
ViMo (Virtualization for Mobile) :

A Virtual Machine Monitor Supporting Full Virtualization

For ARM Mobile Systems

Abstract—*This paper proposes ViMo that is a micro virtual

machine monitor for ARM mobile systems, which enables to

run multiple OSes on single mobile system at the same time.

ViMo does not require any modification or compilation of OS,

so that time and cost developing a virtualized mobile system

can be reduced. Isolation of each virtual machine is another

major feature of ViMo and it prevents the other virtual

machines from the malfunctions of contaminated virtual

machine.

Keywords-Full Virtualization; Virtual Machine Monitor;

ARM; Mobile System; Isolation;

I. INTRODUCTION

Virtualization technology of server systems has been
used widely due to advantages of increased resource
utilization, power saving, space saving for servers and others.
The virtualization technology is about to be used in mobile
and embedded systems. Mobile system virtualization has
advantages of security, reduction of mobile phone BOM
(Bill Of Materials) and legacy software utilization.

The virtualization technologies can be categorized into
full virtualization [1] and paravirtualization [1]. In the full
virtualization, the instruction modifying system status is
detected in runtime and emulated by a virtual machine
monitor. This technology has the advantage that it is not
necessary to modify source code of a guest OS. But it has the
overhead of scanning and emulating the source code and this
makes system performance lower. For the paravirtualization,
the source code of the guest OS is scanned offline and the
instruction modifying the system status is replaced with
hypercall to the virtual machine monitor or a sequence of
codes having same semantic. The advantage of the
paravirtualization is higher performance than the full
virtualization. But it has the problem that the source code of
the guest OS must be modified offline by humans or tools.

In the server systems, the full virtualization has been used
popularly because server system CPUs with 3GHz frequency
and multi-core provide enough performance. Also hardware
virtualization technologies such as Intel-VT [2] and AMD-V
[3] accelerate the full virtualization. Representative systems
supporting the full virtualization are VMware [4], Parallels

*
 This work was supported by the MKE

[KI002088, Development of Virtualization Technology

based on Open Source Software]

[5], Virtualbox of Oracle [6] and KVM [7]. Representative
paravirtualized virtual machine monitor is Xen [8].

A main technology for mobile system virtualization is the
paravirtualization. The largest obstacle against the mobile
system virtualization is weaker performance than the server
systems. The latest CPU of the server systems has 3 GHz
frequency and multi-core and this provides enough
performance with the virtualization environment. However,
the mobile systems have generally 500 ~ 800Mhz CPU with
single core and doesn’t provide enough performance with the
virtualization systems. This limitation makes main
virtualization trend of the mobile systems as the
paravirtualization. But, the latest mobile systems including
iPhone 4G of Apple and Galaxy S of Samsung are based on
1GHz ARM processor. Also the smart phones including
HTC Desire, HTC HD2 with 1GHz Qualcomm SnapDragon
are being delivered to the users. Thus the performance issue
that is the main obstacle of the mobile system virtualization
is being solved. Also, it is scheduled that new ARM core will
support a hardware virtualization, and mobile systems with
multi core will appear soon. Consequently, fundamentals for
the full virtualization in the mobile systems will be concrete.

The paravirtualized mobile systems are MVP of VMware
[9], VLX of VirtualLogix [10] and XenARM [11]. The full
virtualizated mobile systems are QEMU [12].

This paper presents ViMo (Virtualization for Mobile)
that is a virtual machine monitor based on the full
virtualization for the mobile systems. ViMo scans binary
code of OS in runtime and emulates critical instructions.
Also ViMo allocates physical memory space to each virtual
machine and provides memory isolation among the virtual
machines.

II. VIMO ARCHITECTURE

ViMo is the virtual machine monitor supporting the full
virtualization for ARM-based mobile systems and the
structure of ViMo is shown in Fig. 1. ViMo works on system
hardware and multiple OSes are mounted on ViMo. ViMo
creates one virtual machine per each OS and the OS runs on
the corresponding virtual machine.

In typical systems, OS and application are located in
supervisor (SVC) and user (USR) mode of ARM CPU,
respectively. However, the OS in the ARM’s SVC mode
must be moved to the ARM’s USR mode because ViMo is
inserted into the ARM’s SVC mode. In the virtualized
systems based on ViMo, the USR mode of ARM, in which
the OS is executed, is called logically as Virtual SVC

Soo-Cheol Oh, KangHo Kim, KwangWon Koh, and Chang-Won Ahn
Electronics and Telecommunications Research Institute

Daejeon, South Korea
{ponylife, khk, Kwangwon.koh, ahn}@etri.re.kr

48

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

(VSVC) and the USR mode, in which applications are
executed, is called Virtual USR (VUSR). The four modes
used in ViMo are summarized as Table I.

ViMo

Guest OS

SVC

Mode

USR

Mode

Virtual

SVC

Mode

Virtual

USR

Mode

Guest OS

Application Application

Hardware

CPU Virtualizer

Memory Virtualizer

Scheduler

Virtual Interrupt

Controller

Code Tracer

Virtual Machine Virtual Machine

Figure 1. ViMo Architecture

TABLE I. CPU MODE OF VIMO

Mode Descriptions

ASVC (ARM SVC) SVC mode of ARM Hardware

AUSR (ARM USR) USR mode of ARM Hardware

VSVC
Mode in that OS is executed in the ViMo-based
virtualization system

VUSR
Mode in that applications are executed in the
ViMo-based virtualization system

ViMo has mainly five components that are code tracer,

CPU virtualizer, memory virtualizer, interrupt controller
virtualizer and scheduler. The code tracer detects critical
instructions on the virtual machines in runtime and the CPU
virtualizer emulates the detected critical instructions. The
memory virtualizer allocates memory space to the virtual
machines and isolates the virtual machine from other virtual
macines. The interrupt controller virtualizer builds a virtual
interrupt controller for each virtual machine and processes
interrupt controller accesses from the virtual machine. The
scheduler switches the virtual machines periodically.

III. MODE TRANSITIONS

Typical systems not using ViMo have three modes. Two
modes of them are ASVC and AUSR explained in table I and
other mode is AEXCPT handling exceptions. Exception
modes including interrupt (irq), fast interrupt (fiq), prefetch
abort, data abort and SWI (software interrupt) can be
explained as AEXCPT. As shown in Fig. 2-(a), the transition
from ASVC running OS’ kernel to AUSR running
applications is performed directly. If AUSR wants to use
kernel service using system calls, AUSR must be transited to

ASVC through AEXCPT. Also ASVC or AUSR are
transited to AEXCPT if exceptions happen, and after
exception serving is completed, AEXCPT is changed
directly to ASVC or AUSR.

In ViMo, VSVC, VUSR and VEXCPT are added instead
AUSR as shown in Fig. 2-(b). The guest OS is executed in
the virtual modes including VSVC, VUSR and VEXCPT
which are located in AUSR. ViMo is executed in ASVC and
AEXCPT.

The transitions among VSVC, VUSR and VEXCPT
cannot be performed directly because these modes are
located in AUSR. Thus, these mode transitions must be made
by ASVC and AEXCPT.

The mode is transited directly to AEXCPT if an
exception happens when CPU is in VSVC, VUSR or
VEXCPT. In this situation, there are two processing options.
If the exception is for the guest OS, this exception is passed
to the guest OS and mode is transited from AEXCPT to
VEXCPT. If the exception is for ViMo, the mode is transited
to ASVC.

In ASVC, the transition to AEXCEPT is disabled. ViMo
processes virtual machine management jobs including guest
OS scheduling, memory management and critical instruction
emulation, and these jobs have atomic characteristic that they
must be processed without break. To preserve this
characteristic, exception generation in ASVC is prohibited.

VUSR

VSVC

VEXCPT

AUSR

AEXCPT

AEXCPT

ASVC

ViMo Guest OS

ASVC

(a) System not using ViMo

(b) System using ViMo

AUSR

Figure 2. Mode Transition of ViMo

49

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Replace with

“SWI 23”

Basic Block

Identifier

10 : mov r0, r1

14 : add r0, r3

55

......

24 : mov r1, r2

......

......

Basic Block

Cache

RIT

55

55

55

mrs r0, CPSR

20 : mrs r0, CPSR

� SWI 23
Instruction

Replacer

Instruction

Emulator

Emulation

Manager

HIT MISS

Figure 3. CPU Virtualization Architecture

IV. CPU VIRTUALIZATION

This section explains CPU virtualization of ViMo. In
ViMo, the guest OS is executed in VSVC and VUSR that
belong to AUSR. VUSR doesn’t make problems because
both of VUSR and AUSR are user mode. However, the guest
OS kernel running in VSVC doesn’t generate the same result
as ASVC because VSVC is located in AUSR. This problem
must be solved by ViMo.

There are 148 instructions in ARM architecture v6 [13].
In these instructions, instructions related to the virtualization
can be categorized as privileged, sensitive and critical
instruction. The privileged instruction must be executed only
in the privileged mode (ASVC). If this instruction is
executed in AUSR, an exception is generated and control is
taken by the privileged mode. The sensitive instruction
generates different results when the instruction is executed in
ASVC or AUSR. The critical instruction is the sensitive
instruction but not the privileged instruction.

To virtualize a system using the full virtualization, the
instructions that modify the system status must be executed
under control of ViMo or be replaced with a sequence of
instruction having same semantic. The instructions
modifying system status are the privileged and the critical
instructions. If the privileged instruction is executed in
VSVC (AUSR mode), an exception is generated and control
is taken by ASVC running ViMo. Thus, detection of the
privileged instruction is performed automatically by ARM
CPU.

If the critical instruction is executed in VSVC (AUSR
mode), CPU makes no error and generates the result for
AUSR mode that is different from intended result for ASVC
mode. Thus, this is one of the most important problems to be
solved in ARM CPU virtualization.

Table II shows instruction categorization for ARM CPU.
There are 6 privileged instructions in ARM architecture with
148 instructions. MCR and MRC that belong to the
privileged instructions have over 100 operand combinations.
In detail, MCR and MRC have both characteristics of the

privileged and sensitive instructions. Some operand
combinations have the privileged instruction characteristic
and other operand combinations have the sensitive
instruction characteristic. Consequently, each operand
combination of MCR and MRC must be handled as single
instruction.

TABLE II. PRIVILEGED AND CRITICAL INSTRUCTIONS

Instruction
of

Inst.
Descriptions

Privileged

instruction
6

CDP, LDC, MCR, MCRR, MRC,

MRRC

Critical

instruction-1
14

CPS, LDM(2), LDM(3), LDRBT,

LDRT, MRS, MSR, RFE,

SETEND, SRS, STC, STM(2),

STRBT, STRT

Critical

instruction-2
13

ADC, ADD, AND BIC, EOR,

MOV, MVM, ORR, RSB, RSC,

SBC, SUB, LDR

The critical instruction consists of the critical instruction-

1 and the critical instruction-2. The critical instruction-2 can
be critical instruction upon operands. Generally, the critical
instruction-2 is not the privileged or the critical instruction.
However, if the critical instruction-2 has S-bit option and PC
as the destination operand, this instruction becomes the
critical instruction. This operand combination tells that SPSR
(Saved Processor Status Register) of current mode is copied
to CPSR (Current PSR). However, if this operand
combination is executed in AUSR, the instruction result is
unpredictable because AUSR mode doesn’t have SPSR.

Fig. 3 shows structure of the CPU virtualization. Basic
Block Identifier (BBI) scans a binary image in runtime and
identifies basic block. A basic block is the code block with
single entry and single exit point. The exit point may be
branch or the critical instruction. Suppose that a basic block
begins at address 10 and a critical instruction is at address 20.

50

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Machine

Address

Physical

Address

Virtual

Address

0x51000000 0x53000000 0x550000000x50000000

0x50000000 0x50000000

Guest OS 0 Guest OS 1

Guest OS 0 Guest OS 1

Memory Mapping

of Guest OS

(Guest Page Table)

Memory Mapping

of ViMo

Shadow Page

Table

ViMo

Figure 4. Memory Virtualization Architecture

0x51FFFFFF 0x51FFFFFF

BBI begins to scan the code at address 10. When BBI meets
the critical instruction at address 20, it makes a basic block
and stores this block at basic block cache. The basic block
cache stores the basic block that is already scanned. When
the basic block stored at the basic block cache is executed
again, it is not necessary to scan the block.

Then BBI calls instruction replacer. The instruction
replacer stores the critical instruction at Replacement
Instruction Table (RIT) and replaces the critical instruction
with single SWI instruction having index to RIT. For
example, the critical instruction is replaced with “swi 23” if
the instruction is stored at 23th index of RIT.

The instruction replacer sets PC register as the entry
point (address 10 in Fig. 3) of the basic block and executes
the basic block. Then codes at address 10 to 1C are executed
and the SWI instruction at address 20 generates an exception
that delivers control to ViMo located in ASVC. This
sequence was already explained in Fig. 2-(b). ViMo calls
instruction emulator. The instruction emulator retrieves
index to the RIT from the SWI instruction, looks up the RIT
and loads the original instruction (mrs r0, CPSR) that is
replaced with the SWI instruction. Then, the original
instruction is emulated by the instruction emulator. After
completion of the instruction emulation, ViMo calls BBI and
continues to find next basic block beginning at address 24.
BBI skips to find the basic block if the basic block is cached
in the basic block cache. The sequence explained above is
repeated until the corresponding virtual machine is shutdown.

V. MEMORY VIRTUALIZATION

ViMo virtualizes main memory on system and provides
memory space with each virtual machine. ViMo also isolates
virtual machine from each other by preventing accesses to
memory of other virtual machines without permission of
ViMo.

The memory virtualization architecture of ViMo is
shown in Fig. 4. For example, suppose that a system has a
main memory with 128MB located at address 0x50000000.
In ViMo, address space is categorized as three address
spaces that are virtual address, physical address and machine
address. The virtual address space is used by the guest OS

and the physical address space is recognized as real physical
address by the guest OS. The machine address space is
maintained by ViMo.

ViMo allocates a machine address space to each virtual
machine and this memory space is contiguous physically.
This address space is not changed until the corresponding
virtual machine is shutdown.

Suppose that ViMo allocates 32MB region of the
machine address space at 0x51000000 ~ 0x52FFFFFF to the
guest OS 0. In this situation, ViMo provides the illusion, that
this address is located at 0x50000000 ~ 0x51FFFFFF, with
the guest OS 0. The guest OS 0 maps the physical address to
virtual address and uses this address space.

The same memory allocation is applied to the guest OS 1.
ViMo allocates the machine address space at 0x53000000 ~
0x54FFFFFF to the guest OS 1 and the guest OS 1 thinks
that it uses the physical address space at 0x50000000 ~
0x51FFFFFF.

ViMo uses shadow page table (SPT) [14] for the memory
virtualization. The guest OS has its own guest page table
maintaining the memory mapping from the virtual address to
the physical address. ViMo knows memory mapping from
the physical address of each virtual machine to the machine
address. Thus, ViMo can create the memory mapping from
the virtual address of each virtual machine to the machine
address and this memory mapping is maintained by SPT.

The guest page table is modified continuously by the
guest OS. ViMo should detect modification of the guest page
table and update SPT dynamically to reflect this modification.
To solve this problem, ViMo modifies an attribute of the
memory region that stores the guest page table from read-
write to read-only. Memory write to the guest page table by
the guest OS generates an exception and control is taken by
ViMo. Thus ViMo can capture the page table write and
maintain SPT.

VI. INTERRUPT CONTROLLER VIRTUALIZATION

Fig. 5 shows virtualization architecture of interrupt
controller in ViMo. ViMo builds a Virtual Interrupt
Controller (VIC) based on HW Interrupt Controller (HWIC)
and provides it to the guest OS. ViMo makes one VIC per

51

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

each guest OS. Thus, the guest OS uses VIC instead of
HWIC.

The guest OS controls HWIC by accessing registers in
HWIC that are mapped to address space of CPU. Thus it is
necessary to virtualize the registers for HWIC virtualization.
VIC has same register configuration as HWIC. The access
controller of VIC handles access from the guest OS and
maintains consistency between VIC and HWIC.

HW Interrupt

Controller

VIC

Guest OS

Exception

Vector

Table

ViMo

(1)

ViMo Interrupt

Handler

(2)

Data abort

(4) (5) Access

Controller

Register

Set

(6) (3)

Register

Set

Figure 5. Interrupt Handling

If a HW interrupt is generated, ViMo interrupt handler is
activated (Fig. 5-(1)) and copies interrupt information from
HWIC to VIC (Fig. 5-(2)). In this situation, the ViMo
interrupt handler checks interrupt mask of VIC and doesn’t
copy the interrupt that is masked on VIC. Then, ViMo calls
interrupt handler of the guest OS (Fig. 5-(3)).

The interrupt handler of the guest OS tries to access
HWIC for getting what kind of interrupt is generated. When
the guest OS accesses HWIC, ViMo intercepts this access
(Fig. 5-(4)). HWIC has some internal registers that are
mapped to address space of CPU and the guest OS tries to
access HWIC using this registers. ViMo modifies memory
mapping between the guest OS and HWIC, so that the guest
OS has no memory mapping for HWIC. In this case, the
access to HWIC by the guest OS generates a data abort
exception. If the data abort exception is generated and the
exception handler of ViMo confirms that this exception is for
HWIC, the access controller of VIC is activated (Fig. 5-(5)).
The access controller processes the access request using VIC
and maintains the consistency between HWIC and the VIC.
After processing the access from the guest OS, control is
returned to the guest OS that calls HWIC access (Fig. 5-(6)).

VII. SCHEDULER

Scheduler of ViMo switches virtual machines
periodically. The scheduler stores status of virtual machine
executed during previous time quantum at main memory and
loads status of next virtual machine. The used scheduling
algorithm is round-robin.

VIII. IMPLEMENTATION

ViMo proposed in the paper was implemented on an
ARM11-6410SYS board developed by Huins[15] that is a
embedded development board based on ARM11. The CPU is
Samsung S3C6410 using ARM1176JZF-S core and
frequency is 533MHz. The board has 128MB DDR SDRAM,
128MB NAND flash and 1MB NOR flash. The Board also
has 4.3 inch wide color TFT LCD with 480x272 resolution.
We executed Linux with 2.6.21 kernel and uC/OS-II as the
guest OS. Binary code size of ViMo is 34KB that is very
small.

IX. EXPERIMENTAL RESULTS

The experiments were performed with three cases that
are RawLinux, ViMo-Single and ViMo-Dual. RawLinux is a
case not using ViMo. ViMo-Single and ViMo-Dual are
ViMo systems with single guest OS and two guest OSes,
respectively.

A. DhryStone

We measured performance of ViMo using DhryStone
[16]. DhryStone is the benchmark measuring the CPU
performance developed by Dr. Reinhold P. Weicker. The
number of run in DhryStone is 10,000,000.

RawLinux, ViMo-Single and ViMo-Dual show 432, 271,
and 150 VAX MIPS, respectively. We know that ViMo-
Single is 37% slower than RawLinux and this overhead is
from ViMo. ViMo-Dual is 44% slower than ViMo-Single
because ViMo-Dual has two guest OSes.

432

271

150

0

100

200

300

400

500

RawLinux Vimo-Single ViMo-Dual

VAX MIPS

Figure 6. DhryStone Benchmark

Figure 7. Moive Play Capture

52

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

B. Play Movie

This experiment is to play a movie in ViMo-Single. The
profile of the movie is 480x272 resolution and 30 frame/s.
By using ViMo, the total play time of ViMo-Single increases
compared to RawLinux. The play time of the movie file is 30
seconds but the play time in ViMo-Single increases to 40
seconds. Thus, ViMo produces 33% overhead.

C. Virtual Machine Isolation

ViMo provides the isolation of the virtual machines and
the experiment shows that a malfunction from one virtual
machine is not propagated to other virtual machines. In
ViMo-Dual, movie play is executed in the guest OS 0 and a
kernel module generating kernel panic is loaded in the guest
OS 1. The kernel modules generates the kernel panic by
writing memory region that doesn’t belong to the guest OS 1.
Fig. 8 shows that the guest OS 1 is stopped by the kernel
panic. However, the movie play in the guest OS 0 still works
without errors.

Guest OS 0

Guest OS 1 – Kernel Panic

Movie of Guest OS 0

Figure 8. Virtual Machine Isolation

D. Performance Analysis

The experimental results of section A and B shows that
ViMo is not acceptable for using real mobile systems
because of about 33 ~ 37% overhead. The implementation
presented in this paper is in its initial state and ViMo has
many performance improvement points.

We estimate that the most time consuming part of ViMo
is the critical instruction detection, the instruction emulation
and related context switches between the guest OS and ViMo.
ViMo generates many context switches that are from the
critical instruction emulation, the basic block identification,
the virtual interrupt controller accessing and the guest OS
switching. These frequent context switches between the
guest OS and ViMo make cache of CPU flushed and this
makes the performance degradation.

We are improving the critical instruction detection and
the instruction emulation algorithm to minimize the context
switches between the guest OS and ViMo. We are also
improving other components of ViMo including the memory
virtualization and the interrupt virtualization. Futhermore, we
are developing ViMo for ARM Cortex-A8.

Our aim is that the overhead becomes below 10%
through these improvement works.

X. CONCLUSIONS AND FUTURE WORKS

This paper proposed ViMo that is the virtual machine
monitor using the full virtualization for mobile systems
based on ARM architecture. ViMo provides the
virtualization for CPU, memory and interrupt controller. The
binary image is scanned in runtime and the critical
instructions are replaced with SWI to ViMo. The replaced
instructions are emulated in runtime. Also ViMo presents the
memory virtualization and each virtual machine has its own
memory space provided by ViMo. A virtual machine cannot
access the memory space of other virtual machines without
permission of ViMo and no fault of one virtual machine is
propagated to other virtual machines. VIC virtualize the HW
interrupt controller and each virtual machine has its own VIC.

According to the experimental results, ViMo has 33 ~
37% overhead. We are improving all components including
the critical instruction detection, the instruction emulation
and the memory virtualization algorithm. Our aim is that the
overhead becomes below 10% through these improvement
works. Additionally, we are under designing I/O
virtualization

REFERENCES

[1] “Understanding Full Virtualization, Paravirtualization, and Hardware
Assist”, White Paper, pp.4-5, VMware, 2007.

[2] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, Rich Uhlig,
“Intel Virtualization Technoloyg: Hardware Support for Efficient
Processor Virtualization”, Intel Technology Journal, Vol. 10, Issue 03,
pp. 170-175, Auguest, 2006.

[3] “AMD Virtualization Technoloyg”, http://sites.amd.com/us/business/
it-solutions/virtualization/Pages/amd-v.aspx, AMD, 2010.

[4] “Building the Virtualized Enterprise with VMware Infrastructure”,
White Paper, pp. 4-5, VMware, 2008.

[5] http://www.parallels.com, 2010.

[6] Virtualbox “Virtualbox Architecture”, http://www.virtualbox.org/
wiki/VirtualBox_architecture, Oracle, 2010

[7] AMIT SHAH, “Kernel-based Virtualization with KVM”, Linux
Magazine, Issue 86, p.37-39, Jan, 2008.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, lan Pratt, Andrew Warfield, “Xen and the
Art of Virtualization”, Proceedings of the nineteenthACM
Symposium on Operating Systems Principles, pp. 164-177, 2003.

[9] “VMware MVP”, http://www.vmware.com/products/mobile/index.
html, VMware, 2010.

[10] “Meeting the Challenges of Connected Device Design”, White Paper,
VirtualLogix, pp. 8-10, 2006.

[11] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park,
“Xen on ARM: System Virtualization using Xen Hypervisor for
ARM-based Secure Mobile Phones”, IEEE 5th Consumer
Communications and Networking Conference, pp. 257-261, 2008.

[12] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator”,
USENIX 2005 Annual Technical Conference, pp. 41-45, 2005.

[13] “ARM Architecture Reference Manual”, ARM, pp. 152-435, 2005.

[14] James E.Smith, Ravi Nair, “Virtual Machines, Versatile Platforms for
Systems and Processes”, Morgan Kaufmann Publishers, p.399-402,
2005.

[15] http://www.huins.com, HUINS, 2010.

[16] Alan R. Weiss, “Dhrystone Benchmark, History, Analysis, Scores
and Recommendations”, White paper, November, pp. 1-5, 2002.

53

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

