
Behaviour-inspired Data Management in the Cloud

Dariusz Król, Renata Słota, Włodzimierz Funika

Institute of Computer Science

AGH - University of Science and Technology

al. Mickiewicza 30, 30-059 Krakow, Poland

{dkrol, rena, funika}@agh.edu.pl

Abstract — Open source cloud computing solutions are still not

mature enough to handle data-intensive applications, e.g.,

scientific simulations. Thus, it is crucial to propose appropriate

algorithms and approaches to the data management problem

in order to adjust cloud-based infrastructures to scientific

community requirements. This paper presents an approach

inspired by observation of the cloud user behaviour: the

intensity of data access operations, their nature, etc. We also

describe how the proposed approach influences the

architecture of a typical cloud solution and how it can be

implemented based on the Eucalyptus system which is a

successful open source cloud solution.

Keywords- cloud computing; data management; monitoring.

I. INTRODUCTION

Cloud computing is arguably the most popular buzzword
in the tech world today. It promises to reduce the total cost of
maintenance of an IT infrastructure with providing better
scalability and reliability at the same time. Apart from
“unlimited” computational power, the Cloud provides also
"unlimited" storage capacity which can be accessed from
every device which is connected to the Internet. Therefore,
this is not a surprise that many commercial companies along
with academic facilities are very interested in this paradigm.
As with other paradigms, various research centers test it in a
variety of ways in order to unveil its strengths and
weaknesses. What makes the Cloud computing special in
comparison to other, more academic-related approaches to
distributed computing, e.g., Grid computing, is the support
and investment made by the largest IT companies, e.g.,
Google, IBM, Microsoft and many others. These million
dollars investments can be treated as a good omen that Cloud
computing can be widely adopted and will not disappear
 after few years.

Today, cloud computing solutions, especially the open

source ones, are not mature enough in terms of storage
capabilities to handle data-intensive applications which
would like to store results in the cloud-based storage. One of
the issue is lack of adaptation of data management strategy,
e.g., to changing user requirements or location from where
the user access the cloud storage. Each of these aspects can
imply the access time to data especially when considering
geographically distributed resources which constitute a
single cloud installation. Therefore, we propose a novel
approach, based on autonomic systems (similar to situation-
aware systems - [1]) and behaviour observation whose main

goal is to adapt data location to the user needs which will
result in decreasing access time and higher utilization factor
of resources. We introduce a “Usage profile” concept which
describes a piece of data stored in the cloud storage. The
usage profile contains information how the described data is
used by cloud clients. To create such a profile, operations
related to data storage performed by cloud users are
monitored and analyzed. The approach is designed to be an
additional element of the cloud installation rather than being
mandatory, which is invisible from the user point of view but
can positively influence the storage performance.

The commercial clouds, e.g., Amazon Elastic Compute
Cloud (EC2) [2] which it is an Infrastructure-as-a-Service
system, which means it allows to manage a computational
environment consisted of virtual machines, cannot be easily
studied due to closed source code, thus in this paper they will
not be taken into consideration. The rest of the paper is
organized as follows:

 in Section II, a number of the existing cloud
solutions are presented,

 Section III describes the data management
algorithm which is based on the behaviour
analysis,

 parameters of the usage profile along with
behaviour which is analyzed in order to create
the usage profiles are described in Section IV,

 a prototype implementation of the algorithm is
presented in Section V,

 conclusions along with the future directions of
the research are provided in Section VI.

II. EXISTING OPEN-SOURCE CLOUD ENVIRONMENT

Cloud computing has been already widely adopted by
various commercial companies and academic centers. While
many commercial companies develop their own solutions,
e.g., Amazon EC2, Microsoft Azure [3] or Google
AppEngine [4], others use and invest in open source
solutions which are especially well suited for situations
where the environment has to be adapted to some specific
requirements. This feature is very important for scientific
community which would like to implement new concepts
and approaches to optimize access time or other parameters.
Thus in the presented research only open source solutions
were taken into consideration. In this section, we describe
three well known “Infrastructure as a Service” environments:
Eucalyptus, Nimbus and OpenNebula.

98

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

A. Eucalyptus

Eucalyptus system [5] is an example of an open source
project which became very popular outside the scientific
community and is exploited by many commercial companies
to create their own private clouds. It was started as a research
project in the Computer Science Department at the
University of California, Santa Barbara in 2007 and today is
often treated as a model solution for providing infrastructure
as a service. Eucalyptus aims at providing an open source
counterpart of the Amazon EC2 cloud in terms of interface
and available functionality.

Each Eucalyptus installation consists of a few loosely
coupled components each of which can run on a separate
physical machine to increase scalability. The frontend of
such a cloud is “Cloud controller” element which is an
access point to the virtual machines related features. While
“Cloud controller” is responsible for computation, the
“Walrus” component is responsible for data storage. It
allows storing virtual machine images along with any other
files which are divided into a hierarchy of buckets and can be
treated as the Amazon Simple Storage Service (S3)
counterpart in the Eucalyptus system. Amazon S3 is a Cloud
storage service which allows storing any type of data in form
of files in a number of buckets (each with a unique name
within a bucket) using a simple API, i.e., put, get, list, del
operations are supported. Each virtual machine is run on a
physical host which is controlled by the “Node controller”
element. A group of nodes can be gathered into a cluster
which exposes a single access point, namely “Cluster
controller” from the virtual machine management side and
“Storage controller” from the virtual machine images
repository side.

Eucalyptus is based on the Java technology stack and its
source code is freely accessible and can be modified as
necessary. To mention a few, the current implementation
uses web services (Apache Axis [6]) to expose the provided
functionality to the external clients, and exposes a web-based
user interface developed with the Google Web Toolkit
(GWT) [7]. It also supports the Xen [8] and KVM [9]
hypervisors to run virtual machines on the supervised
resources.

The open version of the Eucalyptus system stores data
into a single directory on the host on which the Walrus
component is installed. Therefore, the only way to distribute
the data is to exploit a distributed file system, e.g., Lustre
[10], which will be mounted to the directory used by the
Eucalyptus installation. This can be unfortunately not
enough especially when the application is running.

B. Nimbus

Nimbus [11] is a toolkit for turning a cluster into an IaaS
cloud computing solution. It is developed by the Globus
Alliance [12]. A Nimbus client can lease remote resources
by deploying virtual machines on these resources and
configure them to fulfil the user requirements. What makes it
attractive is the support of a communication interface known
from the Grid computing, namely Web Services Resource
Framework [13]. As in other popular solutions, Nimbus
provides an Amazon EC2 compatible interface for cloud

clients, which is de facto a standard of IaaS environment due
to its wide adoption in a number of solutions.

A Nimbus installation consists of a number of loosely
coupled elements. The center point of the Nimbus
architecture is the “Workspace service” component which is
a coordinator of the whole installation. It is invoked through
different remote protocol frontends, e.g., WSRF or EC2 –
compatible services. Another important component is
“Workspace resource manager” which runs on each host
within the Cloud and is responsible for controlling a
hypervisor on the host machine. The current version fully
supports Xen hypervisor and most of the operations on the
KVM hypervisor. It is also worth of mentioning that Nimbus
installation can be easily connected to a public commercial
cloud, e.g., Amazon EC2 in order to achieve even greater
computer power when the in-house infrastructure is not
enough.

In terms of data management, the Nimbus project is
limited to the virtual machine image repository. There is no
component which would provide functionality similar to the
Amazon S3. The user can only upload virtual machine
images to the Nimbus cloud and store data stemming from
computation on storage devices connected directly to a
virtual machine.

The Nimbus project is based on open source tools and
frameworks, e.g., Apache Axis, the Spring framework [14]
or JavaDB [15]. Therefore, everyone can download its
sources from a public repository and modify its functionality
as desired.

C. OpenNebula

OpenNebula [16] is a Virtual Infrastructure Manager for

building cloud infrastructures based on Xen, KVM and

VMWare virtualization platforms [17]. It was designed and

developed as part of the EU project RESERVOIR [18],

whose main goal is to provide open source technologies to

enable deployment and management of complete IT services

across different administrative domains. OpenNebula aims

to overcome shortcomings of existing virtual infrastructure

solutions, e.g., inability to scale to external clouds, a limited

choice of interfaces with the existing storage and network

management solutions, few preconfigured placement

policies or lack of support for scheduling, deploying and

configuring groups of virtual machines (apart from the

VMWare vApp solution [19]). Like other of the presented

solutions, OpenNebula is fully open source and its source

code can freely be checkout from a public repository.

OpenNebula architecture was designed with modularity

feature in mind. Therefore, it can be extended to seamlessly

support a new virtualization platform e.g., in terms of virtual

image or service managers. For instance, a procedure of

setting up a VM disk image consists of well-defined hooks

whose implementation can be easily replaced to interface

with the third-party software. To manage an OpenNebula

installation, the user can use a simple, dedicated command

line interface or Amazon EC2 query interface. Therefore, it

can be accessed with the tools originally developed to work

with the Amazon EC2 cloud.

99

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

In terms of storage mechanisms, it is limited to repository
of VM images only. The repository can be shared between
available nodes with the Network File System (NFS) [20]. It
is also possible to take advantage of block devices, e.g.,
LVM to create snapshots of images in order to decrease time
needed to run a new instance of image.

III. BEHAVIOUR-INSPIRED APPROACH TO DATA

MANAGEMENT

The most important aspect of the presented approach is
its orientation towards each user requirements rather than
some global optimization such as equal data distribution
among available resources. Our approach treats each user
separately by monitoring his/her behaviour related to data
storage. The monitoring process is necessary in order to
discover the nature of the data automatically, e.g., whether it
is read-only or often modified data. With this knowledge, the
data can be managed appropriately, i.e., with requirements
such as high availability taken into account. Another
important feature of the approach which can be deducted
from the previous one is its transparency from the user point
of view. Thus, it can be applied to any existing solution
without any modification required to the user-side code.

Figure 1: Data management loop.

The structure of the described algorithm is depicted in

Figure 1. There are 3 phases included:

 The observation phase where the information about
the user behaviours are aggregated. It is a start point
of the management iteration. Each operation related
to the storage, e.g., uploading or downloading files
are recorded along with information about the user
who performed the operation and a time-stamp.

 The profile construction phase is the one where the
gathered information about behaviour is analyzed.
For each user, a profile which describes how the
user accesses each piece of data is created, thus the
profile also contains information how each piece of
data should be treated.

 The data management phase is responsible for
modifying the data storage, i.e., applying a
dedicated strategy which corresponds to a user
profile. Such a strategy can e.g., create many
replicas of a piece of data which is read by many

users but hardly any one modifies it or it can move
the data closer to the user to decrease its access
time.

An important feature of the algorithm is the fact that it
never ends. There is no stop condition because such a
management process may last as long as the cloud is
running. Each iteration of the loop results in tuning the
storage strategy to the observed user behaviour. However,
the historical data is taken into account as well and can
influence the storage strategy rather than just be omitted. In
fact, its importance to the new strategy is one of the
parameters of the algorithm.

Another important aspect of the approach is its influence
on the architecture of a cloud solution. The overview of
architecture is schematically depicted in Figure 2. To
underline the most important components, some
simplifications were introduced, e.g., the cloud solution is
represented only by "Cloud manager" which is an access
point to the cloud infrastructure. "Storage elements"
represent physical resources where the data is actually
stored. New components are as follows:

 Monitoring system is responsible for gathering
information about user actions. The most important
operations are those related to data storage, e.g.,
uploading a file or accessing a file by the user.
Information about these actions have to be remotely
accessible by an external cloud client in a
programming language independent way.

 Behaviour data manager is the main element of this
new approach. It performs the analysis of the user
behaviours and creates their profiles. Then, it
performs all the necessary actions to adjust the
storage strategy to the actual profile. In most cases,
these actions will be related to either moving data
between storage elements with different physical
parameters or managing data replication, e.g.,
creating new replicas. By combining these two
types of operations, we can improve the Quality of
Service (QoS) of the cloud storage, e.g., decrease
the data access time. It is also possible to apply
more sophisticated algorithms for data management
as the ones described in [21] and [22]. The
communication between “Behaviour data manager”
and “Storage elements” is optional. If “Cloud
manager” exposes an interface to manage the actual
data location, there is no need for “Behaviour data
manager” to interact with “Storage elements”
directly.

 Profile knowledge base is a repository where the
historical profile for each piece of data is stored
along with record of each performed action. Thus, it
can be used by the "Behaviour data manager" to
take into account not only the most recent
information but also the previous actions.

As we can see the approach can be easily integrated with
any cloud solution which can be monitored, i.e., each
performed operation related to the storage is registered, and
the stored data can be moved between available physical
resources, either indirectly with an exposed programming

100

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

interface or directly with accessing storage elements and
moving raw data. These requirements are rather easy to meet
and in the next section we are presenting an example
implementation based on a popular open-source cloud
solution. It is also worth mentioning that the original source
code of such a cloud solution stays untouched.

IV. USAGE PROFILE

The presented approach highly exploits usage profiles

which are based on the observation of the user actions. From

the performed actions, only those related to the data storage

(e.g., uploading or downloading files) are important. In the

system a set of profile types is defined along with the

actions which are recommended for each of these types. A

profile type and an actual profile (which will be described

later in this section) correspond to a piece of data, e.g., a

single file. Thus, it can be treated as a metadata for the

actual data stored in a cloud storage.

Such a profile type contains information which describes

how the described data is used. So far a few parameters

were defined:

 Category of access frequency which describes

whether the object is frequently accessed

 Percentage of the queries relating to read/write

operations

 Category number of clients for read/write operations

 Category connection points (e.g., IP addresses) for

read/write operations

Based on these parameters a set of a predefined profile

types can be created. They should correspond to the well

known storage management patterns, e.g., if an object is

always read, it should be replicated to multiple physical

locations in order to lower the access time.

On the other side, we observed user actions which can be

grouped by an object they are related to. As a result, we

have got a behaviour profile which contains the following

information:

 Frequency of access to an object, e.g., per hour or

per iteration of the algorithm loop.

 Number of read/write operations

 Number of different users accessing to the object

(separately for read/write operations)

 Number of different places (e.g., IP addresses)

from which the object was accessed (separately for

read/write operations)

Such a profile is created for each piece of data in the

cloud storage (e.g., file) after the first iteration of the

algorithm and updated on each subsequent iteration. In

each “Data management” phase, for each profile a

similarity function to each defined profile type is

calculated. Then, the actions related to the most similar

profile type are performed.

Therefore, the approach can be easily extended in terms

of recognized behaviour, simply by defining new profile

types along with related actions.

Figure 2: Architecture overview of a cloud solution with “Behaviour data

manager” applied.

V. IMPLEMENTATION NOTES

To present a sample implementation of the approach, we
chose the Eucalyptus system as a basis. This choice was
motivated by a large popularity of Eucalyptus and its

101

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

functionality in terms of storage which is very similar to the
Amazon S3 offer, a de facto standard in the cloud industry.

The Eucalyptus architecture contains a component called
"Walrus" which is responsible for the -storage-related
functionality. "Walrus" exposes an API (Application
Programming Interface) which consists of methods which
create, update, and remove objects and buckets from the
cloud storage.

The open version of the Eucalyptus implements the cloud
storage as a designated directory on the local filesystem. It is
rather a minimalistic solution of the cloud storage, due to
very limited ways of data distribution. The possible way is to
mount a distributed file system at the designated directory
which will transparently distribute data among a number of
storage elements. Unfortunately such a solution does not
allow to control data manipulation which cannot be accepted
in our situation. Therefore, we extended the storage system
in Eucalyptus with an ability to store data in several
directories instead of one only, each of which can point to a
different physical location, e.g., via Network File System
(NFS). With this extension, the location of the data can be
easily controlled, simply by moving files between
directories.

As mentioned above there are a few components to add
to the Eucalyptus architecture in order to implement the
approach under discussion. Such an extended architecture is
depicted in Figure 3. There is the "Walrus" component which

exposes an API to external users for storing data in the cloud.
Apart from storing custom data, e.g., results coming from a
running simulation, "Walrus" stores two other types of
objects. The first one is a VM image which is uploaded by
the user and then is run on the Eucalyptus infrastructure.
Although, the user communicates with other component,
called "Cloud controller", the images are actually stored with
"Walrus". The second type of objects is the "Block storage"
object. It is used as a mountable partition to store data during
a VM run, similarly to a local file system. Moreover, a
"Block storage" object can store data between two
subsequent runs of a VM and in opposite to a VM virtual
disk, the data is not erased after a VM shutdown. Such a
partition is stored within the cloud storage with "Walrus".
All these three types of objects are stored with "Walrus" on
the same rules and thus can be uniformly managed with our
system.

The first of the additional elements added to the
architecture is a dedicated “Monitoring system”. It consists
of “Log analyzer” which periodically reads the Walrus log
where each operation related to the storage is recorded and a
relational database where information who and which

Figure 3: Eucalyptus system architecture extended with “Behaviour Data
Manager”, “Profile KnowledgeBase”, “Monitoring system”, and

“Distributed storage component”.

102

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

operation performed. Thus all the necessary data for profile
creation is prepared in a technology neutral form. The second
element is "Behaviour Data manager" which is responsible
for analysing data written to “Monitoring Database (DB)”.
The behaviour of each user related to each stored object is
categorized to one of the defined groups, which describes
how the object should be treated, e.g., if it is written mostly
often by a single user or if it is read by multiple users who
are geographically distributed but which is not modified
often. This information in form of a “Usage profile” is then
stored in "Profile KnowledgeBase" along with its update
timestamp. After the categorization phase is over,
"Behaviour Data manager" performs actions which are
suitable for an assigned usage profile. An action can be as
simple as moving an object between directories on the
Walrus machine, each of which represents a different type of
storage elements, or as complicated as creating many
replicas and moving them as close to users as possible. The
historical data is taken into account with a weight set in the
system configuration.

The whole algorithm is performed periodically in order
to adapt the storage strategy to the dynamic environment.
The presented implementation is currently in the prototype
phase. The monitoring system is finished and tested but the
implementation of "Data manager" is still in progress.

VI. CONCLUSIONS AND FUTURE WORK

Although, there are several open-source cloud solutions
available today, none of them provides a storage system
which would be able to adapt to the user needs
automatically. Instead, only basic functionality, e.g., storing
VM images or custom objects is supported. The presented
approach aims at providing a sophisticated data management
which would be flexible enough to be applicable to different
cloud solutions and which would manage data according to
the user behaviour. The article describes the main
assumptions of the approach along with phases of the
management process. As an example of its implementation a
prototype version of the system based on Eucalyptus is
described. Due to the limited functionality of the Eucalyptus
system, an extension which provides a real distributed data
storage to multiple locations has been implemented.

Since the implementation of the approach is in progress,
there is work to be done. The "Data manager" and "Profile
database" components are not yet finished. From the
conceptual point of view, the approach lacks a well-defined
set of behaviour categories along with related actions.
However, these categories will be crystallized during real-
life tests when the behaviour of the real users will be
observed and analyzed. Until then, some preliminary
categories will be be defined.

ACKNOWLEDGMENTS

The authors are grateful to prof. Jacek Kitowski for
valuable discussions. D. Król thanks to UDA-
POKL.04.01.01.01-00-367/08 project for support, R. Słota

and W. Funika to the projects A-0938-RT-GC EDA EUSAS
Project and POIG.02.03.00-00-007/08-00 “PL-Grid”.

REFERENCES

[1] Han, J.H., Lee, D.H., Kim, H., In, H. P., Chae, H.S., and Eom Y.I.,
“A situation-aware cross-platform architecture for ubiquitous game”,
Computing and Informatics, vol. 28, nr 5, 2009, pp. 619-
633.

[2] Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc., 2008.
[on-line: http://aws.amazon.com/ec2, as of June 13, 2010]

[3] Microsoft Windows Azure Platform (Windows Azure). Microsoft,
2010. [on-line: http://www.microsoft.com/windowsazure/, as of June
13, 2010]

[4] Google AppEngine. Google Inc., 2008. [on-line:
http://code.google.com/intl/pl-PL/appengine/, as of June 13, 2010]

[5] Eucalyptus Systems Inc.: 2010, [on-line: http://www.eucalyptus.com/,
as of July 24, 2010]

[6] Apache Axis website. [on-line: http://ws.apache.org/axis/, as of June
13, 2010]

[7] Google Web Toolkit website. [on-line: http://code.google.com/intl/pl-
PL/webtoolkit/, as of June 13, 2010]

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, and
A. Warfield, "Xen and the art of virtualization," in SOSP '03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles. New York, NY, USA: ACM, 2003, pp. 164-177,
[on-line: http://dx.doi.org/10.1145/945445.945462 as of June 13,
2010]

[9] Kernel-based Virtual Machine project wiki. [on-line:
http://www.linux-kvm.org/page/Main_Page, as of June 13, 2010]

[10] Lustre filesystem wiki. [on-line:
http://wiki.lustre.org/index.php/Main_Page, as of June 13, 2010]

[11] Kielmann, T., “Cloud computing with Nimbus”, March 2009, EGEE
User Forum/OGF25 & OGF Europe's 2nd International Event.

[12] Globus Alliance website. [on-line: http://www.globus.org/, as of June
13, 2010]

[13] Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., and
Weerawarana, S., “Modeling Stateful Resources with Web Services”,
2004. [on-line: http://www.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf, as of June 13, 2010]

[14] Spring Framework website. [on-line: http://www.springsource.org/,
as of June 13, 2010]

[15] Java database website. [on-line: http://developers.sun.com/javadb/, as
of June 13, 2010]

[16] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, "Capacity
Leasing in Cloud Systems using the OpenNebula Engine." Cloud
Computing and Applications 2008 (CCA08), 2009.

[17] VMware website. [on-line: http://www.vmware.com, as of June 13,
2010]

[18] RESERVOIR project website. [on-line: http://62.149.240.97/, as of
June 13, 2010]

[19] VMware Virtual Appliances website, [on-line:
http://www.vmware.com/appliances/getting-started/learn/, as of June
13, 2010]

[20] Network File System version 4 protocol specification, [on-line:
http://tools.ietf.org/html/rfc3530, as of June 13, 2010]

[21] Slota, R., Nikolow, D., Kuta, M., Kapanowski, M., Skalkowski, K.,
and Kitowski, J., “Replica Management for National Data Storage”,
Proceedings PPAM09, LNCS6068, Springer, 2010, in print.

[22] Slota, R., Nikolow D., Polak, S., Kuta, M., Kapanowski, M. , and
Kitowski, J., "Prediction and Load Balancing System for Distributed
Storage", Scalable Computing Practice and Experience, 2010, in
print.

103

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

http://aws.amazon.com/ec2
http://www.microsoft.com/windowsazure/
http://code.google.com/intl/pl-PL/appengine/
http://www.eucalyptus.com/
http://ws.apache.org/axis/
http://code.google.com/intl/pl-PL/webtoolkit/
http://code.google.com/intl/pl-PL/webtoolkit/
http://dx.doi.org/10.1145/945445.945462
http://www.linux-kvm.org/page/Main_Page
http://wiki.lustre.org/index.php/Main_Page
http://www.globus.org/
http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www.springsource.org/
http://developers.sun.com/javadb/
http://www.vmware.com/
http://62.149.240.97/
http://www.vmware.com/appliances/getting-started/learn/
http://tools.ietf.org/html/rfc3530

