
Datanode Optimization in Distributed Storage Systems

Xiaokang Fan, Shanshan Li, Xiangke Liao, Lei Wang, Chenlin Huang, Jun Ma
School of Computer Science and Technology
National University of Defense Technology

Changsha, Hunan, P.R.China

{fanxiaokang, shanshanli, xkliao, wanglei, huangchenlin, majun}@nudt.edu.cn

Abstract—Distributed storage systems designed for small files
have been developing rapidly, like Facebook’s hayStack,
Twitter’s Cassandra and so on. But, under our observation,
there are still some drawbacks in these systems. For example,
they do not have cache specified for files and have not taken
the relationship inherent in application-specific knowledge
between files into consideration. We propose a file-level cache
on datanode and co-location of affinitive files based on
application-specific knowledge. We use a synthetic data set and
a real world trace to evaluate our optimization. The file-level
cache and co-location of affinitive files together can improve
system’s throughput by 20%-50%.

Keywords-distributed storage system; file-level cache; co-
location.

I. INTRODUCTION
Distributed storage systems have been widely used in

large datacenters. These systems are designed to provide
efficient, reliable access of data using clusters of commodity
hardware [22]. So far, applications specified for small files
have been increasing rapidly. For example, micro blogging,
facebook, twitter, and so on. These applications generate
enormous amounts of small files to store in the storage
systems. For example, Facebook have stored over 260 billion
images and more than 20 petabytes of data so far [11]. Many
systems have been developed to support these applications,
like fastDFS [18], Facebook’s Haystack [11], and so on.

Under our observation, these systems are not perfect. As
we know, most distributed systems are deployed as
userspace libraries on large clusters of commodity machines.
Each node in the cluster has local operating system and file
system. Local system will load popular data into its cache.
Usually cache unit is block. But in systems specific for small
files, block may not be an appropriate choice as for the cache
unit. Since a block may contain many files and quite often
only a small part of them are frequently accessed. In fact,
cache space has not been made fully use of. In distributed
storage systems, files are usually randomly distributed in the
whole system for load balancing. Little attention has been
paid on file’s inner relationship when files are written into
disk. In web applications, when an image file is accessed, the

images that make up the same hypertext document will also
be accessed. The relationship between these related files
have not been made use of.

In order to avoid these two drawbacks, we have proposed
two optimizations on datanode: first, we build up a file-level
cache which can make full use of the cache space. Second,
we propose co-location of related files that store related files
close to each other on disk which can take advantage of the
disk technology trend that is toward improved sequential
bandwidth [28]. In our evaluation, we find that with only
file-level cache, we can improve the system’s throughput by
maximally 40%. With only co-location of related files, we
can improve the throughput by maximally 20%. With both
file-level cache and co-location of related files, we can
improve the throughput by maximally 50%.

The rest of this article is organized as follows: Section 2
reviews the related works. Section 3 provides detailed
motivation for our optimization. Section 4 describes our file-
level cache in detail and Section 5 explains our co-location
strategy of related files in detail. Section 6 describes our
implementation on TFS [27]. We evaluate our optimization
in Section 7 and draw a conclusion in Section 8.

II. RELATED WORK
With the rapid development of data-intensive

applications, traditional file systems could no longer meet
the demand for mass data storage. Many distributed storage
systems have been developed to support applications with
enormous amounts of data. For example, Amazon has
designed Dynamo [8] to power parts of Amazon Web
Services. Google has developed GFS [9] for its core data
storage and usage needs.

Some peer-to-peer (P2P) systems have also looked at the
problem of data storage and distribution [10, 12]. But, they
are generally used as file sharing systems. Distributing data
for performance, availability and durability has been widely
studied in the file system and database system community.
Compared with P2P storage systems that only support flat
namespaces [29], distributed file systems typically support
hierarchical namespaces [8, 24, 25, 26].

247Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Cache organized in the unit of block

Studies of distributed file systems specified for small
files have become a key component of storage systems
research as applications specific for small files like images
and micro bloggings have been increasing rapidly [21, 31,
32]. FastDFS is designed to meet the requirement of the
website whose service based on files such as photo sharing
site and video sharing site. Facebook has designed Haystack
to serve its Photos application where data is written once,
read often, never modified, and rarely deleted.

To increase the efficiency of the enormous small disk
requests that characterize accesses to small files, much work
have been done on the disk layout of small files. Localizing
logically related objects is the choice of many file systems.
Some researchers have investigated the value of breaking file
system’s disk storage into cylinders and moving the most
popular data to the centermost cylinders in order to reduce
disk seek distances [1, 2, 3]. From the same perspective of
reducing disk seek distances, immediate files, an idea
proposed by [4], moves inode to the first block of the file.
This approach puts inodes together with their file data, which
can improve the performance of read operations that read file
data. Several other works [4, 5, 7] have proposed how to
group related files together intelligently.

III. PRELIMINARY
Modern distributed file systems’ topology can usually be

divided into two kinds: master-slave structure and ring
structure. Systems like GFS, HDFS [17], fastDFS usually
organize machines in master-slave structure. In these systems
there are two types of machines: one namenode with a large
number of datanodes. Namenode handles metadata while
datanode handles real data. This structure frees namenode
from the data flow, so it can significantly reduce workload
on namenode. Systems of the ring structure are often
decentralized systems. There is no masternode, which only
deals with metadata, in these systems. All machines act as
the same role. All nodes can be called datanodes.

The growth and diffusion of applications specific for
small files have led to systems that support efficient, secure
and durable access of small files. Systems of the ring
structure, like Dynamo and Cassandra [19], are intended to
store relatively small objects. In systems of the master-slave
structure, TFS is developed by Taobao [6] to store its
enormous amounts of online commodity images.

Figure 2. Cache organized in the unit of file

As one part of the whole system, datanode plays a very
important role. But so far there is hardly any optimization
specified for datanode.

As we know, most distributed storage systems are not
implemented in the kernel of operating systems, but are
instead provided as userspace libraries, which means that
they are all based on local file systems [20]. In systems that
store small files, local file systems can hardly have any sense
of single files; so they usually organize cache in the unit of
block. Studies show that in most web service applications the
file access pattern applies the Pareto principle, which means
that only a small part of all files are frequently accessed
while most files are rarely accessed [13, 14, 15, 16]. Since
files are evenly distributed in the whole system, it is still true
that of all the files that consist a block, only a small part are
frequently accessed while others are rarely accessed. This
strategy may result in low efficiency of cache and the waste
of cache space.

Fig. 1 illustrates the case how cache space is wasted.
Darker files are more frequently accessed while lighter files
are less frequently accessed. When one block is loaded into
cache as some popular files in it are accessed, files in the
same block that are rarely accessed will also be loaded into
cache. It stands a good chance that those unpopular files will
have never been accessed before this block is replaced by
other blocks. Cache space occupied by those unpopular files
is wasted.

Modern distributed systems usually distribute files
randomly for load balancing [30]. But this has not taken the
logical relationship of files into consideration. In most cases,
files can be partitioned into small groups based on
application-specific knowledge. Files in the same group are
closely related with each other that if one file is accessed
most probably the others will be accessed too. For example,
in online business like Amazon, all images stored in the
system can be partitioned based on the commodities they
describe. Once a commodity is skimmed by some customer,
all images that describe this commodity will be accessed.

IV. FILE-LEVEL CACHE
Since cache space in datanode has not been fully made

use of and much of it has been wasted. In order to make
better use of cache space, we proposed a file-level cache on
datanode. Fig. 2 illustrates the basic idea of our file-level

248Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

cache. We organize cache in the unit of single files rather
than blocks. Each time we load a single file into cache rather
than a block.

Studies of cache replacement strategy have been a topic
for many years. Many replacement algorithms have been
proposed, such as FIFO [35], LRU [36], OPT [37] and so on.
FIFO is too simple to make the most of cache while OPT is
just an ideal model, which has not been put into practice. The
LRU strategy discards the least recently used items when
new items need to be loaded into cache. This strategy fits our
applications well so we choose LRU as our replacement
strategy. Since files are not in the same size, we organize
files in the cache as a list. As enormous accesses to small
files may generate great amounts of cache misses while all
these cache misses would search the entire list, which results
in great amounts of searching time. In order to avoid these
unnecessary searches of the list generated by cache misses,
we introduce a bloom filter.

For an incoming read request, our algorithm does the
following:

• Check the bloom filter to see whether this file is in
the cache. If the bloom filter indicates that it is not in
the cache, load this file from disk and add a node
that represents this file to the head of the list. Reply
with the data loaded from disk.

• If bloom filter indicates that this file may be in the
cache, search the list to see whether this file is in the
cache.

• If it is in the cache, move the node that represents
this file to the head of the list and reply with data in
the cache.

• If it is not in the cache, load this file from disk and
add a node that represents this file to the head of the
list. Reply with the data loaded from disk.

Each time we load a new file into the cache, if the total
size of all the data in the cache is larger than the cache size,
we recursively remove the node in the tail until the total size
is smaller than the cache size.

Compared with the time of loading files from disk, the
time of searching file-level cache can be ignored. With
bloom filter avoiding most of the unnecessary searches of
cache. We believe that our file-level cache can greatly reduce
the overall file access time.

Figure 3. Stucture of TFS.

V. CO-LOCATE FILES BASED ON AFFINITY
We borrowed a concept of affinity to describe the inner

relationship between files based on application-specific
knowledge. We say several files are affinitive in case that if
one of them is accessed, the rest are very likely to be
accessed. As modern disk technology trend is toward
improved sequential bandwidth. To better exploit bulk data
bandwidth and avoid frequent reposition to new locations,
we use co-location to place affinitive files at adjacent disk
locations.

In modern distributed storage systems, a write process
usually consists of the following steps:

• System randomly chooses a datanode based on the
current workload on every datanode.

• Client contacts and sends data to the chosen
datanode directly.

• After all data have been received, datanode commits.
Each write request goes through the entire write process.

Since datanode is chosen randomly, files are distributed
randomly in the whole system.

In order to co-locate affinitive files, we do not write disk
for single write request, instead we collect files in a buffer
and write them to disk in batches. Each time the client
receives a write request, it puts the file in the buffer. Files in
the buffer are divided into groups based on application-
specific knowledge. When buffer is full or a time limit is met,
system begins the write process.

In our approach, we have made some modifications to
modern write process to achieve co-location of affinitive
files. The write process consists of the following steps:

• System randomly chooses a datanode for the first
group of files in the buffer based on current
workload on every datanode.

• Client contacts and sends data of files in the first
group to the chosen datanode directly.

• After all data have been received, datanode commits.
• Check whether the buffer is empty. If the buffer is

not empty, go to the first step; otherwise ends the
write process.

We believe that co-locating files based on the
relationship inherent in application-specific knowledge can
be exploited to successfully realize the performance potential
of modern disks’ bandwidth.

Figure 4. Structure of cache

249Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. Write process.

VI. IMPLEMENTATION
This section describes our detailed implementation on

TFS. TFS is the abbreviation of Taobao File System. It is a
distributed file system and is designed to store great amounts
of small images. The average file size is 16.7 kilobytes. Fig.
3 depicts the basic structure of TFS. Like GFS, a TFS cluster
consists of multiple nodes which can be divided into two
types: one nameserver and a large number of dataservers.
Files are organized as blocks which are usually 64
megabytes in size. Dataserver stores blocks while
nameserver maintains the logical mappings of blocks to
dataservers. TFS also makes some optimizations on the
filename to reduce metadata stored on nameserver. For each
file, TFS encodes the id of the block that contains the file to
the file’s filename. So when a client gets the filename, it can
get the id of the block that contains the file by decoding the
filename. Each block is replicated several times throughout
the network.

A read process in TFS goes like this: client sends a read
request to nameserver. Nameserver replys with the
cooresponding location (i.e., the dataserver). The client
contacts the corresponding dataserver. Dataserver replies
with the file’s content.

A write process in TFS goes like this: client sends a write
request to nameserver. Nameserver chooses a dataserver
based on the current workload on every dataserver and replys
with the dataserver. Client sends data to dataserver. After all
data have been received, dataserver commits to nameserver.
Dataserver replys to client that write process completes.

In our file-level cache implemented on datanode, files are
organized as a list. As Fig. 4 shows, each node in the list
represents a file which records the file’s blockid, fileid, file
length, offset in the block and the file’s content. We use a
standard bloom filter in our implementation. Each bit in the
array is set to 0 when service starts. In order to improve our

bloom filter’s accuracy, i.e., to make the false positive [33]
rate as low as possible, we use three hash functions [34].

Fig. 5a shows the writing mechanism of TFS: a random
dataserver is chosen to store the first file in the write request
queue. Fig. 5b shows the writing mechanism in our approach:
files are stored in the buffer and grouped according to which
hypertext document they make up. Then a dataserver will be
allocated for each group of files. Files in the same group will
be written into the same dataserver and the storage
mechanism in dataserver will guarantee that these files will
be placed in adjacent locations on disk. In our
implementation, since file size is relatively small, we believe
that 4 megabytes is enough for the buffer size and our
experiments have proved that this is an appropriate choice.

VII. EVALUATION
This section reports measurements of our implementation

on TFS, which shows that it can dramatically improve the
system’s performance.

Our TFS cluster contains 22 nodes, with 2 of them act as
nameservers and the rest act as dataservers. Each node runs
64-bit ubuntu10.04 and uses an Intel Core 2 Duo E6850
3GHz CPU, 4GB RAM, and a 500GB 7200rpm hard disk.

We use two main data sets for testing. Our synthetic data
set simulates the trace in applications in which files show a
certain clustering effect, which means that each file may
have a strong relationship with several other files. So we can
use this characteristic to co-locate files that have strong
relationships with each other. Files’ average size is 20
kilobytes and total size is 2 terabytes. Our second data set is
a real world data set which comes from our college’s online
teaching system. Teachers use this system to share slides
with students, while students use this system to submit
homework. This system is also used as a communication
platform for students and teachers to discuss with each other.
So a great number of small files are stored in this system.

250Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 6. Read throughput under different numbers of thread.

Figure 7. Throughput improvement of different cache size.

Since the disk throughput is hard to evaluate and is not
suitable for the evaluation of the whole system, we use the
I/O throughput of the whole system, i.e., the read/write
requests complete per second, as our criterion.

Results with synthetic data
Fig. 6 shows the throughput of only read requests under

different thread counts. Co-location improves performance
by 10%-20%. File-level cache improves performance by
17%-35%. Co-location and file-level cache together improve
performance by 20%-49%.

Fig. 8 shows the throughput of read and write requests
together under different thread counts. Read write ratio is
20:1. The performance improvement is nearly the same as
the performance improvement in conditions with only read
requests.

Results with real world data
First, we conduct an experiment with our real world data

set in 2 scenarios: without co-location or file-level cache,
with only file-level cache. Fig. 7 shows the throughput
improvement with varying cache size. When cache size is
smaller than 64 megabytes, throughput increases almost
linearly as cache size increases. But, it increases much
slower after cache size reaches 64 megabytes. Since the file
list gets longer as cache size increases, the searching time
becomes larger.

Figure 8. Throughput under different numbers of thread.

Figure 9. Throughput of different numbers of datanode.

Fig. 9 shows the throughput of the 4 scenarios with
varying numbers of datanode. We can see that averagely co-
location can improve throughput by 20%, file-level cache
can improve throughput by 35%, co-location and file-level
cache together can improve throughput by 50%.

VIII. CONCLUSION AND FUTURE WORK
Distributed storage systems designed for small files are

widely used in large datacenters to power today’s popular
applications specific for small files. Aiming at drawbacks
that exist in these systems, we proposed two optimizations
on datanode in distributed storage systems. By co-locating
related files, we can increase the system’s throughput by
maximally 20%. By implementing a file-level cache on
datanode, we can increase the system’s throughput by
maximally 40%. By implementing the two optimizations
together on datanode, we can increase the system’s
throughput by maximally 50%.

We believe that, for most applications, page information
provides useful information about relationships between files
that can be exploited by grouping. So, in this paper, we
investigate the approach of grouping files that make up a
single hypertext document. Other approaches based on
application-specific knowledge are worth investigating. In

251Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

our implementation, we have provided interfaces to support
other application-specific knowledge.

ACKNOWLEDGMENT
We would like to thank our program committee shepherd

Petre and the anonymous reviewers for their insightful
comments and constructive suggestions. This research is
supported by NSFC 61133005.

REFERENCES
[1] P. Vongsathorn and S. Carson, "A System for Adaptive Disk

Rearrangement", Software – Practice and Experience, Vol. 20, No. 3,
March 1990, pp. 225–242.

[2] C. Ruemmler and J. Wilkes, "Disk Shuffling", Technical Report
HPL-CSP-91-30, Hewlett-Packard Laboratories, October 3, 1991.

[3] "Smart Filesystems", Winter USENIX Conference, 1991, pp. 45–51.
[4] S. J. Mullender and A. S. Tanenbaum, "Immediate Files", Software–

Practice and Experience, 14 (4), April 1984, pp. 365–368.
[5] G. R. Ganger and M. F. Kaashoek, Embedded inodes and explicit

grouping: exploiting disk bandwidth for small files, In ATEC ’97:
Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 1–1, Berkeley, CA, USA, 1997. USENIX
Association.

[6] http://www.taobao.com: June, 2012
[7] Z. Zhang and K. Ghose, hfs: a hybrid file system prototype for

improving small file and metadata performance, SIGOPS Oper. Syst.
Rev., 41(3):175–187, 2007.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
"Dynamo: amazon's highly available key-value store," SIGOPS Oper.
Syst. Rev., vol. 41, pp. 205-220, 2007.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file
system," SIGOPS Oper. Syst. Rev., vol. 37, pp. 29-43, 2003.

[10] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "The Bittorrent P2P
File-Sharing System: Measurements and Analysis" Peer-to-Peer
Systems IV. vol. 3640, M. Castro and R. van Renesse, Eds., ed:
Springer Berlin / Heidelberg, 2005, pp. 205-216.

[11] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, "Finding a
needle in Haystack: facebook's photo storage," presented at the
Proceedings of the 9th USENIX conference on Operating systems
design and implementation, Vancouver, BC, Canada, 2010.

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
"Looking up data in P2P systems," Commun. ACM, vol. 46, pp. 43-48,
2003.

[13] M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law,"
Contemporary Physics, vol. 46, pp. 323-351, 2005/09/01 2005.

[14] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, and J. Stutz,
"Foundations of data envelopment analysis for Pareto-Koopmans
efficient empirical production functions," Journal of Econometrics,
vol. 30, pp. 91-107, 1985.

[15] S. Joseph E, "Self-selection and Pareto efficient taxation," Journal of
Public Economics, vol. 17, pp. 213-240, 1982.

[16] T. M. Tripp and H. Sondak, "An evaluation of dependent variables in
experimental negotiation studies: Impasse rates and pareto
efficiency," Organizational Behavior and Human Decision Processes,
vol. 51, pp. 273-295, 1992.

[17] http://hadoop.apache.org/hdfs/: May, 2012
[18] http://code.google.com/fastdfs/: April, 2012
[19] http://cassandra.apache.org/: June, 2012
[20] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C.

Karamanolis, "Sinfonia: a new paradigm for building scalable
distributed systems," presented at the Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles,
Stevenson, Washington, USA, 2007.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
"PNUTS: Yahoo!'s hosted data serving platform," Proc. VLDB
Endow., vol. 1, pp. 1277-1288, 2008.

[22] J. Dean, "Evolution and future directions of large-scale storage and
computation systems at Google," presented at the Proceedings of the
1st ACM symposium on Cloud computing, Indianapolis, Indiana,
USA, 2010.

[23] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, "Dynamic
Metadata Management for Petabyte-Scale File Systems," presented at
the Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, 2004.

[24] D. Hitz, J. Lau, and M. Malcolm, "File system design for an NFS file
server appliance," presented at the Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994
Technical Conference, San Francisco, California, 1994.

[25] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
"Spyglass: fast, scalable metadata search for large-scale storage
systems," presented at the Proccedings of the 7th conference on File
and storage technologies, San Francisco, California, 2009.

[26] H. C. Lim, S. Babu, and J. S. Chase, "Automated control for elastic
storage," presented at the Proceedings of the 7th international
conference on Autonomic computing, Washington, DC, USA, 2010.

[27] http://code.taobao.org/p/tfs/wiki/index/: May, 2012
[28] L.W. McVoy and S.R. Kleiman, "Extent-like Performance from a

UNIX File System", in Proc. USENIX Winter, 1991, pp.33-44.
[29] A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized

Object Location, and Routing for Large-Scale Peer-to-Peer Systems,"
presented at the Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, 2001.

[30] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, "Ceph: a scalable, high-performance distributed file
system," presented at the Proceedings of the 7th symposium on
Operating systems design and implementation, Seattle, Washington,
2006.

[31] Z. Zhang and K. Ghose, "hFS: a hybrid file system prototype for
improving small file and metadata performance," SIGOPS Oper. Syst.
Rev., vol. 41, pp. 175-187, 2007.

[32] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout, "Measurements of a distributed file system," SIGOPS
Oper. Syst. Rev., vol. 25, pp. 198-212, 1991

[33] http://en.wikipedia.org/wiki/Type_I_and_type_II_errors: June, 2012
[34] http://en.wikipedia.org/wiki/Bloom_filter: June, 2012
[35] http://en.wikipedia.org/wiki/FIFO: June, 2012
[36] http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

 : June, 2012
[37] http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theo

retically_optimal_page_replacement_algorithm: June, 2012

252Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.taobao.com/�
http://hadoop.apache.org/hdfs/�
http://code.google.com/fastdfs/�
http://cassandra.apache.org/�
http://code.taobao.org/p/tfs/wiki/index/�
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors�
http://en.wikipedia.org/wiki/Bloom_filter�
http://en.wikipedia.org/wiki/FIFO�
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used�
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used�
http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theoretically_optimal_page_replacement_algorithm�
http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theoretically_optimal_page_replacement_algorithm�

	I. Introduction
	II. Related work
	III. Preliminary
	IV. File-level cache
	V. Co-locate files based on affinity
	VI. Implementation
	VII. Evaluation
	VIII. Conclusion and future work
	Acknowledgment
	References

