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Abstract—Distributed storage systems designed for small files 
have been developing rapidly, like Facebook’s hayStack, 
Twitter’s Cassandra and so on. But, under our observation, 
there are still some drawbacks in these systems. For example, 
they do not have cache specified for files and have not taken 
the relationship inherent in application-specific knowledge 
between files into consideration. We propose a file-level cache 
on datanode and co-location of affinitive files based on 
application-specific knowledge. We use a synthetic data set and 
a real world trace to evaluate our optimization. The file-level 
cache and co-location of affinitive files together can improve 
system’s throughput by 20%-50%.  

Keywords-distributed storage system; file-level cache; co-
location. 

I.  INTRODUCTION 
Distributed storage systems have been widely used in 

large datacenters. These systems are designed to provide 
efficient, reliable access of data using clusters of commodity 
hardware [22]. So far, applications specified for small files 
have been increasing rapidly. For example, micro blogging, 
facebook, twitter, and so on. These applications generate 
enormous amounts of small files to store in the storage 
systems. For example, Facebook have stored over 260 billion 
images and more than 20 petabytes of data so far [11]. Many 
systems have been developed to support these applications, 
like fastDFS [18], Facebook’s Haystack [11], and so on. 

Under our observation, these systems are not perfect. As 
we know, most distributed systems are deployed as 
userspace libraries on large clusters of commodity machines. 
Each node in the cluster has local operating system and file 
system. Local system will load popular data into its cache. 
Usually cache unit is block. But in systems specific for small 
files, block may not be an appropriate choice as for the cache 
unit. Since a block may contain many files and quite often 
only a small part of them are frequently accessed. In fact, 
cache space has not been made fully use of. In distributed 
storage systems, files are usually randomly distributed in the 
whole system for load balancing. Little attention has been 
paid on file’s inner relationship when files are written into 
disk. In web applications, when an image file is accessed, the 

images that make up the same hypertext document will also 
be accessed. The relationship between these related files 
have not been made use of. 

In order to avoid these two drawbacks, we have proposed 
two optimizations on datanode: first, we build up a file-level 
cache which can make full use of the cache space. Second, 
we propose co-location of related files that store related files 
close to each other on disk which can take advantage of the 
disk technology trend that is toward improved sequential 
bandwidth [28]. In our evaluation, we find that with only 
file-level cache, we can improve the system’s throughput by 
maximally 40%. With only co-location of related files, we 
can improve the throughput by maximally 20%. With both 
file-level cache and co-location of related files, we can 
improve the throughput by maximally 50%. 

The rest of this article is organized as follows: Section 2 
reviews the related works. Section 3 provides detailed 
motivation for our optimization. Section 4 describes our file-
level cache in detail and Section 5 explains our co-location 
strategy of related files in detail. Section 6 describes our 
implementation on TFS [27]. We evaluate our optimization 
in Section 7 and draw a conclusion in Section 8. 

II. RELATED WORK 
With the rapid development of data-intensive 

applications, traditional file systems could no longer meet 
the demand for mass data storage. Many distributed storage 
systems have been developed to support applications with 
enormous amounts of data. For example, Amazon has 
designed Dynamo [8] to power parts of Amazon Web 
Services. Google has developed GFS [9] for its core data 
storage and usage needs. 

Some peer-to-peer (P2P) systems have also looked at the 
problem of data storage and distribution [10, 12]. But, they 
are generally used as file sharing systems. Distributing data 
for performance, availability and durability has been widely 
studied in the file system and database system community. 
Compared with P2P storage systems that only support flat 
namespaces [29], distributed file systems typically support 
hierarchical namespaces [8, 24, 25, 26]. 
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Figure 1.  Cache organized in the unit of block 

Studies of distributed file systems specified for small 
files have become a key component of storage systems 
research as applications specific for small files like images 
and micro bloggings have been increasing rapidly [21, 31, 
32]. FastDFS is designed to meet the requirement of the 
website whose service based on files such as photo sharing 
site and video sharing site. Facebook has designed Haystack 
to serve its Photos application where data is written once, 
read often, never modified, and rarely deleted. 

To increase the efficiency of the enormous small disk 
requests that characterize accesses to small files, much work 
have been done on the disk layout of small files. Localizing 
logically related objects is the choice of many file systems. 
Some researchers have investigated the value of breaking file 
system’s disk storage into cylinders and moving the most 
popular data to the centermost cylinders in order to reduce 
disk seek distances [1, 2, 3]. From the same perspective of 
reducing disk seek distances, immediate files, an idea 
proposed by [4], moves inode to the first block of the file. 
This approach puts inodes together with their file data, which 
can improve the performance of read operations that read file 
data. Several other works [4, 5, 7] have proposed how to 
group related files together intelligently. 

III. PRELIMINARY 
Modern distributed file systems’ topology can usually be 

divided into two kinds: master-slave structure and ring 
structure. Systems like GFS, HDFS [17], fastDFS usually 
organize machines in master-slave structure. In these systems 
there are two types of machines: one namenode with a large 
number of datanodes. Namenode handles metadata while 
datanode handles real data. This structure frees namenode 
from the data flow, so it can significantly reduce workload 
on namenode. Systems of the ring structure are often 
decentralized systems. There is no masternode, which only 
deals with metadata, in these systems. All machines act as 
the same role. All nodes can be called datanodes. 

The growth and diffusion of applications specific for 
small files have led to systems that support efficient, secure 
and durable access of small files. Systems of the ring 
structure, like Dynamo and Cassandra [19], are intended to 
store relatively small objects. In systems of the master-slave 
structure, TFS is developed by Taobao [6] to store its 
enormous amounts of online commodity images. 

 
Figure 2.  Cache organized in the unit of file 

As one part of the whole system, datanode plays a very 
important role. But so far there is hardly any optimization 
specified for datanode. 

As we know, most distributed storage systems are not 
implemented in the kernel of operating systems, but are 
instead provided as userspace libraries, which means that 
they are all based on local file systems [20]. In systems that 
store small files, local file systems can hardly have any sense 
of single files; so they usually organize cache in the unit of 
block. Studies show that in most web service applications the 
file access pattern applies the Pareto principle, which means 
that only a small part of all files are frequently accessed 
while most files are rarely accessed [13, 14, 15, 16]. Since 
files are evenly distributed in the whole system, it is still true 
that of all the files that consist a block, only a small part are 
frequently accessed while others are rarely accessed. This 
strategy may result in low efficiency of cache and the waste 
of cache space. 

Fig. 1 illustrates the case how cache space is wasted. 
Darker files are more frequently accessed while lighter files 
are less frequently accessed. When one block is loaded into 
cache as some popular files in it are accessed, files in the 
same block that are rarely accessed will also be loaded into 
cache. It stands a good chance that those unpopular files will 
have never been accessed before this block is replaced by 
other blocks. Cache space occupied by those unpopular files 
is wasted. 

Modern distributed systems usually distribute files 
randomly for load balancing [30]. But this has not taken the 
logical relationship of files into consideration. In most cases, 
files can be partitioned into small groups based on 
application-specific knowledge. Files in the same group are 
closely related with each other that if one file is accessed 
most probably the others will be accessed too. For example, 
in online business like Amazon, all images stored in the 
system can be partitioned based on the commodities they 
describe. Once a commodity is skimmed by some customer, 
all images that describe this commodity will be accessed. 

IV. FILE-LEVEL CACHE 
Since cache space in datanode has not been fully made 

use of and much of it has been wasted. In order to make 
better use of cache space, we proposed a file-level cache on 
datanode. Fig. 2 illustrates the basic idea of our file-level 

248Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization



cache. We organize cache in the unit of single files rather 
than blocks. Each time we load a single file into cache rather 
than a block. 

Studies of cache replacement strategy have been a topic 
for many years. Many replacement algorithms have been 
proposed, such as FIFO [35], LRU [36], OPT [37] and so on. 
FIFO is too simple to make the most of cache while OPT is 
just an ideal model, which has not been put into practice. The 
LRU strategy discards the least recently used items when 
new items need to be loaded into cache. This strategy fits our 
applications well so we choose LRU as our replacement 
strategy. Since files are not in the same size, we organize 
files in the cache as a list. As enormous accesses to small 
files may generate great amounts of cache misses while all 
these cache misses would search the entire list, which results 
in great amounts of searching time. In order to avoid these 
unnecessary searches of the list generated by cache misses, 
we introduce a bloom filter. 

For an incoming read request, our algorithm does the 
following: 

• Check the bloom filter to see whether this file is in 
the cache. If the bloom filter indicates that it is not in 
the cache, load this file from disk and add a node 
that represents this file to the head of the list. Reply 
with the data loaded from disk. 

• If bloom filter indicates that this file may be in the 
cache, search the list to see whether this file is in the 
cache. 

• If it is in the cache, move the node that represents 
this file to the head of the list and reply with data in 
the cache. 

• If it is not in the cache, load this file from disk and 
add a node that represents this file to the head of the 
list. Reply with the data loaded from disk. 

Each time we load a new file into the cache, if the total 
size of all the data in the cache is larger than the cache size, 
we recursively remove the node in the tail until the total size 
is smaller than the cache size. 

Compared with the time of loading files from disk, the 
time of searching file-level cache can be ignored. With 
bloom filter avoiding most of the unnecessary searches of 
cache. We believe that our file-level cache can greatly reduce 
the overall file access time. 

 
Figure 3.  Stucture of TFS. 

V. CO-LOCATE FILES BASED ON AFFINITY 
We borrowed a concept of affinity to describe the inner 

relationship between files based on application-specific 
knowledge. We say several files are affinitive in case that if 
one of them is accessed, the rest are very likely to be 
accessed. As modern disk technology trend is toward 
improved sequential bandwidth. To better exploit bulk data 
bandwidth and avoid frequent reposition to new locations, 
we use co-location to place affinitive files at adjacent disk 
locations. 

In modern distributed storage systems, a write process 
usually consists of the following steps: 

• System randomly chooses a datanode based on the 
current workload on every datanode. 

• Client contacts and sends data to the chosen 
datanode directly. 

• After all data have been received, datanode commits. 
Each write request goes through the entire write process. 

Since datanode is chosen randomly, files are distributed 
randomly in the whole system. 

In order to co-locate affinitive files, we do not write disk 
for single write request, instead we collect files in a buffer 
and write them to disk in batches. Each time the client 
receives a write request, it puts the file in the buffer. Files in 
the buffer are divided into groups based on application-
specific knowledge. When buffer is full or a time limit is met, 
system begins the write process. 

In our approach, we have made some modifications to 
modern write process to achieve co-location of affinitive 
files. The write process consists of the following steps: 

• System randomly chooses a datanode for the first 
group of files in the buffer based on current 
workload on every datanode. 

• Client contacts and sends data of files in the first 
group to the chosen datanode directly. 

• After all data have been received, datanode commits. 
• Check whether the buffer is empty. If the buffer is 

not empty, go to the first step; otherwise ends the 
write process. 

We believe that co-locating files based on the 
relationship inherent in application-specific knowledge can 
be exploited to successfully realize the performance potential 
of modern disks’ bandwidth. 
 

 
Figure 4.  Structure of cache 
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Figure 5.  Write process. 

VI. IMPLEMENTATION 
This section describes our detailed implementation on 

TFS. TFS is the abbreviation of Taobao File System. It is a 
distributed file system and is designed to store great amounts 
of small images. The average file size is 16.7 kilobytes. Fig. 
3 depicts the basic structure of TFS. Like GFS, a TFS cluster 
consists of multiple nodes which can be divided into two 
types: one nameserver and a large number of dataservers. 
Files are organized as blocks which are usually 64 
megabytes in size. Dataserver stores blocks while 
nameserver maintains the logical mappings of blocks to 
dataservers. TFS also makes some optimizations on the 
filename to reduce metadata stored on nameserver. For each 
file, TFS encodes the id of the block that contains the file to 
the file’s filename. So when a client gets the filename, it can 
get the id of the block that contains the file by decoding the 
filename. Each block is replicated several times throughout 
the network. 

A read process in TFS goes like this: client sends a read 
request to nameserver. Nameserver replys with the 
cooresponding location (i.e., the dataserver). The client 
contacts the corresponding dataserver. Dataserver replies 
with the file’s content. 

A write process in TFS goes like this: client sends a write 
request to nameserver. Nameserver chooses a dataserver 
based on the current workload on every dataserver and replys 
with the dataserver. Client sends data to dataserver. After all 
data have been received, dataserver commits to nameserver. 
Dataserver replys to client that write process completes. 

In our file-level cache implemented on datanode, files are 
organized as a list. As Fig. 4 shows, each node in the list 
represents a file which records the file’s blockid, fileid, file 
length, offset in the block and the file’s content. We use a 
standard bloom filter in our implementation. Each bit in the 
array is set to 0 when service starts. In order to improve our 

bloom filter’s accuracy, i.e., to make the false positive [33] 
rate as low as possible, we use three hash functions [34]. 

Fig. 5a shows the writing mechanism of TFS: a random 
dataserver is chosen to store the first file in the write request 
queue. Fig. 5b shows the writing mechanism in our approach: 
files are stored in the buffer and grouped according to which 
hypertext document they make up. Then a dataserver will be 
allocated for each group of files. Files in the same group will 
be written into the same dataserver and the storage 
mechanism in dataserver will guarantee that these files will 
be placed in adjacent locations on disk. In our 
implementation, since file size is relatively small, we believe 
that 4 megabytes is enough for the buffer size and our 
experiments have proved that this is an appropriate choice. 

VII. EVALUATION 
This section reports measurements of our implementation 

on TFS, which shows that it can dramatically improve the 
system’s performance. 

Our TFS cluster contains 22 nodes, with 2 of them act as 
nameservers and the rest act as dataservers. Each node runs 
64-bit ubuntu10.04 and uses an Intel Core 2 Duo E6850 
3GHz CPU, 4GB RAM, and a 500GB 7200rpm hard disk. 

We use two main data sets for testing. Our synthetic data 
set simulates the trace in applications in which files show a 
certain clustering effect, which means that each file may 
have a strong relationship with several other files. So we can 
use this characteristic to co-locate files that have strong 
relationships with each other. Files’ average size is 20 
kilobytes and total size is 2 terabytes. Our second data set is 
a real world data set which comes from our college’s online 
teaching system. Teachers use this system to share slides 
with students, while students use this system to submit 
homework. This system is also used as a communication 
platform for students and teachers to discuss with each other. 
So a great number of small files are stored in this system. 
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Figure 6.  Read throughput under different numbers of thread. 

 
Figure 7.  Throughput improvement of different cache size. 

Since the disk throughput is hard to evaluate and is not 
suitable for the evaluation of the whole system, we use the 
I/O throughput of the whole system, i.e., the read/write 
requests complete per second, as our criterion. 

Results with synthetic data 
Fig. 6 shows the throughput of only read requests under 

different thread counts. Co-location improves performance 
by 10%-20%. File-level cache improves performance by 
17%-35%. Co-location and file-level cache together improve 
performance by 20%-49%. 

Fig. 8 shows the throughput of read and write requests 
together under different thread counts. Read write ratio is 
20:1. The performance improvement is nearly the same as 
the performance improvement in conditions with only read 
requests. 

Results with real world data 
First, we conduct an experiment with our real world data 

set in 2 scenarios: without co-location or file-level cache, 
with only file-level cache. Fig. 7 shows the throughput 
improvement with varying cache size. When cache size is 
smaller than 64 megabytes, throughput increases almost 
linearly as cache size increases. But, it increases much 
slower after cache size reaches 64 megabytes. Since the file 
list gets longer as cache size increases, the searching time 
becomes larger. 

 
Figure 8.  Throughput under different numbers of thread. 

 
Figure 9.  Throughput of different numbers of datanode. 

Fig. 9 shows the throughput of the 4 scenarios with 
varying numbers of datanode. We can see that averagely co-
location can improve throughput by 20%, file-level cache 
can improve throughput by 35%, co-location and file-level 
cache together can improve throughput by 50%. 

VIII. CONCLUSION AND FUTURE WORK 
Distributed storage systems designed for small files are 

widely used in large datacenters to power today’s popular 
applications specific for small files. Aiming at drawbacks 
that exist in these systems, we proposed two optimizations 
on datanode in distributed storage systems. By co-locating 
related files, we can increase the system’s throughput by 
maximally 20%. By implementing a file-level cache on 
datanode, we can increase the system’s throughput by 
maximally 40%. By implementing the two optimizations 
together on datanode, we can increase the system’s 
throughput by maximally 50%. 

We believe that, for most applications, page information 
provides useful information about relationships between files 
that can be exploited by grouping. So, in this paper, we 
investigate the approach of grouping files that make up a 
single hypertext document. Other approaches based on 
application-specific knowledge are worth investigating. In 
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our implementation, we have provided interfaces to support 
other application-specific knowledge. 

ACKNOWLEDGMENT 
We would like to thank our program committee shepherd 

Petre and the anonymous reviewers for their insightful 
comments and constructive suggestions. This research is 
supported by NSFC 61133005. 

REFERENCES 
[1] P. Vongsathorn and S. Carson, "A System for Adaptive Disk 

Rearrangement", Software – Practice and Experience, Vol. 20, No. 3, 
March 1990, pp. 225–242. 

[2] C. Ruemmler and J. Wilkes, "Disk Shuffling", Technical Report 
HPL-CSP-91-30, Hewlett-Packard Laboratories, October 3, 1991. 

[3] "Smart Filesystems", Winter USENIX Conference, 1991, pp. 45–51. 
[4] S. J. Mullender and A. S. Tanenbaum, "Immediate Files", Software–

Practice and Experience, 14 (4), April 1984, pp. 365–368. 
[5] G. R. Ganger and M. F. Kaashoek, Embedded inodes and explicit 

grouping: exploiting disk bandwidth for small files, In ATEC ’97: 
Proceedings of the annual conference on USENIX Annual Technical 
Conference, pages 1–1, Berkeley, CA, USA, 1997. USENIX 
Association. 

[6] http://www.taobao.com: June, 2012 
[7] Z. Zhang and K. Ghose, hfs: a hybrid file system prototype for 

improving small file and metadata performance, SIGOPS Oper. Syst. 
Rev., 41(3):175–187, 2007.  

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, 
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, 
"Dynamo: amazon's highly available key-value store," SIGOPS Oper. 
Syst. Rev., vol. 41, pp. 205-220, 2007. 

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file 
system," SIGOPS Oper. Syst. Rev., vol. 37, pp. 29-43, 2003. 

[10] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "The Bittorrent P2P 
File-Sharing System: Measurements and Analysis" Peer-to-Peer 
Systems IV. vol. 3640, M. Castro and R. van Renesse, Eds., ed: 
Springer Berlin / Heidelberg, 2005, pp. 205-216. 

[11] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, "Finding a 
needle in Haystack: facebook's photo storage," presented at the 
Proceedings of the 9th USENIX conference on Operating systems 
design and implementation, Vancouver, BC, Canada, 2010. 

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, 
"Looking up data in P2P systems," Commun. ACM, vol. 46, pp. 43-48, 
2003. 

[13] M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law," 
Contemporary Physics, vol. 46, pp. 323-351, 2005/09/01 2005. 

[14] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, and J. Stutz, 
"Foundations of data envelopment analysis for Pareto-Koopmans 
efficient empirical production functions," Journal of Econometrics, 
vol. 30, pp. 91-107, 1985. 

[15] S. Joseph E, "Self-selection and Pareto efficient taxation," Journal of 
Public Economics, vol. 17, pp. 213-240, 1982. 

[16] T. M. Tripp and H. Sondak, "An evaluation of dependent variables in 
experimental negotiation studies: Impasse rates and pareto 
efficiency," Organizational Behavior and Human Decision Processes, 
vol. 51, pp. 273-295, 1992. 

[17] http://hadoop.apache.org/hdfs/: May, 2012 
[18] http://code.google.com/fastdfs/: April, 2012 
[19] http://cassandra.apache.org/: June, 2012 
[20] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. 

Karamanolis, "Sinfonia: a new paradigm for building scalable 
distributed systems," presented at the Proceedings of twenty-first 
ACM SIGOPS symposium on Operating systems principles, 
Stevenson, Washington, USA, 2007. 

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. 
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, 
"PNUTS: Yahoo!'s hosted data serving platform," Proc. VLDB 
Endow., vol. 1, pp. 1277-1288, 2008. 

[22] J. Dean, "Evolution and future directions of large-scale storage and 
computation systems at Google," presented at the Proceedings of the 
1st ACM symposium on Cloud computing, Indianapolis, Indiana, 
USA, 2010. 

[23] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, "Dynamic 
Metadata Management for Petabyte-Scale File Systems," presented at 
the Proceedings of the 2004 ACM/IEEE conference on 
Supercomputing, 2004. 

[24] D. Hitz, J. Lau, and M. Malcolm, "File system design for an NFS file 
server appliance," presented at the Proceedings of the USENIX 
Winter 1994 Technical Conference on USENIX Winter 1994 
Technical Conference, San Francisco, California, 1994. 

[25] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller, 
"Spyglass: fast, scalable metadata search for large-scale storage 
systems," presented at the Proccedings of the 7th conference on File 
and storage technologies, San Francisco, California, 2009. 

[26] H. C. Lim, S. Babu, and J. S. Chase, "Automated control for elastic 
storage," presented at the Proceedings of the 7th international 
conference on Autonomic computing, Washington, DC, USA, 2010. 

[27] http://code.taobao.org/p/tfs/wiki/index/: May, 2012 
[28] L.W. McVoy and S.R. Kleiman,  "Extent-like Performance from a 

UNIX File System",  in Proc. USENIX Winter, 1991, pp.33-44. 
[29] A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized 

Object Location, and Routing for Large-Scale Peer-to-Peer Systems," 
presented at the Proceedings of the IFIP/ACM International 
Conference on Distributed Systems Platforms Heidelberg, 2001. 

[30] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. 
Maltzahn, "Ceph: a scalable, high-performance distributed file 
system," presented at the Proceedings of the 7th symposium on 
Operating systems design and implementation, Seattle, Washington, 
2006. 

[31] Z. Zhang and K. Ghose, "hFS: a hybrid file system prototype for 
improving small file and metadata performance," SIGOPS Oper. Syst. 
Rev., vol. 41, pp. 175-187, 2007. 

[32] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. 
Ousterhout, "Measurements of a distributed file system," SIGOPS 
Oper. Syst. Rev., vol. 25, pp. 198-212, 1991 

[33] http://en.wikipedia.org/wiki/Type_I_and_type_II_errors: June, 2012 
[34] http://en.wikipedia.org/wiki/Bloom_filter: June, 2012 
[35] http://en.wikipedia.org/wiki/FIFO: June, 2012 
[36] http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

 : June, 2012 
[37] http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theo

retically_optimal_page_replacement_algorithm: June, 2012 

252Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.taobao.com/�
http://hadoop.apache.org/hdfs/�
http://code.google.com/fastdfs/�
http://cassandra.apache.org/�
http://code.taobao.org/p/tfs/wiki/index/�
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors�
http://en.wikipedia.org/wiki/Bloom_filter�
http://en.wikipedia.org/wiki/FIFO�
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used�
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used�
http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theoretically_optimal_page_replacement_algorithm�
http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theoretically_optimal_page_replacement_algorithm�

	I.  Introduction
	II. Related work
	III. Preliminary
	IV. File-level cache
	V. Co-locate files based on affinity
	VI. Implementation
	VII. Evaluation
	VIII. Conclusion and future work
	Acknowledgment
	References


