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Abstract—*This paper proposes ViMo that is a micro virtual 

machine monitor for ARM mobile systems, which enables to 

run multiple OSes on single mobile system at the same time. 

ViMo does not require any modification or compilation of OS, 

so that time and cost developing a virtualized mobile system 

can be reduced. Isolation of each virtual machine is another 

major feature of ViMo and it prevents the other virtual 

machines from the malfunctions of contaminated virtual 

machine. 
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I.  INTRODUCTION 

Virtualization technology of server systems has been 
used widely due to advantages of increased resource 
utilization, power saving, space saving for servers and others. 
The virtualization technology is about to be used in mobile 
and embedded systems. Mobile system virtualization has 
advantages of security, reduction of mobile phone BOM 
(Bill Of Materials) and legacy software utilization. 

The virtualization technologies can be categorized into 
full virtualization [1] and paravirtualization [1]. In the full 
virtualization, the instruction modifying system status is 
detected in runtime and emulated by a virtual machine 
monitor. This technology has the advantage that it is not 
necessary to modify source code of a guest OS. But it has the 
overhead of scanning and emulating the source code and this 
makes system performance lower. For the paravirtualization, 
the source code of the guest OS is scanned offline and the 
instruction modifying the system status is replaced with 
hypercall to the virtual machine monitor or a sequence of 
codes having same semantic. The advantage of the 
paravirtualization is higher performance than the full 
virtualization. But it has the problem that the source code of 
the guest OS must be modified offline by humans or tools. 

In the server systems, the full virtualization has been used 
popularly because server system CPUs with 3GHz frequency 
and multi-core provide enough performance. Also hardware 
virtualization technologies such as Intel-VT [2] and AMD-V 
[3] accelerate the full virtualization. Representative systems 
supporting the full virtualization are VMware [4], Parallels 
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[5], Virtualbox of Oracle [6] and KVM [7]. Representative 
paravirtualized virtual machine monitor is Xen [8]. 

A main technology for mobile system virtualization is the 
paravirtualization. The largest obstacle against the mobile 
system virtualization is weaker performance than the server 
systems. The latest CPU of the server systems has 3 GHz 
frequency and multi-core and this provides enough 
performance with the virtualization environment. However, 
the mobile systems have generally 500 ~ 800Mhz CPU with 
single core and doesn’t provide enough performance with the 
virtualization systems. This limitation makes main 
virtualization trend of the mobile systems as the 
paravirtualization. But, the latest mobile systems including 
iPhone 4G of Apple and Galaxy S of Samsung are based on 
1GHz ARM processor. Also the smart phones including 
HTC Desire, HTC HD2 with 1GHz Qualcomm SnapDragon 
are being delivered to the users. Thus the performance issue 
that is the main obstacle of the mobile system virtualization 
is being solved. Also, it is scheduled that new ARM core will 
support a hardware virtualization, and mobile systems with 
multi core will appear soon. Consequently, fundamentals for 
the full virtualization in the mobile systems will be concrete. 

The paravirtualized mobile systems are MVP of VMware 
[9], VLX of VirtualLogix [10] and XenARM [11]. The full 
virtualizated mobile systems are QEMU [12]. 

This paper presents ViMo (Virtualization for Mobile) 
that is a virtual machine monitor based on the full 
virtualization for the mobile systems. ViMo scans binary 
code of OS in runtime and emulates critical instructions. 
Also ViMo allocates physical memory space to each virtual 
machine and provides memory isolation among the virtual 
machines. 

II. VIMO ARCHITECTURE 

ViMo is the virtual machine monitor supporting the full 
virtualization for ARM-based mobile systems and the 
structure of ViMo is shown in Fig. 1. ViMo works on system 
hardware and multiple OSes are mounted on ViMo. ViMo 
creates one virtual machine per each OS and the OS runs on 
the corresponding virtual machine. 

In typical systems, OS and application are located in 
supervisor (SVC) and user (USR) mode of ARM CPU, 
respectively. However, the OS in the ARM’s SVC mode 
must be moved to the ARM’s USR mode because ViMo is 
inserted into the ARM’s SVC mode. In the virtualized 
systems based on ViMo, the USR mode of ARM, in which 
the OS is executed, is called logically as Virtual SVC 
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(VSVC) and the USR mode, in which applications are 
executed, is called Virtual USR (VUSR). The four modes 
used in ViMo are summarized as Table I. 
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Figure 1.  ViMo Architecture 

TABLE I.  CPU MODE OF VIMO 

Mode Descriptions 

ASVC (ARM SVC) SVC mode of ARM Hardware 

AUSR (ARM USR) USR mode of ARM Hardware 

VSVC 
Mode in that OS is executed in the ViMo-based 
virtualization system 

VUSR 
Mode in that applications are executed in the 
ViMo-based virtualization system 

 
ViMo has mainly five components that are code tracer, 

CPU virtualizer, memory virtualizer, interrupt controller 
virtualizer and scheduler. The code tracer detects critical 
instructions on the virtual machines in runtime and the CPU 
virtualizer emulates the detected critical instructions. The 
memory virtualizer allocates memory space to the virtual 
machines and isolates the virtual machine from other virtual 
macines. The interrupt controller virtualizer builds a virtual 
interrupt controller for each virtual machine and processes 
interrupt controller accesses from the virtual machine. The 
scheduler switches the virtual machines periodically. 

III. MODE TRANSITIONS 

Typical systems not using ViMo have three modes. Two 
modes of them are ASVC and AUSR explained in table I and 
other mode is AEXCPT handling exceptions. Exception 
modes including interrupt (irq), fast interrupt (fiq), prefetch 
abort, data abort and SWI (software interrupt) can be 
explained as AEXCPT. As shown in Fig. 2-(a), the transition 
from ASVC running OS’ kernel to AUSR running 
applications is performed directly. If AUSR wants to use 
kernel service using system calls, AUSR must be transited to 

ASVC through AEXCPT. Also ASVC or AUSR are 
transited to AEXCPT if exceptions happen, and after 
exception serving is completed, AEXCPT is changed 
directly to ASVC or AUSR. 

In ViMo, VSVC, VUSR and VEXCPT are added instead 
AUSR as shown in Fig. 2-(b). The guest OS is executed in 
the virtual modes including VSVC, VUSR and VEXCPT 
which are located in AUSR. ViMo is executed in ASVC and 
AEXCPT. 

The transitions among VSVC, VUSR and VEXCPT 
cannot be performed directly because these modes are 
located in AUSR. Thus, these mode transitions must be made 
by ASVC and AEXCPT. 

The mode is transited directly to AEXCPT if an 
exception happens when CPU is in VSVC, VUSR or 
VEXCPT. In this situation, there are two processing options. 
If the exception is for the guest OS, this exception is passed 
to the guest OS and mode is transited from AEXCPT to 
VEXCPT. If the exception is for ViMo, the mode is transited 
to ASVC. 

In ASVC, the transition to AEXCEPT is disabled. ViMo 
processes virtual machine management jobs including guest 
OS scheduling, memory management and critical instruction 
emulation, and these jobs have atomic characteristic that they 
must be processed without break. To preserve this 
characteristic, exception generation in ASVC is prohibited. 
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Figure 2.  Mode Transition of ViMo 
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Figure 3. CPU Virtualization Architecture

IV. CPU VIRTUALIZATION 

This section explains CPU virtualization of ViMo. In 
ViMo, the guest OS is executed in VSVC and VUSR that 
belong to AUSR. VUSR doesn’t make problems because 
both of VUSR and AUSR are user mode. However, the guest 
OS kernel running in VSVC doesn’t generate the same result 
as ASVC because VSVC is located in AUSR. This problem 
must be solved by ViMo. 

There are 148 instructions in ARM architecture v6 [13]. 
In these instructions, instructions related to the virtualization 
can be categorized as privileged, sensitive and critical 
instruction. The privileged instruction must be executed only 
in the privileged mode (ASVC). If this instruction is 
executed in AUSR, an exception is generated and control is 
taken by the privileged mode. The sensitive instruction 
generates different results when the instruction is executed in 
ASVC or AUSR. The critical instruction is the sensitive 
instruction but not the privileged instruction. 

To virtualize a system using the full virtualization, the 
instructions that modify the system status must be executed 
under control of ViMo or be replaced with a sequence of 
instruction having same semantic. The instructions 
modifying system status are the privileged and the critical 
instructions. If the privileged instruction is executed in 
VSVC (AUSR mode), an exception is generated and control 
is taken by ASVC running ViMo. Thus, detection of the 
privileged instruction is performed automatically by ARM 
CPU.  

If the critical instruction is executed in VSVC (AUSR 
mode), CPU makes no error and generates the result for 
AUSR mode that is different from intended result for ASVC 
mode. Thus, this is one of the most important problems to be 
solved in ARM CPU virtualization. 

Table II shows instruction categorization for ARM CPU. 
There are 6 privileged instructions in ARM architecture with 
148 instructions. MCR and MRC that belong to the 
privileged instructions have over 100 operand combinations. 
In detail, MCR and MRC have both characteristics of the 

privileged and sensitive instructions. Some operand 
combinations have the privileged instruction characteristic 
and other operand combinations have the sensitive 
instruction characteristic. Consequently, each operand 
combination of MCR and MRC must be handled as single 
instruction. 

TABLE II.  PRIVILEGED AND CRITICAL INSTRUCTIONS 

Instruction 
# of 

Inst. 
Descriptions 

Privileged 

instruction 
6 

CDP, LDC, MCR, MCRR, MRC, 

MRRC 

Critical 

instruction-1 
14 

CPS, LDM(2), LDM(3), LDRBT, 

LDRT, MRS, MSR, RFE, 

SETEND, SRS, STC, STM(2), 

STRBT, STRT 

Critical 

instruction-2 
13 

ADC, ADD, AND BIC, EOR, 

MOV, MVM, ORR, RSB, RSC, 

SBC, SUB, LDR 

 
The critical instruction consists of the critical instruction-

1 and the critical instruction-2. The critical instruction-2 can 
be critical instruction upon operands. Generally, the critical 
instruction-2 is not the privileged or the critical instruction. 
However, if the critical instruction-2 has S-bit option and PC 
as the destination operand, this instruction becomes the 
critical instruction. This operand combination tells that SPSR 
(Saved Processor Status Register) of current mode is copied 
to CPSR (Current PSR). However, if this operand 
combination is executed in AUSR, the instruction result is 
unpredictable because AUSR mode doesn’t have SPSR. 

Fig. 3 shows structure of the CPU virtualization. Basic 
Block Identifier (BBI) scans a binary image in runtime and 
identifies basic block. A basic block is the code block with 
single entry and single exit point. The exit point may be 
branch or the critical instruction. Suppose that a basic block 
begins at address 10 and a critical instruction is at address 20. 
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Figure 4. Memory Virtualization Architecture

0x51FFFFFF 0x51FFFFFF

BBI begins to scan the code at address 10. When BBI meets 
the critical instruction at address 20, it makes a basic block 
and stores this block at basic block cache. The basic block 
cache stores the basic block that is already scanned. When 
the basic block stored at the basic block cache is executed 
again, it is not necessary to scan the block. 

Then BBI calls instruction replacer. The instruction 
replacer stores the critical instruction at Replacement 
Instruction Table (RIT) and replaces the critical instruction 
with single SWI instruction having index to RIT. For 
example, the critical instruction is replaced with “swi 23” if 
the instruction is stored at 23th index of RIT.  

The instruction replacer sets PC register as the entry 
point (address 10 in Fig. 3) of the basic block and executes 
the basic block. Then codes at address 10 to 1C are executed 
and the SWI instruction at address 20 generates an exception 
that delivers control to ViMo located in ASVC. This 
sequence was already explained in Fig. 2-(b). ViMo calls 
instruction emulator. The instruction emulator retrieves 
index to the RIT from the SWI instruction, looks up the RIT 
and loads the original instruction (mrs r0, CPSR) that is 
replaced with the SWI instruction. Then, the original 
instruction is emulated by the instruction emulator. After 
completion of the instruction emulation, ViMo calls BBI and 
continues to find next basic block beginning at address 24. 
BBI skips to find the basic block if the basic block is cached 
in the basic block cache. The sequence explained above is 
repeated until the corresponding virtual machine is shutdown. 

V. MEMORY VIRTUALIZATION 

ViMo virtualizes main memory on system and provides 
memory space with each virtual machine. ViMo also isolates 
virtual machine from each other by preventing accesses to 
memory of other virtual machines without permission of 
ViMo. 

The memory virtualization architecture of ViMo is 
shown in Fig. 4. For example, suppose that a system has a 
main memory with 128MB located at address 0x50000000. 
In ViMo, address space is categorized as three address 
spaces that are virtual address, physical address and machine 
address. The virtual address space is used by the guest OS 

and the physical address space is recognized as real physical 
address by the guest OS. The machine address space is 
maintained by ViMo. 

ViMo allocates a machine address space to each virtual 
machine and this memory space is contiguous physically. 
This address space is not changed until the corresponding 
virtual machine is shutdown. 

Suppose that ViMo allocates 32MB region of the 
machine address space at 0x51000000 ~ 0x52FFFFFF to the 
guest OS 0. In this situation, ViMo provides the illusion, that 
this address is located at 0x50000000 ~ 0x51FFFFFF, with 
the guest OS 0. The guest OS 0 maps the physical address to 
virtual address and uses this address space. 

The same memory allocation is applied to the guest OS 1. 
ViMo allocates the machine address space at 0x53000000 ~ 
0x54FFFFFF to the guest OS 1 and the guest OS 1 thinks 
that it uses the physical address space at 0x50000000 ~ 
0x51FFFFFF. 

ViMo uses shadow page table (SPT) [14] for the memory 
virtualization. The guest OS has its own guest page table 
maintaining the memory mapping from the virtual address to 
the physical address. ViMo knows memory mapping from 
the physical address of each virtual machine to the machine 
address. Thus, ViMo can create the memory mapping from 
the virtual address of each virtual machine to the machine 
address and this memory mapping is maintained by SPT. 

The guest page table is modified continuously by the 
guest OS. ViMo should detect modification of the guest page 
table and update SPT dynamically to reflect this modification. 
To solve this problem, ViMo modifies an attribute of the 
memory region that stores the guest page table from read-
write to read-only. Memory write to the guest page table by 
the guest OS generates an exception and control is taken by 
ViMo. Thus ViMo can capture the page table write and 
maintain SPT. 

VI. INTERRUPT CONTROLLER VIRTUALIZATION 

Fig. 5 shows virtualization architecture of interrupt 
controller in ViMo. ViMo builds a Virtual Interrupt 
Controller (VIC) based on HW Interrupt Controller (HWIC) 
and provides it to the guest OS. ViMo makes one VIC per 
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each guest OS. Thus, the guest OS uses VIC instead of  
HWIC. 

The guest OS controls HWIC by accessing registers in 
HWIC that are mapped to address space of CPU. Thus it is 
necessary to virtualize the registers for HWIC virtualization. 
VIC has same register configuration as HWIC. The access 
controller of VIC handles access from the guest OS and 
maintains consistency between VIC and HWIC. 
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Figure 5. Interrupt Handling 

If a HW interrupt is generated, ViMo interrupt handler is 
activated (Fig. 5-(1)) and copies interrupt information from 
HWIC to VIC (Fig. 5-(2)). In this situation, the ViMo 
interrupt handler checks interrupt mask of VIC and doesn’t 
copy the interrupt that is masked on VIC. Then, ViMo calls 
interrupt handler of the guest OS (Fig. 5-(3)). 

The interrupt handler of the guest OS tries to access 
HWIC for getting what kind of interrupt is generated. When 
the guest OS accesses HWIC, ViMo intercepts this access 
(Fig. 5-(4)). HWIC has some internal registers that are 
mapped to address space of CPU and the guest OS tries to 
access HWIC using this registers. ViMo modifies memory 
mapping between the guest OS and HWIC, so that the guest 
OS has no memory mapping for HWIC. In this case, the 
access to HWIC by the guest OS generates a data abort 
exception. If the data abort exception is generated and the 
exception handler of ViMo confirms that this exception is for 
HWIC, the access controller of VIC is activated (Fig. 5-(5)). 
The access controller processes the access request using VIC 
and maintains the consistency between HWIC and the VIC. 
After processing the access from the guest OS, control is 
returned to the guest OS that calls HWIC access (Fig. 5-(6)). 

VII. SCHEDULER 

Scheduler of ViMo switches virtual machines 
periodically. The scheduler stores status of virtual machine 
executed during previous time quantum at main memory and 
loads status of next virtual machine. The used scheduling 
algorithm is round-robin. 

VIII. IMPLEMENTATION 

ViMo proposed in the paper was implemented on an 
ARM11-6410SYS board developed by Huins[15] that is a 
embedded development board based on ARM11. The CPU is 
Samsung S3C6410 using ARM1176JZF-S core and 
frequency is 533MHz. The board has 128MB DDR SDRAM, 
128MB NAND flash and 1MB NOR flash. The Board also 
has 4.3 inch wide color TFT LCD with 480x272 resolution. 
We executed Linux with 2.6.21 kernel and uC/OS-II as the 
guest OS. Binary code size of ViMo is 34KB that is very 
small. 

IX. EXPERIMENTAL RESULTS 

The experiments were performed with three cases that 
are RawLinux, ViMo-Single and ViMo-Dual. RawLinux is a 
case not using ViMo. ViMo-Single and ViMo-Dual are 
ViMo systems with single guest OS and two guest OSes, 
respectively. 

A. DhryStone 

We measured performance of ViMo using DhryStone 
[16]. DhryStone is the benchmark measuring the CPU 
performance developed by Dr. Reinhold P. Weicker. The 
number of run in DhryStone is 10,000,000. 

RawLinux, ViMo-Single and ViMo-Dual show 432, 271, 
and 150 VAX MIPS, respectively. We know that ViMo-
Single is 37% slower than RawLinux and this overhead is 
from ViMo. ViMo-Dual is 44% slower than ViMo-Single 
because ViMo-Dual has two guest OSes. 
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Figure 6. DhryStone Benchmark 

 
Figure 7. Moive Play Capture 
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B. Play Movie 

This experiment is to play a movie in ViMo-Single. The 
profile of the movie is 480x272 resolution and 30 frame/s. 
By using ViMo, the total play time of ViMo-Single increases 
compared to RawLinux. The play time of the movie file is 30 
seconds but the play time in ViMo-Single increases to 40 
seconds. Thus, ViMo produces 33% overhead. 

C. Virtual Machine Isolation 

ViMo provides the isolation of the virtual machines and 
the experiment shows that a malfunction from one virtual 
machine is not propagated to other virtual machines. In 
ViMo-Dual, movie play is executed in the guest OS 0 and a 
kernel module generating kernel panic is loaded in the guest 
OS 1. The kernel modules generates the kernel panic by 
writing memory region that doesn’t belong to the guest OS 1. 
Fig. 8 shows that the guest OS 1 is stopped by the kernel 
panic. However, the movie play in the guest OS 0 still works 
without errors. 

 

Guest OS 0

Guest OS 1 – Kernel Panic

Movie of Guest OS 0

 
Figure 8. Virtual Machine Isolation 

D. Performance Analysis 

The experimental results of section A and B shows that 
ViMo is not acceptable for using real mobile systems 
because of about 33 ~ 37% overhead. The implementation 
presented in this paper is in its initial state and ViMo has 
many performance improvement points.  

We estimate that the most time consuming part of ViMo 
is the critical instruction detection, the instruction emulation 
and related context switches between the guest OS and ViMo. 
ViMo generates many context switches that are from the 
critical instruction emulation, the basic block identification, 
the virtual interrupt controller accessing and the guest OS 
switching. These frequent context switches between the 
guest OS and ViMo make cache of CPU flushed and this 
makes the performance degradation.  

We are improving the critical instruction detection and 
the instruction emulation algorithm to minimize the context 
switches between the guest OS and ViMo. We are also 
improving other components of ViMo including the memory 
virtualization and the interrupt virtualization. Futhermore, we 
are developing ViMo for ARM Cortex-A8. 

Our aim is that the overhead becomes below 10% 
through these improvement works. 

X. CONCLUSIONS AND FUTURE WORKS 

This paper proposed ViMo that is the virtual machine 
monitor using the full virtualization for mobile systems 
based on ARM architecture. ViMo provides the 
virtualization for CPU, memory and interrupt controller. The 
binary image is scanned in runtime and the critical 
instructions are replaced with SWI to ViMo. The replaced 
instructions are emulated in runtime. Also ViMo presents the 
memory virtualization and each virtual machine has its own 
memory space provided by ViMo. A virtual machine cannot 
access the memory space of other virtual machines without 
permission of ViMo and no fault of one virtual machine is 
propagated to other virtual machines. VIC virtualize the HW 
interrupt controller and each virtual machine has its own VIC. 

According to the experimental results, ViMo has 33 ~ 
37% overhead. We are improving all components including 
the critical instruction detection, the instruction emulation 
and the memory virtualization algorithm. Our aim is that the 
overhead becomes below 10% through these improvement 
works. Additionally, we are under designing I/O 
virtualization  

REFERENCES 

[1] “Understanding Full Virtualization, Paravirtualization, and Hardware 
Assist”, White Paper, pp.4-5, VMware, 2007. 

[2] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, Rich Uhlig, 
“Intel Virtualization Technoloyg: Hardware Support for Efficient 
Processor Virtualization”, Intel Technology Journal, Vol. 10, Issue 03, 
pp. 170-175, Auguest, 2006. 

[3] “AMD Virtualization Technoloyg”, http://sites.amd.com/us/business/ 
it-solutions/virtualization/Pages/amd-v.aspx, AMD, 2010. 

[4]  “Building the Virtualized Enterprise with VMware Infrastructure”, 
White Paper, pp. 4-5, VMware, 2008. 

[5] http://www.parallels.com, 2010. 

[6] Virtualbox  “Virtualbox Architecture”, http://www.virtualbox.org/ 
wiki/VirtualBox_architecture, Oracle, 2010 

[7] AMIT SHAH, “Kernel-based Virtualization with KVM”, Linux 
Magazine, Issue 86, p.37-39, Jan, 2008. 

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, 
Alex Ho, Rolf Neugebauer, lan Pratt, Andrew Warfield, “Xen and the 
Art of Virtualization”, Proceedings of the nineteenthACM 
Symposium on Operating Systems Principles, pp. 164-177, 2003.  

[9] “VMware MVP”, http://www.vmware.com/products/mobile/index. 
html, VMware, 2010. 

[10]  “Meeting the Challenges of Connected Device Design”, White Paper, 
VirtualLogix, pp. 8-10, 2006. 

[11] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, 
“Xen on ARM: System Virtualization using Xen Hypervisor for 
ARM-based Secure Mobile Phones”, IEEE 5th Consumer 
Communications and Networking Conference, pp. 257-261, 2008. 

[12] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator”, 
USENIX 2005 Annual Technical Conference, pp. 41-45, 2005. 

[13] “ARM Architecture Reference Manual”, ARM, pp. 152-435, 2005. 

[14] James E.Smith, Ravi Nair, “Virtual Machines, Versatile Platforms for 
Systems and Processes”, Morgan Kaufmann Publishers, p.399-402, 
2005. 

[15] http://www.huins.com, HUINS, 2010. 

[16] Alan R. Weiss, “Dhrystone Benchmark, History, Analysis, Scores 
and Recommendations”, White paper, November, pp. 1-5, 2002. 

53

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9


