CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

A Framework for the Flexible Deployment of
Scientific Workflows in Grid Environments

Javier Fabra, Sergio Herndndez, Pedro Alvarez, Joaquin Ezpeleta
Aragén Institute of Engineering Research (I3A)
Department of Computer Science and Systems Engineering
University of Zaragoza, Spain
Email: {jfabra,shernandez,alvaper,ezpeleta} @unizar.es

Abstract—Scientific workflows are generally programmed
and configured to be executed by a specific grid-based system.
The integration of heterogeneous grid computing platforms in
order to build more powerful infrastructures and the flexible
deployment and execution of workflows over them are still
two open challenges. Solutions based on meta-scheduling have
been proposed, but more flexible and decentralized alternatives
should be considered. In this paper, an alternative framework
based on the use of a tuple-based coordination system and a
set of mediation components is proposed. As a use case, the
First Provenance Challenge has been implemented using two
different workflow technologies executed over the framework,
Nets-within-Nets and Taverna, and transparently deployed
on two different computing insfrastructures. The proposed
framework provides users with scalability and extensibility
mechanisms, as well as a complete deployment and scheduling
environment suitable for a wide variety of scenarios in the
scientific computing area.

Keywords — middleware for integration; scientific workflow
deployment; grid-based systems.

I. INTRODUCTION

Grid computing emerged as a paradigm for the development
of computing infrastructures able to share heterogeneous and
geographically distributed resources [1]. Due to their compu-
tational and networking capabilities, this type of infrastructure
has turned into execution environments suitable for scientific
workflows. Scientific workflows are a type of workflow char-
acterized for being composed by a large number of activities
whose execution requires a high computation intensity and
complex data management.

Currently, many efforts are being carried out in the field of
scientific computing to execute their experiments taking full
advantage of grid technologies. Two important open challenges
in this area are the integration of heterogeneous grid comput-
ing platforms in order to build more powerful infrastructures
and the flexible deployment and execution of workflows over
them. Some authors have proposed solutions based on the use
of meta-schedulings without considering dynamic behaviours
or workloads. However, in order to tackle with the nature of
grids, it is required to consider more flexible and decentralized
alternatives.

In this paper, a framework able to tackle the previous
challenges is proposed. As shown in [2], [3], the use of a
broker based on the Linda coordination model [4] and a set of

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

mediators facilitates the flexible integration of heterogeneous
grid computing environments, addressing the challenge of
creating more powerful infrastructures. These components
encapsulate and handle specific features of various com-
puting environments integrated into our framework, being
programmers unaware of this heterogeneity. As a result, the
tasks that compose a workflow can be executed in a flexible
way using different computing environments. Unlike current
proposals the framework is not based on the use of a meta-
scheduler to perform global scheduling decisions, but each
computing environment competes to execute jobs according
to the availability of its own grid resources. In order to
implement this alternative scheduling model, each one of these
computing environments is represented in the broker by a
specific mediator able to achieve suitable scheduling decisions.
Hybrid computing environments could be easily integrated
implementing new mediators. On the other hand, scientific
workflows can be programmed independently of the execution
environment in which they will be executed. The Net-within-
Nets paradigm [5] and the Renew tool [6] have been used for
programming this type of workflows. This is also compatible
with other existing workflow programming languages. Indeed,
Taverna workflows can be programmed using the framework
services or translated to our programming language and then
executed.

The remainder of the paper is organized as follows. Section
II introduces some related work. In Section III, the architec-
ture of the framework is presented. The role of the Linda-
based broker, its implementation details and task dispatching
mechanisms are described in Section IV. The flexible integra-
tion of heterogenous grid middlewares and grid management
components with the broker is then detailed in Section V.
The features and new capabilities are shown by means of an
example that implements the First Provenance Challenge in
Section VI. Finally, conclusions are depicted in Section VII.

II. RELATED WORK

A considerable progress has been made in the understand-
ing of the particular nature of scientific workflows and the
implementation of grid-based systems for their specification,
scheduling, and execution. A detailed survey of existing grid
workflow systems is presented in [7], [8]. The comparison of
several systems shows relevant differences in the building and

43

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

execution of workflows that causes experiments programmed
by scientists and engineers to be strongly coupled to the
underlying grid-based execution system. This coupling forces
grid administrators to perform relevant configuration and inte-
gration efforts in most of the scientific workflow deployments.
Therefore, some interesting challenges are still open: the
ability to program scientific workflows independently of the
execution environment, the portability of scientific workflows
from one execution environment to another, or the integration
of heterogeneous execution environments to create more pow-
erful computation infrastructures, for instance. Consequently,
research efforts should concentrate on the definition of new
high-level programming constructs independent of specific
grid technologies and also on the provision of execution
infrastructures able to interface multiple providers. This type
of infrastructure should integrate software adaptation layers for
translating generic management operations to provider-specific
APIs. Additionally, new strategies of resource brokering and
scheduling should be integrated into these execution environ-
ments to facilitate the utilization of multiple-domain resources
and the allocation and binding of workflow activities to them.

Let us briefly resume some of the current proposals for
provisioning flexible and extensible execution infrastructures.
On the one hand, different grid-based systems built on a meta-
scheduler have been proposed [9], [10], [11]. A meta-scheduler
is a middleware component that provides advanced schedul-
ing capabilities on a grid consisting of different computing
platforms. The software architecture of all these solutions is
very similar and is composed of the following components:
a resource monitoring system to collect information from
integrated computing platforms, a meta-scheduler to distribute
jobs among grid resources using different scheduling policies
[12] and, finally, a set of adaptation components to achieve
mediation between middleware components and computing
platforms. On the other hand, architectures based on the
integration of meta-schedulers have been adapted for taking
advantage of Cloud technologies [11], [13], [14]. Result-
ing computing environments comprise of virtualized services
usage-based payment models in order to achieve more efficient
and flexible solutions, where the supported functionality will
be no longer fixed or locked to underlying infrastructure.

III. AN OPEN FRAMEWORK FOR PROGRAMMING AND
EXECUTING SCIENTIFIC WORKFLOWS

In short, the main goals of our approach are:

o To execute scientific workflows programmed using a
High-level Petri nets formalism or other standard lan-
guages widely accepted by the scientific community.

o To simultaneously work with different and heterogeneous
grid middlewares or with middlewares implemented us-
ing different technologies (e.g., Web services). At this
respect, workflow execution engines must be uncoupled
from specific grid technologies.

o To allow the addition or removal of resources without
previous announcement.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

o To support different scheduling strategies and policies
in the execution environment. The use of a particular
scheduling strategy or policy should depend on the char-
acteristics and requirements of each workflow applica-
tion.

Modelling Layer

Workflow editor Taverna editor

1
i
1
:
- imdort
1
i
1
1
i
1

| XES logger Taverna
DB

plugin MyExperiment.org

Execution Layer

Workflow Execution Environment

3

1

i

i

1

i

1

!

1

Resource Broker !
; Management !

Message repository g !

Advanced scheduler I

1

‘ “ Fault management !

Infrastructure of mediators Data Movement i
‘ Condor ‘ ‘ glite ‘ ‘ ‘ l:l !
mediator mediator !

i

1

Computing Infrastructure Layer

i

i

1

I3A Cluster BIFI Grid Piregrid Grid !

1

Sinln |

1

1

i

i

Condor glite glite !

U o mmmmmmmo Y
Fig. 1. Architecture of the execution environment.

Figure 1 shows the high-level architecture of the proposed
framework. As shown, the architecture consists of three layers:
the modelling layer, the execution layer and the computing
infrastructure layer. In the following, each layer as well as its
main components and interfaces are described in detail.

Firstly, the modelling layer consists of a set of tools
for the programming of workflow applications. A workflow
can be developed using the broker services, which are ex-
posed through its Web service interface, using a workflow
modeling tool such as Taverna [15], for instance. Also, we
propose the use of Reference nets, a subclass of Petri nets,
to implement workflow applications from the perspective of
the Nets-within-Nets paradigm [5]. Nevertheless, other high-
level programming languages for workflows could be also
used by scientific communities (e.g., physicists, biologists or
astronomers) for programming their workflows. With respect
to this issue, plugins can be added to the modelling layer to
support existing or new modelling approaches, such as the
Taverna plugin shown in Figure 1, for instance. This plugin
allows to import workflows programmed with Taverna, which
are automatically translated to the workflow format in the
workflow editor and then directly executed. A good repository
for these type of workflows is the scientific community hosted
at MyExperiment.org. In this work, Renew [6] is used as a
workflow editor. Renew is an academic open-source tool that

44

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

allows the direct execution of Reference nets without any
additional coding process and which represents a worth benefit
for the final user.

Secondly, the execution layer is composed of the core com-
ponents. The workflow execution environment is responsible
for controlling the execution of workflows and submitting
tasks to the resource broker when they must be executed.
Internally, the broker consists of a message repository and
a set of mediators. Messages are used to encapsulate any
information that is passed through the components of the
system. A message can describe a task to be executed or
the result of its execution, for instance. Mediators encapsulate
the heterogeneity of a specific grid middleware, having a
complete knowledge of its capabilities. This knowledge is used
for making dispatching decisions (which specific computing
infrastructure will execute a pending task?). Subsequently,
the grid middleware of the selected computing platform will
schedule the set of resources needed for executing the task.
As a result, the broker uncouples the workflow execution
environment from the specific details about the grid-based
computing infrastructures where tasks will be executed. This
design avoids the need for a close integration of the workflow
execution environment with specific grid middlewares used for
the execution of tasks.

Let us now go deeper into the description of the two com-
ponents of the broker. On the one hand, the Linda coordination
model [4] has inspired the implementation of the message
repository. Messages are encoded as tuples and stored into
a tuple space. The interface of the repository provides a set
of operations for accessing the tuples stored in the tuple
space according to the semantics of Linda. In Section IV, we
will depict the advantages of using a Linda-based repository
and provide details about its implementation. On the other
hand, mediators are required for achieving the aforementioned
uncoupled integration. In general, a mediator is an entity that
directly communicates with the tuple repository, matches and
retrieves special-tagged tuples and processes them. In our
approach, each grid middleware is represented by a media-
tor. Internally, this mediator is responsible for: i) having a
complete information of the grid resource it represents; ii)
interacting with the tuple repository to find at run-time tasks
that could be executed by the set resources of its middleware;
iii) dispatching the task to the middleware for its execution
and controlling the input and output data transference; and,
finally, iv) storing the results of the executed task in the tuple
repository as tuples. Mediators of different and heterogeneous
grid middlewares could compete for the execution of a specific
task. Currently, as it will be described in Section V, different
mediators have been implemented for the grid middleware we
have access to (Condor and gLite) and then integrated into the
infrastructure of mediators.

On the other hand, a set of management components has
also been integrated into the execution layer to support the
execution of workflow applications: the fault management
component, the data movement component or the advanced
scheduling component, for instance. The integration procedure

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

of these components is similar to the one used by mediators.
A management component interacts with the tuple repository
in order to match and retrieve special-tagged tuples and then
processes them. Therefore, the action of these components can
be triggered as a result from the previous processing, which
allows to dynamically compose complex action chains. In
Section V the component for the fault management subsystem
and its integration will be detailed.

Finally, the computing infrastructure layer is composed of
different and heterogeneous computing platforms. The inter-
action with these platforms is managed by the corresponding
grid middlewares. Currently, three computing platforms are
integrated in the framework we manage: the HERMES cluster
hosted by the Aragén Institute of Engineering Research (I3A),
which is managed by the Condor middleware; and the two re-
search and production grids managed by the glLite middleware
and hosted by the Institute for Biocomputation and Physics
of Complex Systems (BIFI) belonging to the European Grid
Initiative (EGI), namely AraGrid and PireGrid.

To sum up, the open nature of the proposed solution is
provided by the resource broker, composed of a Linda-based
repository and a set of mediators, providing scientists with
a high level of abstraction and flexibility when developing
workflows. On the one hand, workflow programmers must
concentrate on the functional description of workflow tasks
and corresponding involved data. Specific details about the
computing platforms where these tasks will be executed are
ignored from the programmer perspective. On the other hand,
the message repository facilitates the integration of mediators
and management components and the scalability of the overall
framework. Currently, its dispatching model is based on the
functional capabilities of the computing platforms managed
by the set of mediators. And, finally, these mediators are
responsible for encapsulating the technological heterogeneity
of the different types of grid middlewares and resource-
access technologies (e.g., Web services). New mediators may
be easily added in order to integrate new middlewares or
technologies.

IV. LINDA-BASED TASK DISPATCHING

As previously stated, the resource broker is composed of
a message repository and a set of components (mediators)
that interact through this space by means of the exchange
of messages. In this section, the role of the Linda-based
message repository and the corresponding task description and
dispatching mechanisms are presented.

Linda [4] is a coordination model based on two notions: tu-
ples and a tuple-space. A tuple is something like [’Gelernter”,
1989], a list of untyped values. The tuple space is a collection
of tuples stored in a shared and global space that can be
accessed with certain operations, that allow processes to read
and take tuples from and write them into it in a decentralized
manner. For instance, the operation in (x, ["Gelernter",
?]) tries to match the template ["Gelernter", ?],
which contains a wildcard, with a tuple in the shared space. If
there is a match, a tuple is extracted from the tuple space and

45

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

assigned to variable x; otherwise, the process blocks until a
matching tuple appears. The matching is free for the wildcard,
but literal for constant values. The Linda matching mecha-
nism allows easily programming distributed synchronization
processes.

Linda-based coordination systems have been widely used
for communicating and coordinating distributed processes.
Their success in distributed systems is due to a reduced set
of basic operations, a data-driven coordination and a space
and time uncoupled communication among processes that can
cooperate without adapting or announcing themselves [16].

Let us now introduce how tuples are describe and dispatched
in our appraoch. Tuples are used to code the information
needed for submitting a job to a grid middleware or re-
covering the result (or an exception) of an executed job.
A tuple structure based on the Job Submission Description
Language standard, JSDL [18], has been adopted. From the
job submission point of view, this representation includes the
specification of the application to be executed, the references
to input and output data (represented by the corresponding
URIs), a description of the host required for its execution
(operating system, CPU architecture and features, memory,
network bandwidth, etc.), QoS parameters and, optionally, the
grid middleware responsible for its execution. In case the target
grid platform is not specified, different mediators compete for
the job execution in base to certain policies. On the other
hand, a result tuple contains a reference to the original request,
a reference to the output data and the execution log (grid
and host used for the job execution, execution costs and QoS
results, mainly). If an error occurs, the result tuple will contain
the information about it. The fault handling component, which
handles these faults, will be depicted in Section V.

Once the tuple representing a job has been created, the
workflow execution environment puts it into the message
repository by means of an out operation. Each grid computing
platform is connected to the platform by means of a mediator,
which knows the applications that could be locally executed by
its grid and the description of the available internal resources.
Each mediator is then waiting for tuples that encode such job
requests able to be executed by its grid. Obviously, this waiting
will depend on the availability at run-time of the grid and its
capabilities. An in operation is invoked by the mediator in
order to retrieve a tuple of its interest, using the Linda match-
ing mechanism. Then, the retrieved tuple is locally processed
by the mediator to perform the corresponding invocation to
the grid middleware it represents.

If many grid computing platforms are able to execute a
job, their mediators will compete to retrieve the job request
tuple. The Linda matching mechanism is non-deterministic
and, therefore, it does not offer any further guidance about
which mediator will retrieve the job request tuple. In this
work, the use of WS-PTRLinda, an extension of a previous
distributed Linda-based implementation of a message bro-
ker, called DRLinda [17], is proposed. As DRLinda, WS-
PTRLinda was developed using Nets-within-Nets and the
Renew tool, the same technologies we used for programming

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

workflow applications. WS-PTRLinda provides a new Web-
service based interface (SOAP 1x. SOAP2 and REST), sup-
port for persistence of the tuple space (for high-availability
demanding environments), and a timeout mechanism useful
for failure detection. Currently, a basic and non-deterministic
scheduling is being used for dispatching job requests to
grid mediators. In [17], we proposed and implemented some
alternative matching mechanisms to solve specific problems.
Similarly, new grid-oriented matching mechanisms could be
defined to extend the scheduling policies of the broker (e.g., a
QoS-based scheduling policy). Let us finally comment on two
relevant advantages of this Linda-based brokering. Firstly, the
cooperation is uncoupled because the execution environment
does not have any prior knowledge about mediators and vice
versa. The interaction style is adequate enough to be used in
environments where it is very important to reduce as much as
possible the shared knowledge between different components.
Also, writing and reading components can cooperate without
adapting or announcing themselves. New mediators could
be added/removed without affecting the rest of components
integrated into the framework.

V. FLEXIBLE INTEGRATION OF GRID MIDDLEWARES

Following the presented approach, different types of re-
sources and components (execution engines, management
components or mediators, for instance) can be integrated in
an easy and uncoupled way. The only requirement for these
components is to implement the Linda coordination API in
order to put and remove tuples. Besides, components can be
added or removed dynamically and transparently to the rest of
the system, facilitating this way the scalability and adaptation
of the framework.

In this section, two different types of integrated components
are presented. The first one is a mediator able to interact with
the Condor middleware, whereas the second one is a fault
management component. When a fault is detected during the
execution of a job, this component will re-schedule the job
according to different policies. Our aim is to illustrate how
this solution is able to interact with grid computing platforms
managed by heterogeneous grid middlewares.

A. Interaction with the Condor middleware

As previously described, the framework is able to interact
with several underlying grid infrastructures. Let us depict
how a mediator has been developed to integrate a Condor
middleware. Specifically, this mediator is responsible for the
interaction with the HERMES cluster. Figure 2 shows the
functional components of the mediator required for supporting
such interaction. Additionally, this mediator can be reused for
interacting with any computing platform managed by Condor.

The Job Manager interacts with the Linda-based broker
depicted in the previous section in order to read job requests
and write their results. Obviously, all request types that could
be fulfilled by the cluster must be known by the manager.
For this purpose, the Internal Resource Registry knows the
list of applications that could be locally executed and the

46

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

WS-PRTLinda Resource Broker

Job request l ' Job results

Job Manager

Resource
discovery

Condor Mediator

Results

Internal Resource
Registry

l Condor invocation |
|
SSH Condor Interface
Condor Grid
FTP

Fig. 2.

Job to be

executed Job Meniter

\Submitted

Data request | 1 wobip

Middleware
Adapter

DataMovement
Component

Email results

Components of the Condor mediator.

description of available internal resources. This registry should
monitor the cluster and dynamically update its information,
but at this first implementation of the Condor mediator this
information is static. Once a job request has been retrieved,
the manager sends it to the Middleware Adapter component
that is responsible for translating the request into a Condor job.
Before submitting the job to the cluster via the SSH protocol,
the adapter internally carries out two important tasks. First,
it assigns an identifier to the job (Job ID) and sends it to the
Job Monitor component. This ID will be used to correlate jobs
and tuples. In case the input data required by a job are stored
in an external computing platform, the adapter interacts with
the Data Movement component for moving them (or making a
copy) into the Condor cluster. After that, the adapter submits
the job to the Condor middleware.

Internally, Condor can schedule the execution of submitted
jobs depending on the local state of its resources. The goal is
to achieve the best possible throughput. Therefore, a double
scheduling can be done in the approach, similarly to the
hierarchical scheduling model described in [19]. Once the
job execution has been completed, results are sent through
a logging mechanism (in our case, SMTP-IMAP) service
integrated in the Job Monitor. This component maps received
results with job requests and forwards them to the job manager.
Finally, results are written in the broker so they can be then
taken by the workflow application that submitted the original
request.

This design and implementation is quite flexible and pro-
vides reusability. For instance, we have also developed a me-
diator to interact with the glite middleware used in AraGrid.
Its design is similar to the previous one. In fact, most internal
components have been reused, as the job manager and the
internal resource registry, and others components have been
adapted, as the middleware adapter or the job monitor, for
instance.

B. Fault handling

When dealing with scientific workflows, failures can arise
at several levels. In this work, we will focus on those faults
and exceptions that happen at the execution level. When the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

execution of a job fails, the corresponding mediator captures
the fault and puts an error tuple into the message repository.
This tuple, which will be processed by the Fault management
component, contains information about the cause of the fault
that will be used by the manager to take a decision with respect
to the job execution. Different decisions could be taken: to
submit the job again to the same grid computing platform, to
submit the job to an alternative and reliable grid computing
platform or to notify the error to the workflow executing
environment in case the error persists, for instance. In the last
case, most grid solutions offer two different ways to manage
the fault: corrective actions or alternative workflows.

Decision
messages

4

Fault management component

Decision
request

WS-PRTLinda
Resource Broker

Fault

Rules engine
Manager

—)

Error
tuples

Resource
discovery

|
5 Reliable Resource

Fig. 3. Components of the fault management component.

Figure 3 shows the internal design of the fault management
component. A Fault Manager interacts with the message
repository in order to retrieve error tuples and to write the
corresponding decision tuple. When an error tuple is found,
the fault manager processes it and creates a decision request
that is sent to a decision maker. We have used a rules engine
as the decision maker. Rules are encoded in RuleML (the
standard Web language for rules using XML markup [20])
and describe the corrective actions that will be executed in
case of each type of error. These actions can be changed and
modified at runtime, providing adaptation capabilities based
on specific scenarios. Normally, the job will be sent again for
a new execution on the corresponding infrastructure. However,
in case it fails again or even if the error tuple contains some
critical information, a usual action is to send the job request to
a reliable grid middleware (our ultimate goal is the successful
execution of job requests). Reliable grid middlewares have
special characteristics (number of nodes, throughput, rejection
rate, etc.), which turn them into more suitable candidates for a
difficult job execution. For this purpose, a Reliable Resource
Registry has been implemented and integrated in the fault
management component. The current version of the registry
contains a list of reliable grid middlewares. This list is used
by the rules engine to decide in which middleware the failed
job request will be executed. Finally, the fault manager puts
a new job request tuple into the broker, specifying the grid
middleware responsible for its execution.

VI. A CASE STUDY: THE FIRST PROVENANCE CHALLENGE

As a case study we present a workflow implementing the
First Provenance Challenge [21].

47

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

The goal of the First Provenance Challenge (FPC) workflow
is to create a brain atlas from an archive of four high
resolution anatomical data and a reference image. Some image
processing services are required for the workflow execution.
These services have been deployed into heterogenous grid
middlewares (more specifically, into the Condor cluster hosted
by the I3A Institute and the gLite grids hosted by the BIFI
Institute). In this example we show the flexibility of our
proposal: some jobs are programmed to be executed by a spe-
cific computing platform, and other jobs may be executed by
any available computing platform able to invoke the required
service.

The workflow requires seven input parameters, whose
specific values are implemented as the initial markings
of places Grid_Environment, Reference_image,
Input_image_{1..4}, and Images_directory. Their
meanings are, respectively: the URL of one of the clusters
where the workflow is going to be executed (more specifically,
the cluster hosted by the I3A), the URI of the reference image,
the URIs of the four images to be processed and the directory
where the intermediate and final image files will be stored.

Figure 4 shows the implementation of the workflow using
the Renew tool. Due to space limitations, only the first image
processing flow is detailed in the figure, although the remain-
ing branches for anatomy Image2, Image3 and Image4 are
similar. Alternatively, Figure 5 depicts the implementation of
the same workflow using Taverna. Job requests and results
are encoded as Linda tuples. A request tuple is a nested
tuple composed of four elements: the application or service
to be executed and the URIs of the input and output data, the
file descriptors for standard streams, QoS parameters and the
computing platform where the request is going to be executed,
respectively. Let us explain a tuple example, specifically the tu-
ple depicted in transition Align_warp_1 (out). By putting
that tuple in the message repository, the Align_warp service
is invoked by the corresponding mediator using as input data
an anatomy image, a reference image and their headers. The
output is a warped image. For the sake of simplicity, file
descriptors and QoS parameters are omitted in the tuple.
Finally, the initial marking of the grid_environment
place determines the value of the grid variable and, therefore,
the computing platform selected for the job execution (the first
field of this last tuple contains the access information required
by the platform).

Tuples are either built and put into the message repos-
itory by means of the Broker.out action (as in the
Align_warp_1l (out) transition, for instance) or
withdrawn from the broker by means of the Broker.in
action (as in the Align_warp_1 (in) transition,
for instance). The sequential execution of these couple of
transitions for a given image corresponds to an asynchronous
call to the Align_warp service: first, the tuple with the
information is put into the message broker, then the corre-
sponding mediator takes it and invokes the service, putting
the invocation result into the broker as a tuple and finally the
result is captured and put into the workflow net by means of

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

"reference”
Reference

"hermes.cps.unizar.es” “img/" "anatomy4"

Anatomy4

“anatomy1"

Grid Enviroment Images_directory Anatomy1

reference

STAGE 1

anatomyarid™~~Z

. reference
action Broker.out(

[["align_warp", anatomy + " " + reference + " " +
anatomy + ".warp -m 12 -q", anatomy + ".img " +
anatomy + ".hdr " + reference +".img " +
reference +".hdr", anatomy + ".warp"],

['null", anatomy+ ".out", anatomy+".er"],

[™, "], ["shernand", grid]]);

Align_warp_1 (out

anatomy anatomy

anatomy anatomy

action t = Broker.in(Align_warp_1 (in
["shernand”, anatomy + ".warp",
anatomy +".out", anatomy + ".err", "?"]);

Aligfi_Warp_4 (in)

directory t
ALIGN_WARP_1

STAGE 2 éfi*f*fi e

[user, warp_param,output,error,status]

[user, warp_param,

action Broker.out(
(output,error,status]

[['reslice”, warp_param +" " + directory + warp_param +
"resliced", warp_param, directory + warp_param + Reslice_1 (out)
"resliced.hdr " + directory + warp_param +
"resliced.img"], ["null", warp_param+".out",

slice_4 (out
[directory, warp_param]
[directory, warp_param]
warp_param+".err'], [, "],

["shernand" , "hermes.cps.unizar,es"]]);

action t = Broker.in([directory, warp_param] [directory, warp_param]

["shernand", Reslice_1 (in)
directory + warp_param + "resliced.hdr " + eslice_4 (in)
directory + warp_param + "resliced.img", t R t

RESLICE_1 warp_param+".out" warp_param+".err","?"]); directory SLICE_4

STAGE3 e é/ﬁ

action t = Broker.outin(“
[["softmean",
"atlas y null " + directory + "*",
directory + "™, "atlas.img" + " atlas.hdr"],
["null", "atlas.out", "atlas.err"],

Softmean

["shernand”, "ui-prg.bifi.unizar.es"]]);

SOFTMEAN

[user,atlas,
output,errorstatus]

[user,atlas,
output,error,status]

action t = Broker.outin(
[['slicer",
atlas +" -x 0.5 atlas_X.pgnf’,
atlas, "atlas_X.pgm"],
["null", "atlas_X.out", "atlas | X.err"],
"

["shemand", "]]);

. SLICER_X t ' SLICER Y | ' SLICER Z |

szRG*Eéfffqu**** 777777 in*ff 77777 fof

[user,atlasX,output,error,status] I |
[useratlasY, [user.atlasZ,

outputerror status] output,errorstatus]

Slicer_Y Slicer_Z

action t = Broker.outin(
[["convert",
atlasX + " atlas_X.gif",
atlasX, "atlas_X.gif"],
["null”, "atlasX.out", "atlasX.err"],
[, ™), ['shernand", "])

Convert_X

Convert Y Convert_Z

t t

CONVERT_X CONVERT_Y CONVERT_Z
1 @ 13
cow
[t1.42,43]
Fig. 4. Nets-within-Nets based implementation of the First Provenance

Challenge workflow.

the second transition. Given the semantics of Petri nets, the
processing of the input images can be done in any interleaved
way, since tuples are put/removed into/from the broker as soon
as resources are available. In this first stage the job request is
executed in the cluster specified by the initial marking (the
grid variable is an input parameter of the request submitted
to the broker by the Align_warp (out) transition).
Once stages 1 and 2 are finished, Stage 3 takes the whole
set of images from the directory specified by the parameter
Images_directory, and executes the softmean method
with these images as an input. At this stage the service
deployed in one of the grids hosted by the BIFI institute
is explicitly invoked. The last job request and its result are

48

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

* Workflow input ports

| Anatomy1 ” GridEnviroment ” Reference | | Anatomy4 || ImagesDirectory |A

Align_warp_1 | Align_warp_2 || Align_warp_3 Alignfwarp74|

Reslice_2

Slicer_Y

Reslice_3 Reslice_4

Reslice_1

Slicer_X

Slicer_Z

| Convert_X | | Convert_Y | | Convert_Z |

- Workflow output ports

| AtlasXGraphic || AtlasYGraphic || AtlasZGraphic |v

Fig. 5. Taverna implementation of the First Provenance Challenge workflow.

carried out by means of the Broker . out In action: from the
workflow point of view this corresponds to a synchronous call
to the service described in the tuple. Then, softmean results are
distributed so that stages 4 and 5 could be executed in parallel
to compute the atlas data set for each dimension in axis x, y
and z. The slicer and convert jobs could be executed by any
available computing platform. Therefore, different executions
of the workflow could invoke services deployed in different
platforms. Finally, firing of transition eow (end-of-workflow)
terminates the workflow. The resulting images will have been
stored in the images directory.

Figure 5 depicts the workflow implemented with Taverna
(some flow symbols in the top of the figure have been removed
to improve readability). As shown, the structure is similar
to the Nets-within-Nets implementation, although in this case
the workflow is composed of several subworkflows, each of
them implementing the previous invocations to the broker in
order to put and withdraw tuples. Due to space limitations, the
description of these subworkflows is left out of this paper.

A. Flexible deployment and execution

In order to analyze and test the transparency and flexibility
of the proposed approach, the First Provenance Challenge
workflow was executed using the framework. The target com-
puting infrastructure for the execution of each stage (which
can be specified in out transitions at each stage in Figure
5) was left unset, meaning that the mediators compete for
each submitted task. At this respect, both HERMES and
AraGrid were setup to separately allow the execution of the
FPC workflow. However, as the aim of this experiment was
to improve the overall execution cost of the workflow, the
advanced scheduling component was programmed to perform
a meta-scheduling process considering the load of the under-
lying computing infrastructures and the history of previous
executions. Therefore, at every moment the best suitable
candidate is estimated, avoiding the dispatching of a task to
an overloaded infrastructure. This means that each task is first
captured by the advanced scheduling component and then the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

target infrastructure is set (so, the corresponding mediator will
retrieve the task for its execution). However, the whole process
is transparent from the user’s perspective.

To do that, the advanced scheduler also considered the
average load of each infrastructure at every moment. Figure 6
depicts the daily average load (% of the maximum load) in the
HERMES and AraGrid computing infrastructures. As it can be
observed, both computing infrastructures have different load
models. Their trends during the day as well as the previous
execution time are used to decide the most suitable candidate
for each task deployment.

) u.
g ~ I
< 2 (W‘ 4 A
L N . ¢
B
©
E 15
B bt
=)
10
Hermes
5
AraGrid

20 24

8 12 16
Time of day (hours)

Fig. 6. Hermes and AraGrid daily utilization (in percentaje).

Figure 7 depicts the results obtained for 900 executions of
the FPC workflow deployed on the framework. Average exe-
cution times (in seconds) are shown for each separated infras-
tructure (HERMES and AraGrid) and also for the framework
for each stage of the First Provenance Challenge workflow.
The overall execution time (average) is better when using
the framework. This is due to the best candidate selection
performed by the advanced scheduler (in most cases). The
analysis of each separated stage depics that most of the time
(70%) the HERMES cluster computing infrastructure gets a
better execution time that AraGrid, which is related to the fact
that the framework execution time is closed to the HERMES
one.

250

CHermes
M Framework
200 .
= O Aragrid
-
£
5 150
=]
F-1
2
@
X 100
&
o
E 50
0
Align_warp Reslice Softmean Slicer Convert
STAGE
Fig. 7. Experimental results for the First Provenance Challenge workflow.

If we consider the average execution times for the complete
workflow, AraGrid got the worst results with 777 seconds,

49

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

HERMES got 362 seconds and the framework got 260 sec-
onds. Obviously, using the most adequate infrastructure to get
the better execution time is not a trivial process from the
researcher’s point of view. However, by means of the use of
the framework, this is done in a flexible and transparent way.
Other possibilities are to reduce access costs (for instance,
if each computing hour has an asssociated cost), resource
usage, etc. Regarding the time to move data between the two
infrastructures (as output from a stage is used as input of the
following one), the average time for each workflow execution
was less than 55 seconds (so the average framework execution
time goes to 315 seconds).

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework to solve some of the open chal-
lenges in the application of grid-based solutions to scientific
workflows has been presented. This framework is uncoupled
from specific grid technologies, able to work simultaneously
and transparently with different and heterogeneous grid mid-
dlewares, providing scientists with a high level of abstraction
when developing their workflows. The integration of the
execution environment with different grid middlewares has
been carried out by means of a resource broker composed
of a Linda-based coordination system and a set of media-
tors. Thanks to the aforementioned broker, this integration
is flexible and scalable. On the other hand, regarding the
workflow programming point of view, the proposal is also open
and flexible. As it has been shown, workflows programmed
using standard languages or existing service-oriented workflow
management systems (e.g., Taverna) can also be executed in
the framework.

Currently, the proposed framework is being applied to solve
some complex and high time-consuming problems, such as
the behavioural analysis of semantically-annotated scientific
workflows, or the analysis of existing data connections into
the Linked data cloud, for instance. These solutions will allow
improving the capabilities of the presented approach and also
analyzing its performances.

We are also working on the integration of Cloud-related
solutions, such as using the Amazon Elastic Cloud Computing
Simple Queue Service (Amazon EC2 SQS) in order to have an
alternative message repository, as well as providing specific
high-performance computing capabilities (indeed, currently
Amazon EC2 offers a mechanism to virtualize a HPC ma-
chine, able to handle critical and complex computation tasks).
Related to this last point, we are adding some external reliable
computing platforms by means of virtualization technologies.
In [2] we sketched the implementation of a similar mediator
able to support the execution of business tasks. Similarly, a
new mediator able to submit job requests to the EC2 interface
with the required policies has been implemented.

ACKNOWLEDGMENT

This work has been supported by the research project
TIN2010-17905, granted by the Spanish Ministry of Science
and Innovation.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing

infrastructure. Second edition, Morgan Kaufmann Publishers, 2004.

J. Fabra, P. Alvarez, J.A. Bafiares, and J. Ezpeleta, DENEB: A Platform

for the Development and Execution of Interoperable Dynamic Web

Processes. Concurrency and Computation: Practice and Experience, Vol.

23, Issue 18, pp. 2421-2451, 2011.

[3] R. Tolosana-Calasanz, J.A. Banares, P. Alvarez, and J. Ezpeleta. Vega:
A Service-Oriented Grid Workflow Management System. In 2nd Interna-
tional Conference on Grid computing, High Performance and Distributed
Aplications (GADA’07), vol. 4805, pp. 1516-1523, 2007.

[4] N. Carriero and D. Gelernter, Linda in context. Communications of the
ACM, Vol. 32, Num. 4, pp. 444-458, 1989.

[5S] O. Kummer, Introduction to petri nets and reference nets. Sozionik
Aktuell, Num. 1, pp. 19, 2001.

[6] O. Kummer and F. Wienberg, Renew - the Reference Net Workshop.
Tool Demonstrations. In 21st International Conference on Application
and Theory of Petri Nets (ICATPN 2000), pp. 87-89, 2000.

[7] M. Rahman, R. Ranjan, and R. Buyya, A Taxonomy of Autonomic
Application Management in Grids. In 16th IEEE International Conference
on Parallel and Distributed Systems (ICPADS 2010), 2010.

[8] J. Yu and R. Buyya, A taxonomy of workflow management systems for
Grid Computing. Journal of Grid Computing, Vol. 3, Issues 3-4, pp. 171-
200, 2005.

[9] E. Huedo, R.S. Montero, and .M. Llorente, A Framework for Adaptive
Execution on Grids. Software - Practice and Experience , Vol. 34, Issue
7, pp. 631-651, 2004.

[10] M. Heidt, T. Dornemann, J. Dornemann, and B. Freisleben, Omnivore:
Integration of Grid meta-scheduling and peer-to-peer technologies. In
8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2008), pp. 316-323, 2008.

[11] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, and .M. Llorente,
Cloud brokering mechanisms for optimized placement of virtual machines
across multiple providers. Future Generation Computer Systems, Vol. 28,
pp. 358-367, 2012.

[12] J. Yu and R. Buyya, A novel architecture for realizing Grid Workflows
using Tuple Spaces. In 5th IEEE/ACM International Workshop on Grid
Computing (GRID 2004), Pittsburgh, USA, pp. 119-128, 2004.

[13] G. Mateescu, W. Gentzsch, and C.J. Ribbens, Hybrid computing: Where
HPC meets grid and Cloud computing. Future Generation Computer
Systems, Vol. 27, pp. 440-453, 2011.

[14] Y. Zhang, C. Koelbel, and K. Cooper, Hybrid re-scheduling mechanisms
for workflow applications on multi-cluster grid. In 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid
2009), pp. 116-123, Shanghai (China), 2009.

[15] Taverna: an open source and domain independent Workflow Manage-
ment System. Available at http://www.taverna.org.uk/ [retrieved: May,
2012]

[16] P. Alvarez, J.A. Baiiares, and PR. Muro-Medrano, An Architectural
Pattern to Extend the Interaction Model between Web-Services: The
Location-Based Service Context. In 1st International Conference on
Service Oriented Computing (ICSOC 2003), Lecture Notes in Computer
Science, Vol. 2910, pp. 271-286, 2003.

[17] J. Fabra, P. Alvarez, and J. Ezpeleta, DRLinda: A distributed message
broker for collaborative interactions among business processes. In 8th
International Conference on Electronic Commerce and Web Technologies
(EC-Web 2007), Lecture Notes in Computer Science, Vol. 4655, pp. 212-
221, 2007.

[18] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva, Job Submission De-
scription Language (JSDL) Specification, Version 1.0. Available at
http://www.gridforum.org/documents/GFD.56.pdf [retrieved: May, 2012]

[19] R. Sharma, V.K. Soni, M.K. Mishra, and P. Bhuyan, A survey of job
scheduling and resource management in grid computing. World Academy
of Science, Engineering and Technology, Issue 64, pp. 461-466, 2010.

[20] H. Boley, Rule Markup Language, RuleML Specification. Version 1.0..
Available at http://ruleml.org/ [retrieved: May, 2012]

[21] L. Moreau, B. Ludscher, I. Altintas , R.S. Barga, S. Bowers, and S.
Callahan, The First Provenance Challenge. Concurrency and Computa-
tion: Practice and Experience, Vol. 20, Issue 5, pp. 409-418, 2008.

[2

—

50

