
A Security Architecture for Cloud Storage
Combining Proofs of Retrievability and Fairness

Aiiad Albeshri∗†, Colin Boyd∗ and Juan Gonzalez Nieto∗
∗Information Security Institute, Queensland University of Technology, Brisbane, Australia.

{c.boyd, j.gonzaleznieto}@qut.edu.au, a.albeshri@student.qut.edu.au
†Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—We investigate existing cloud storage schemes and
identify limitations in each one based on the security services that
they provide. We then propose a new cloud storage architecture
that extends CloudProof of Popa et al. to provide availability
assurance. This is accomplished by incorporating a proof of
storage protocol. As a result, we obtain the first secure storage
cloud computing scheme that furnishes all three properties of
availability, fairness and freshness.

Keywords- Cloud Computing; Cloud Storage; Cloud Secu-
rity.

I. INTRODUCTION

Cloud computing is essentially a large-scale distributed and
virtual machine computing infrastructure. This new paradigm
delivers a large pool of virtual and dynamically scalable
resources, including computational power, storage, hardware
platforms and applications, which are made available via
Internet technologies. There are many advantages for private
and public organisations that decide to migrate all or some of
their information services to the cloud computing environment.
Examples of these benefits include increased flexibility and
budgetary savings through minimisation of hardware and soft-
ware investments [7], [8], [15]. However, while the benefits of
adopting cloud computing are clear, there are also associated
critical security and privacy risks that result from placing data
off-premises. Indeed, it has been observed that data owners
who outsource their data to the cloud also tend to outsource
control over their data [8].

Consumers have the option to trade the privacy of their
data for the convenience of software services (e.g., web based
email and calendars). However, this is generally not applicable
in the case of government organisations and commercial
enterprises [15]. Such organisations will not consider cloud
computing as a viable solution for their ICT needs, unless
they can be assured that their data will be protected at least
to the same degree that in-house computing offers currently.
Yet, none of today’s storage service providers in the cloud
(e.g., Amazon Simple Storage Service (S3) [2] and Google’s
BigTable [12]) guarantee any security in their service level
agreements. Moreover, there have been already security breach
incidents in cloud based services, such as the corruption of
Amazon S3, due to an internal failure caused by mismatching
files with customers’ hashes [1].

This paper focuses on designing a secure storage archi-
tecture for cloud computing. As discussed below, important

security requirements that a cloud storage architecture should
satisfy are confidentiality, integrity, availability, fairness (or
non-repudiation) and data freshness. Examination of the lit-
erature shows that there is no single complete proposal that
provides assurance for all of these security properties. Also,
some existing secure cloud storage schemes are designed only
for static/archival data and are not suitable for dynamic data.

Proof of storage (POS) protocols are a key component in
most secure cloud storage proposals in the literature. A POS is
an interactive cryptographic protocol that is executed between
clients and storage providers in order to prove to the clients
that their data has not been modified or (partially) deleted
by the providers [15]. The POS protocol will be executed
every time a client wants to verify the integrity of the stored
data. A key property of POS protocols is that the size of the
information exchanged between client and server is very small
and may even be independent of the size of stored data [8].

We investigated different types of existing cloud storage
schemes and identified limitations in each one of them based
on the security services that they provide. We identified
a scheme by Popa et al. [18], called CloudProof, as one
satisfying the majority of the security requirements. However,
it does not provide assurance on data availability, i.e., it does
not guarantee that the entire data is indeed stored by the cloud
provider. Our goal then is to provide a cloud storage architec-
ture that extends CloudProof in order to provide availability
assurance, by incorporating a proof of storage protocol.

The rest of this paper is organised as follows: the second
section elucidates the set of security properties that a secure
cloud storage application must fulfill; the third section pro-
vides an analysis of existing secure cloud storage proposals
from the literature; the fourth section introduces the proposed
architecture; finally, in the fifth section, the paper draws some
conclusions and points at future work.

II. SECURITY REQUIREMENTS

We consider a cloud storage scenario where there are four
kinds of parties involved: the data owner, the cloud provider,
clients and an optional third party auditor (TPA). The data
owner pays for the cloud storage service and sets the access
control policies. The cloud provider offers the data storage
service for a fee. Clients request and use the data from the
cloud. In the cloud environment we assume that there is no
mutual trust between parties. Thus, several security properties

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

need to be assured when storing the data in the cloud, as
discussed in many related works (e.g., [16], [22]).

a) Data Confidentiality: ensures that only authorised
clients with the appropriate rights and privileges can access
the stored information. The most effective way to ensure the
confidentiality of the client’s data is by using encryption,
even though the cloud provider may still be able to predict
some information based on monitoring the access patterns of
clients [18]. Most existing secure storage proposals provide
data confidentiality by allowing clients to encrypt their data
before sending it to the cloud. However, critical issues such
as key management may be problematic, especially when we
have a multiple user scenario.

b) Data Integrity: ensures that the stored data has not
been inappropriately modified (whether accidentally or delib-
erately). Data integrity becomes more challenging when adopt-
ing cloud computing where cloud customers outsource their
data and have no (or very limited) control over their stored
data from being modified by the storage service provider.
Thus, cloud customers are aiming to detect any unauthorized
modification of their data by the cloud storage provider.

c) Data Availability: ensures that users are able to obtain
their data from the cloud provider when they need it. Cloud
customers want to be sure that their data is always available
at the cloud storage. To this end, a number of proof of storage
protocols have been devised that allow the cloud provider
to prove to clients that their entire data is being stored,
which implies that the data has not been deleted or modified.
Section III discusses some of these schemes.

d) Public Verifiability: means that service providers al-
low a TPA to perform periodical availability verifications on
behalf of their customers. In cloud computing environments,
customers may need to allow a TPA to verify the integrity
of the dynamic data stored in the cloud storage [21]. Public
verifiability allows the cloud customers (or their TPA) to chal-
lenge the cloud server for correctness of stored data. In fact,
security requirements can be inter-related. For instance, when
a TPA is delegated to perform verification, the confidentiality
may be compromised. However, this issue could be resolved
by utilising a verification protocol that allows TPA to verify
without knowing the stored data [21].

e) Freshness: ensures that the retrieved data is fresh, i.e.,
it contains the last updates to the data. This is very important in
shared and dynamic environments where multiple clients may
simultaneously update data. Cloud customers need to ensure
that the retrieved data is the latest version. To the best of our
knowledge, CloudProof [18] is the only cloud storage scheme
that addresses freshness.

f) Fairness: or non-repudiation ensures that a dishonest
party cannot accuse an honest party of manipulating its data
[24]. If a dispute arises between a client and storage provider
regarding whether the correct data is stored then it may be nec-
essary to invoke a judge to decide who is right. Fairness will
typically be implemented by using digital signatures. Clients
may want to have a signature from the provider acknowledging
what data is stored. Providers may want signatures from clients
whenever the stored data is altered, with deletion being an
important special case.

III. PROOF OF STORAGE SCHEMES (POS)

Cloud storage schemes can be categorised into two types,
static and dynamic. In static schemes, clients store their data
and never change or update it. In dynamic schemes clients can
update the stored data. In the following two subsections, we
review existing proposals for POS protocols. Table I lists the
schemes reviewed and indicates the security requirements that
are satisfied by them. The entry with the dagger (†) indicates
that the property is only partially satisfied. It can be seen
that no single proposal encompasses all security requirements
identified in Section II. The security requirements in the table
are Confidentiality (C), Integrity (I), Availability (A), Public
Verifiability (PV), Freshness (Fr) and Fairness (Fa).

Table I
OVERVIEW OF THE PROMINENT PROOF OF STORAGE (POS) SCHEMES.

POS Scheme C I A PV Fr Fa Type

Proof of
Retrievability (POR)
[13]

! ! ! ! % % Static

Provable Data
Possession (PDP)[3]

! ! ! ! % % Static

Compact POR [19] ! ! ! ! % % Static
Tahoe [23] ! ! % % % % Static
HAIL [5] % % ! ! % % Static
POR (experimental
test) [6]

! ! ! ! % % Static

Framework for POR
protocols [9]

! ! ! ! % % Static

POS from HIP [4] ! ! ! ! % % Static
DPDP [10] ! ! ! % % % Dynamic
POR with public
verifiability [21]

! ! ! ! % % Dynamic

Depot [17] % ! ! ! % % Dynamic
Wang et al. [20] % ! ! ! % % Dynamic
CloudProof [18] ! ! % ! ! ! Dynamic
Fair and Dynamic
POR [24]

! ! ! % % %† Dynamic

A. POS for Static Data

There are several POS schemes that support storage of static
data. Juels and Kaliski [13] introduced proof of retrievability
(POR). In POR the Encode algorithm firstly encrypts all
the data. Additionally, a number of random-valued blocks
(sentinels) are inserted at randomly chosen positions within the
encrypted data. Finally, an error correction code is applied to
the resulting new data. Clients challenge the service provider
by identifying the positions of a subset of sentinels and
asking the service provider to retrieve the requested values.
The VerifyProof process works because, with high probability,
if the service provider modifies any portions of the data,
the modification will include some of the sentinels and will
therefore be detected. If the damage is so small that it does
not affect any sentinel, then it can be reversed using error
correction.

POR [13] only allows a limited number of executions of
the Challenge algorithm (for the whole data). The verification
capability of POR is limited by the number of precomputed
sentinels embedded into the encoded file. This is improved by

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

the scheme of Shacham and Waters [19], which enables an
unlimited number of queries and requires less communication
overhead. In this scheme, in addition to encoding each file
block, the client appends a special type of authenticator to
each block. The encoded blocks and authenticators are stored
on the server. The verifier challenges the service provider by
sending a set of randomly selected block indexes. The response
from the service provider is a compact proof that combines the
challenge blocks and authenticators and which can be validated
very efficiently by the verifier. Likewise, Bowers et al. [6],
Ateniese et al. [4] and Dodis et al. [9] provided POR schemes
which provide probabilistic assurance that a remotely stored
file remains intact.

Table I lists other prominent POS examples. All POS
schemes mentioned above were designed to deal with static or
archival data only and are not suitable for dynamic environ-
ments. The efficiency of these schemes is mainly based on the
preprocessing of the data before sending it to remote storage.
Any modification to the data requires re-encoding the whole
data file, so it has associated a significant computation and
communication overhead.

B. POS for Dynamic Data
It is natural that clients may want to update their files

while they are in storage without having to resubmit the
whole data set to the server. Therefore, it is desirable to offer
an option to update files in such a way that the proof of
storage for the whole data still applies. POS for dynamic
data is more challenging than static data. There are several
dynamic POS schemes. Erway et al. [10] introduced what
they called “Dynamic Provable Data Possession” or DPDP,
which extends the static PDP [3]. Their approach uses a
variant of authenticated dictionaries, which allows insertion
and deletion of blocks within the data structure. A limitation
of DPDP is that it does not allow for public verifiability of the
stored data; in addition it does not consider data freshness or
fairness. Wang et al. [21] improve on DPDP by adding public
verifiability, thus allowing a TPA to verify the integrity of the
dynamic data storage. Now the authenticated data structure
employed is the classic Merkle Hash Tree (MHT). Still, data
freshness and fairness are not considered.

Popa et al. [18] introduced CloudProof, which provides
fairness by allowing customers to detect and prove cloud
misbehaviour. This is achieved by means of digitally signed
attestations. Each request and response for reading (get) and
writing (put) data is associated with an attestation. This
attestation will be used as proof of any misbehaviour from both
sides. CloudProof [18] is the only POS scheme that provides
assurance of data freshness by using hash chains. For each put
and get attestation, the hash chain is computed over the hash
of the data in the current attestation and the hash value of the
previous attestation. More details are provided in Section IV.

In addition, CloudProof emphasises the importance of "fair-
ness". If the cloud misbehaves, for example it deletes some
user blocks, then the owner has the ability to prove to a judge
that the cloud was at fault. At the same time, if the owner
claims falsely that a file was deleted, the cloud can prove to
the judge that the owner asked for this to be done.

It should be noted that fairness in CloudProof does not
extend to the meaning normally expected in protocols for fair
exchange. In particular, Feng et al. [11] have pointed out that a
provider could omit sending its signature once it has received
the signature of the client on an update. Consequently the
provider has an “advantage” in the sense that it can prove to a
judge that the client asked for an update but the client cannot
provide any evidence that the provider received the update
request. Arguably this advantage has limited consequences
because the client can retain the update details pending the
receipt of the provider’s signature. If the provider does not
send the signature then this is inconvenient for the client but
he can recover from it; meanwhile, the client can seek other
remedies. In any case, ensuring fairness in the stronger sense
that neither party ever gets an advantage can only be achieved
in general using an online trusted third party which is likely
to be too costly to justify.

Zheng and Xu [24] have a rather different definition of
fairness for their dynamic scheme. They require only that
clients are not able to find two different files which both
will satisfy the update protocol. The idea is that a malicious
client can then produce a different file from that which the
server can produce and claim that the server altered the file
without authority. Zheng and Xu do not require that the update
protocol outputs a publicly verifiable signature so a judge can
only verify this fact by interacting with the client using public
information. In addition, they do not consider the situation
where a server does maliciously alter the file - for example
deletes it. In this case, the client may no longer have anything
to input to the verification equation.

In fact, the security model for CloudProof is quite weak.
Auditing is only done on a probabilistic basis to save on
processing. The data owner (or TPA) assigns to each block
some probability of being audited, so an audit need not check
every block. Thus, for parts that are rarely touched by users,
this means that it could be a long time before it is noticed
if something has been deleted. Whether or not a block will
be audited is known to any user who has access to it, but
is hidden from the cloud. Blocks which are not audited can
be changed at will (or deleted) by the cloud. Popa et al. [18]
state that “We do not try to prevent against users informing the
cloud of when a block should be audited (and thus, the cloud
misbehaves only when a block is not to be audited)”. This
seems too optimistic - if even a single user can be corrupted
by the cloud, then the cloud can delete all the blocks to which
that user has access without any chance of detection. it is clear
therefore that CloudProof does not provide the availability
assurance. However, as seen in Table I, it is the scheme that
provides the most security services. In the next section, we
extend CloudProof to provide availability of the whole stored
data. We do so by combining CloudProof with the dynamic
POR of Wang et al. [21].

IV. PROPOSED ARCHITECTURE

We now describe a new architecture which combines the
idea of CloudProof [18] and Dynamic Proofs Of Retrievability
(DPOR) [21] as it provides data availability for dynamic data
along with must of other security requirements. The proposed

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Data

Data

Data

Cloud

Storage

Servers

Cloud Service Provider

Clients

Data Owner

1 .
1
F i
, Φ

i
, K

e y
Bl
oc
k
Ta
bl
e ,

s i
g(
ro
ot
)

2.1. Request: get (i, Nonce)

2.2. Response: E(mi) + Cloudget Att + chain hash

3.2. Request: put { “update = type + Ek(m’i) +

i + σ’ I ” + ClientputAtt }

2.3. VERIFY σi & CloudgetAtt

3.1PrepareUpdate→ m’i

3.5 VerifyUpdate(pk,

update, Pupdate) + VERIFY

CloudputAtt

Client store all Cloud

get/put att. until end of

epoch

3.4. Response: Cloudput Att + chain hash + Pupdat e

4
.1
.
s
e
n
d
a
ll

C
lo
u
d
a
tt.

@
 epoch end

4 .
2 .
up

da
te
AC

L
&
Fa
m
ily

ke
y b

lo
c k
 @
 ep

oc
h
en
d

4.3. Audit att_cloud

for each block

@ epoch end

5.
1.
 c
h
al
le
n
g
e
re
q
u
es
t

m
es
sa
g
e
 ‘
ch

al
’

5.
3.
 R
es
p
o
n
se
 ‘P

’

3.
3.
V
er
if
y
&
 E
xe
cU

p
d
at
e(
F
, Φ

, u
p
d
at
e)

5.
2.
 (
P
)
←
 G
en

P
ro
o
f
(F
, Φ

, c
h
al
)

TPA

3.6. new root's signature sigs k(H(R'))

5.
4.
 V
er
if
yP

ro
o
f(
p
k,
 c
h
al
, P

)

Data

Figure 1. Proposed Architecture

POS architecture tackles the limitations of both schemes.
Thus, the limitation of CloudProof of being unable to check
data availability at the whole data set level is overcome by
employing DPOR.

DPOR consists of the following protocols/algorithms:
1) KeyGen: is a randomized algorithm that is used to

generate cryptographic key material.
2) Encode: is used for encoding data before sending it to

the remote storage.
3) GenProof: the service responds to the client’s challenge

request by generating a proof which is sent to the
verifier.

4) VerifyProof: upon receiving the proof from the service
provider, the client executes this protocol to verify the
validity of the proof.

5) ExecUpdate: this protocol is used in dynamic schemes
and is executed by the cloud provider. This protocol may
include a proof by the service provider of the successful
update of the data, so that the customer can verify the
update process.

6) VerifyUpdate: this is executed by the client in order to
verify the proof sent by the service provider after an
update.

As in CloudProof, we consider different time periods or
epochs. At end of each epoch the data owner or TPA performs
a verification process to assure that the cloud storage possesses
its data. In this way we obtain a design that satisfies all
the desirable properties discussed in Section II. Figure IV
describes the proposed architecture and identifies its parties
and the different protocols that are executed between them.

g) Key Management: we assume that the data owner
will divide the plaintext data file into blocks F ′′ =
{m′′1 ,m′′2 , ...,m′′n}. Each data block is assigned to an ACL
(set of users and groups) and blocks with similar ACL are
grouped in a single block family. In addition, for each block
family there is a family key block that contains a secret
(signing) key sk (known only to clients with write access in
the ACL), read access key k (known only to clients with read

access in the ACL), public (verification) key pk (known to
all clients and the cloud provider), version of pk and k keys,
block version, and signature of the owner. The data owner
will create the family key block table in which each row in
this table corresponds to an ACL (Fig. 2). The data owner
maintains the key production while the key distribution process
is offloaded to the cloud service provider but in a verifiable
way. The key distribution process involves two cryptographic
tools; broadcast encryption EF which is used to encrypt
the secret key (EF (sk)) and read access key (EF (k)). EF (k)
guarantees that only allowed clients and groups in the ACL’s
read set can decrypt the key and use it to decrypt the blocks
in the corresponding family. sk is used to generate update
signatures for blocks. EF (sk) guarantees that only users and
groups in the ACL’s write set can decrypt the key and use it
to generate update signatures for blocks in the corresponding
family. The key rotation scheme is another cryptographic tool
which is used to generate a sequence of keys using an initial
key with a secret master key [14]. Thus, only the owner of the
secret master key can produce the next key in the sequence.
Also, by using key rotation, the updated key allows computing
of old keys. Thus, there is no need to re-encrypt all encrypted
data blocks [18]. The data owner will keep the family key
block table and every time there is a change of membership,
the data owner will re-encrypt the key and update the family
key block table.

h) Pre-Storage Processing: the data owner encodes each
block in the data file F ′′ using Reed-Solomon error correction
F ′ = encodeRS(F ′′). Then, each block in F ′ is encrypted
using the corresponding k of that block family; F = Ek(F ′) =
{m1,m2, ...,mn}. The data owner creates a Merkle Hash Tree
(MHT) for each block family. The MHT is constructed as a
binary tree that consists of a root R and leaf nodes which are
an ordered set of hashes of the family data blocks H(mi).
MHT is used to authenticate the values of the data blocks.
As in DPOR [21], the leaf nodes are treated in the left-to-
right sequence thus, any data block (node) can be uniquely
identified by following this sequence up to the root (Fig. 4).

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

DPOR [21] uses BLS or RSA in such a way that multiple
signatures verification can be done very efficiently. Thus,
for each block family F , the data owner runs the signature
generatour algorithm (Φ, sigsk(H(R))) ←− SigGen(sk, F)
which takes the signing key of the family (sk) and the en-
crypted block family F and generates the signature set for this
family Φ = {σ1, σ2,, σn}; where σi ← (H(mi) · umi)sk

for each family block mi; u ← G is a random element
choosed by the data owner. In addition, a signature of the
root that associated MHT is generated sigsk(H(R)). Then,
each block mi will be associated with its signature σi and
some metadata such as block version and version of k and pk;
bi = {mi||block V er||k V er||pk V er||σi} (Fig. 2). Finally,
the data owner sends to the cloud storage the block family
{b1, b2,, bn}, its signature set Φ, the family key block
table, and the root signature of this block family sigsk(H(R))
(Message 1.1 of Fig. IV).

Figure 2. Data block and family key block table sent to the cloud

sk

Figure 3. Attestations of Popa et al. [18]

Figure 4. Merkle Hash Tree

i) Attestations: As in CloudProof [18] we build a hash
chain from all data changes and requires signing from both
parties on all updates. Thus, any misbehaviour could be de-
tected and proved by exchanging attestations for each request
or response between data owner, clients and cloud provider.
The structure of exchanged attestations includes metadata such
as the block version and current hash which are used to
maintain the write-serialisability (when each client placing an

update is aware of the latest committed update to the same
block) and the hash chain value which is used for freshness
(Fig. 3). The hash chain is computed over the hash of the data
in the current attestation and the chain hash of the previous
attestation. Thus it is a sequence of hashes which contains
current attestation and all history of attestations of a specific
block as follows: chain hash = hash(data, previous hash chain
value). Thus, if the sequence of attestations is broken this
means there is a violation of freshness property. In addition,
during each epoch clients need to locally store all received
attestations and forward them to the data owner for auditing
purposes at end of each epoch (Fig. IV). For simplicity, in
our proposal we assume that all data blocks will be audited,
however, in practice a probabilistic approach as in CloudProof
would be advantageous.

j) Get block: in the get (read) request for a specific
data block, clients need to send to the cloud provider the
block index (i) for that block and a random nonce (Message
2.1 of Fig. IV). The cloud provider will verify the client
by checking the ACL and make sure that only clients with
read/access permission (of the block) can gain access to this
block. If the client is authorised then it will respond by sending
the requested block (bi) with its signature (σi), the cloud
get attestation CloudgetAtt and signature of the attestation
Sign(CloudgetAtt) (Message 2.2 of Fig. IV). The client will
verify the retrieved attestation and make sure that it was
computed over the data in the block and the nonce. Also, the
client will verify the integrity signature (σi) of the received
block. Clients need to locally store these attestations and their
signatures and forward them at the end of each epoch for
auditing purposes.

k) Put block: suppose the client wants to update a
specific block (mi) into (m′i). First, the client needs to generate
the corresponding signature σ′i. Also, the client prepares the
update (put) request message update = (type, i, m′i, σ

′
i);

where type denotes the type of update (Modify M , In-
sert I or Delete D). In addition, the client will use sk
to compute its put attestation (ClientputAtt) and sign it
signsk(ClientputAtt). Then client sends update message,
ClientputAtt and signsk(ClientputAtt) to the cloud servers
(Message 3.2 of Fig. IV). On the cloud side, cloud provider
will verify the client by checking the ACL and make sure
that only clients with write permission (of the block) can
update this block. In addition, cloud provider will verify
the client’s attestation. If the client is authorised then it
runs (F ′, Φ′, Pupdate)← ExecUpdate(F, Φ, update) which
replaces the block mi with m′i and generates the new block
family F ′; and replaces the signatureσiwith σ′i and gener-
ates new signature set of the family Φ′; and updates the
H(mi) with H(m′i) in the MHT and generates the new
root R′ (in MHT scheme as a new block added into or
deleted from a file these new nodes are added to MHT as
described in DPOR [21] and the tree is rearranged according
to this update). The cloud responds to the update request
by sending a proof for the successful update (Pupdate =
{Ωi, H(mi), sigsk(H(R)), R′}; where Ωi is used for authen-
tication of mi). Also, the cloud constructs the put attestation
(CloudputAtt) and signs it signsk(CloudputAtt) and send

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

them to the client (Messages 3.3 and 3.4 of Fig. IV). In
addition, the cloud provider will store the received client
attestations to be used if any misbehaviour detected. The
client verifies the cloud put attestation and check the chain
hash. Also, client verify the received update proof by run-
ning this algorithm: {(TRUE , sigsk(H(R′))), FALSE} ←
VerifyUpdate(pk, update, Pupdate) which takes pk, the old
root’s signature sigsk(H(R)), the update message request
(update), and the received proof (Pupdate). If verification
succeeds, it generates the new root’s signature sigsk(H(R′))
for the new root R′and send it back to the cloud (Messages 3.5
and 3.6 of Fig. IV). In addition, client need to store all received
cloud put attestation (CloudputAtt) and forward them to the
data owner for auditing purposes.

l) Auditing: the auditing process is carried out at the
end of each epoch and consists of two parts. In the first part
the attestations produced within the given epoch are verified
as per CloudProof. In the second part, the integrity of the
whole data set as in DPOR [21]. For each family block the
TPA picks random c-element subset I = s1, ..., sc. For each
i ∈ I , the TPA selects a random element vi ← Z. Then TPA
sends the message chal which identifies which blocks to be
checked (chal = {(i, vi)}s1≤i≤sc). When the cloud provider
receives the chal message, prover will compute: 1. µ =∑sc

i=s1
vimi ∈ Z; and 2. σ =

∏sc
i=s1

σvi
i ∈ G. The prover runs

P ← GenProof (F, Φ, , chal) algorithm to generate the proof
of integrity P = {µ, σ, {H(mi),Ωi}s1≤i≤sc , sigsk(H(R))};
where Ωi is the node siblings on the path from the leave i
to the root R in the MHT. The verifier will verify the re-
ceived proof by running this algorithm {TRUE ,FALSE} ←
VerifyProof (pk, chal , P). This way we are able to check
data availability at the whole file level.

V. CONCLUSION AND FUTURE WORK

We have investigated the different type of existing cloud
storage schemes and identified limitations in each one of
them based on the security services that they provide. We
have then introduced a cloud storage architecture that extends
CloudProof in order to provide availability assurance. This
is accomplished by incorporating a proof of storage protocol
such as DPOR. The proposed POS architecture overcomes the
weaknesses of both schemes. In this way we obtain a design
that satisfies all the identified desirable security properties.

Both schemes are considered secure and work efficiently
individually and it is reasonable to assume that they should
work in a secure and an efficient way when combined.
However, it may be interesting to perform a detail performance
and security analysis of the proposed architecture.

REFERENCES

[1] Amazon S3 availability event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html. [retrieved: Feb,
2012].

[2] Amazon Web Services. Amazon simple storage service FAQs, Mar 2011.
Available at: http://aws.amazon.com/s3/faqs. [retrieved: Dec, 2011].

[3] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession
at untrusted stores. In Proceedings of the 14th ACM conference on
Computer and communications security, CCS ’07, pages 598–609, New
York, NY, USA, 2007. ACM.

[4] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage
from homomorphic identification protocols. In Proceedings of the 15th
International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology, ASIACRYPT ’09,
pages 319–333, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] K.D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and
integrity layer for cloud storage. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 187–198.
ACM, 2009.

[6] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability:
theory and implementation. In Proceedings of the 2009 ACM workshop
on Cloud computing security, CCSW ’09, pages 43–54, New York, NY,
USA, 2009. ACM.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599–616, 2009.

[8] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In Proceedings of the 2009 ACM workshop
on Cloud computing security, pages 85–90. ACM, 2009.

[9] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability
via hardness amplification. In Proceedings of the 6th Theory of
Cryptography Conference on Theory of Cryptography, TCC ’09, pages
109–127, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto
Tamassia. Dynamic provable data possession. In Proceedings of the
16th ACM conference on Computer and communications security, CCS
’09, pages 213–222, New York, NY, USA, 2009. ACM.

[11] J. Feng, Y. Chen, D. Summerville, W.S. Ku, and Z. Su. Enhancing Cloud
Storage Security against Roll-back Attacks with A New Fair Multi-Party
Non-Repudiation Protocol. In The 8th IEEE Consumer Communications
& Networking Conference, 2010.

[12] Google. Security and privacy FAQs, Mar 2011. Available at:
http://aws.amazon.com/s3/faqs. [retrieved: Jan, 2012].

[13] Ari Juels and Burton S. Kaliski, Jr. PORs: proofs of retrievability for
large files. In Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pages 584–597, New York, NY,
USA, 2007. ACM.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of
the 2nd USENIX Conference on File and Storage Technologies, pages
29–42, 2003.

[15] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In
Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep Miret,
Kazue Sako, and Francesc Sebé, editors, Financial Cryptography and
Data Security, volume 6054 of Lecture Notes in Computer Science,
pages 136–149. Springer Berlin / Heidelberg, 2010.

[16] R.L. Krutz and R.D. Vines. Cloud Security: A Comprehensive Guide to
Secure Cloud Computing. Wiley, 2010.

[17] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud storage with minimal trust. In Proc. OSDI,
2010.

[18] R.A. Popa, J.R. Lorch, D. Molnar, H.J. Wang, and L. Zhuang. Enabling
security in cloud storage slas with cloudproof. Microsoft TechReport
MSR-TR-2010, 46:1–12, 2010.

[19] Hovav Shacham and Brent Waters. Compact proofs of retrievability.
In Proceedings of the 14th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg, 2008.
Springer-Verlag.

[20] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Ensuring data
storage security in cloud computing. In Cloud Computing, pages 1 –9,
july 2009.

[21] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling
public verifiability and data dynamics for storage security in cloud
computing. In Proceedings of the 14th European conference on Research
in computer security, ESORICS’09, pages 355–370, Berlin, Heidelberg,
2009. Springer-Verlag.

[22] M.E. Whitman and H.J. Mattord. Principles of Information Security.
Course Technology Ptr, 3rd edition, 2009.

[23] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority filesystem.
In Proceedings of the 4th ACM international workshop on Storage
security and survivability, pages 21–26. ACM, 2008.

[24] Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In
Proceedings of the first ACM conference on Data and application
security and privacy, pages 237–248. ACM, 2011.

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

