/schani/, May, 2009.

[18] Keith Adams and Ole Agesen, “A Comparison of Software
and Hardware Techniques for x86 Virtualization,” Proceed-
ings of the 12th international conference on Architectural
support for programming languages and operating systems,
October 21-25, 2006, pp. 2-13.

[19] IBM, “Google and IBM Announced University
Initiative to Address Internet-Scale Computing
Challenges,” October 8, 2007, http://www-03.ibm.
com/press/us/en/pressrelease/22414.wss.

47

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

