
About the flexible Migration of Workflow Tasks to Clouds

Combining on- and off-premise Executions of Applications

Michael Gerhards, Volker Sander

Faculty of Medical Engineering & Technomathematics

FH Aachen, University of Applied Sciences

Jülich, Germany

{M.Gerhards|V.Sander}@fh-aachen.de

Adam Belloum

Institute of Informatics

University of Amsterdam

Amsterdam, Netherlands

A.S.Z.Belloum@uva.nl

Abstract - An increasing number of applications target their

executions on specific hardware like general purpose Graphics

Processing Units. Some Cloud Computing providers offer this

specific hardware so that organizations can rent such

resources. However, outsourcing the whole application to the

Cloud causes avoidable costs if only some parts of the

application benefit from the specific expensive hardware. A

partial execution of applications in the Cloud is a tradeoff

between costs and efficiency. This paper addresses the demand

for a consistent framework that allows for a mixture of on- and

off-premise calculations by migrating only specific parts to a

Cloud. It uses the concept of workflows to present how

individual workflow tasks can be migrated to the Cloud

whereas the remaining tasks are executed on-premise.

Keywords - Cloud Computing; Cloud Service Broker; Grid

Computing; Workflow; Workflow Orchestration

I. INTRODUCTION

An increasing number of applications target their
execution on specific hardware. Field Programmable Gate
Arrays (FPGAs) and free programmable general purpose
Graphics Processing Units (GPUs) are existing approaches to
use cost-effective high performance computational power in
specific applications. Image processing and image guided
interventions are well-known examples for use cases in
which both platforms compete with each other [1].

However, not all parts of those applications are equally
suitable for the usage of this hardware. Of course, related
applications follow an approach in which only specific parts
of a program were optimized for the specialized computation
resources that are therefore only used during specific time
slots. As a consequence, there is the risk that these resources
are otherwise idling so that an own purchase might not be
cost-effective. Therefore, for many scenarios it appears to be
opportune to outsource computation intensive parts off-
premise with easy-scale and dynamic provisioning whereas
the other parts are executed on-premise on local available
general-purpose computational resources.

Grid and Cloud Computing are potential infrastructures
that support this scenario since both provide special
resources for suitable application parts, whereas the
remaining application parts can be executed on general
resources. This concept can be extended to software in
deploying software with expensive licenses on only some

computers on Grids and Clouds. These computers were used
to execute the application parts that require the deployed
software, whereas the remaining parts might be executed
elsewhere to make the computers available for other
applications that rely on the related software.

But, not every organization has access to a Grid or does
want to use it because it requires joining a related virtual
organization [2]. Cloud Computing offers a promising
alternative infrastructure for using scalable on demand
resources with specific hardware. Providers such as Amazon
allow users to allocate virtualized general purpose GPU-
resources. Of course, those providers allow for porting the
full application including the parts that rely on specific
hardware to their premises. However, as described above,
this might not be the most cost-effective solution. This paper
addresses the demand for a consistent framework that allows
for a mixture of on- and off-premise calculations. The
proposed solution is based on workflows. The motivation
scenario can therefore be viewed as an example for a concept
that applies to a much broader application domain.

Modeling a complex application as workflow supports its
division into simpler individual parts that are executed as
interacting tasks by a workflow management system. These
tasks are reusable for other workflows in the same way that
software libraries are reusable in applications. Workflows are
frequently used in e-Science for “climate modeling,
earthquake modeling, weather forecast, astrophysics and
high energy physics” [3] but also in the e-Business domain
for Business Process Management (BPM).

The remaining of this paper is organized as follows:

Section II introduces workflows with related definitions. It
also provides an example in which parts of the workflow rely
on specific hardware resources. Further on, it briefly
describes the differences between Grids and Clouds
according to workflow integration. Since the support of
workflows in Cloud infrastructures is surprisingly rather
limited, Section III introduces a novel approach to handle
workflows in the Cloud computing domain. It provides
technical descriptions, discusses possible alternatives, and
provides more complex extensions. Section IV describes the
related work and delimits the suggested architecture from an
existing approach. Finally, the last section concludes the
results and describes future work.

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

II. WORKFLOWS IN GRIDS AND CLOUDS

Complex processes are often modeled as workflows
described using a specific workflow modeling language. A
workflow is composed of several tasks, which could depend
on each other. Therefore, a workflow can be illustrated as
directed graph composed of tasks as nodes and task
dependencies as directed edges. Directed edges connect the
predecessor task with its successor task. A task can only start
its execution if its predecessor has finished its own
execution.

The example workflow illustrated in Figure 1 was
designed for the Shape Retrieval Contest 2010 (SHREC'10)
aiming to classify a set of proteins based on their 3D
structure [4]. It consists of five tasks, illustrated as
rectangles. The arrows illustrate the dependencies of the
tasks. In this workflow data are only fed in at the beginning
of the two task pipelines and are then handed over from task
to task.

The tasks APURVA and Sort are computation intensive
and well parallelizable. Therefore, they are candidates for a
migration to off-premise computation resources like the
Cloud, potentially by using specific High Performance
Computing (HPC) hardware such as general purpose GPUs
or FPGAs. In the following such tasks are called Cloud
Tasks. The pre-processing of the PP tasks and the item
duplication of the X 1000 task should stay for execution on
on-premise computation resources to reduce data movements
and avoid costs. In the following such tasks are called Local
Tasks.

A so-modeled workflow is called a workflow template
that describes the behavior of a process; thus, it can be
referred to as a general workflow definition. It is comparable
with a program’s source code. Such templates are deployed,
instantiated, and executed on a workflow management
system [5] that takes care of the individual tasks’ progress
and dependencies. Workflow instances follow the behavior
of their assigned workflow template for a particular incident.
It is comparable to a program’s execution.

A particular challenge arises when workflows are
mapped to resources at different organizations, each
providing a heterogeneous system with non-uniform
interfaces to access these resources. Thus, the submission of
workflow jobs is more difficult due to the fact that different
administrative domains have different accounting
mechanisms.

Grid middleware platforms support the execution of
workflows in virtual organizations, where the distributed
resources are owned by multiple organizations. Abstract
Grid workflows are described independently of specific
resources because new resources can be established or
existing ones can be omitted or blocked. The binding of
workflow tasks to Grid resources is done at runtime.

The Grid concept of considering only physical resources
is gone in the Cloud vision of infinite resources that just have
to be activated. The allocation of resources is different than
in Grids. Any number of Cloud resources can be instanced
on demand. "With the emerging of the latest Cloud
Computing paradigm, the trend for distributed workflow
systems is shifting to Cloud Computing based workflow
systems [6].”

Cloud resources are not automatically part of a virtual
organization and therefore not integrated into a trusted
domain. The resource allocation mechanism differs from
provider to provider. To execute a workflow task in a Cloud,
the software must be deployed on a Cloud instance and be
accessible from the workflow management system via a
remote procedure call (RPC) mechanism like a web service.
Cloud Computing per se does not impose any specific
limitations with respect to the usage API while Grid
Computing needs a middleware using a particular API that
complies to the rules of the virtual organization.

The National Institute of Standards and Technology
(NIST) [7] distinguishes the three Cloud service models:
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). SaaS providers often
focus on standard applications like text processing or
customer relation management and will not cover the whole
variety of possible tasks. The current existing PaaS offerings
only provide standard hardware for general purpose. IaaS is
currently the only service model which enables executing
programs on specific hardware in the Cloud. Therefore, the
rest of the paper will only consider IaaS resources. This
should not limit the generality since suitable SaaS or PaaS
offerings can be used instead.

NIST [7] also distinguishes four different deployment
models: Private Cloud, Community Cloud, Public Cloud,
and Hybrid Cloud. Since the example scenario assumes that
the specific hardware is not used frequently, a Private Cloud
providing such hardware is not feasible. However, the
Private Cloud can be used to provide general on-premise
resources for the execution of Local Tasks. Sharing the
specific hardware of a Community Cloud is only possible if
such a community exists but this cannot be assumed. Since
the paper focuses on outsourcing calculations, renting Public
Cloud special resources fulfills all hardware requirements for
off-premise calculations. A Hybrid Cloud as combination of
a Private Cloud for general on-premise resources with a
Public Cloud for special off-premise resources is the required
environment for the combination of on- and off-premise
calculations.

The rest of paper will only focus on the integration of
Cloud Tasks that should be executed on IaaS in a Public
Cloud.

Figure 1. Example workflow with the two computation intensive

tasks APURVA and Sort.

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

III. WORKFLOWS WITH CLOUD TASKS

A simple approach to migrate a workflow task to the
Cloud is the usage of a service-oriented approach by
deploying the task software as web service on the Cloud
instance and binding the workflow task to this web service.
Web services provide standardized uniform interfaces which
supports interoperability of heterogeneous systems. The data
to be processed are typically passed as parameter from the
workflow task to the assigned web service. An alternative
approach for passing larger sets of data is that the web
service loads the requested data itself using a onetime access
ticket granted by the workflow management system.
Independent of the data transfer mechanism, the data should
not be stored permanently on the computing Cloud instance
because the data are not automatically saved persistently on
Cloud images so that a reboot of the resource will result in
data loss. On-premise databases or storage Clouds provide
permanent, secure, and persistent data storage for the results
of the calculation.

Since IaaS resources are frequently provided following a
pay-per-time billing structure, any Cloud instance should be
terminated after each use to avoid unnecessary costs while
the resource is idling. The consequence is that the Cloud
instance has to be started again before a re-use is possible.
The task execution idles during the bootup of the Cloud
instance. Preconfigured machine images contain only the
required software to speed up the instantiation. Each abstract
Cloud Task could use its own machine image or a basic
machine image including all necessary basic systems could
be loaded and setup with the task software dynamically on
bootup. The required task software is identified using the
workflow template. The installation of the software can be
done automatically using Secure Shell (SSH).

For a just in time start and termination of the Cloud
instance, an automatic mechanism must be available.
Otherwise the workflow task idles till the Cloud instance
service is available or the Cloud instance service is still
available after the workflow task’s execution. The Cloud
instance start and termination can be included into the
workflow template by adding the administrative tasks Create
and Destroy which start and terminate the Cloud instances
using a Cloud unification layer or a Cloud agnostic
Application Programming Interface (API) like the Open
Cloud Computing Interface (OCCI) [8]. The Cloud Task is
bounded fix to the Cloud instance web service that is only
available in the time span between the Create and Destroy
tasks. The usage of automatic template modifications has
been already validated in [9].

The concept of the workflow template extension has the
benefit of being interoperable with other workflow
management systems without individual source code
modifications. This makes it even usable for proprietary
systems. The same template extension application can be
used by different workflow management systems if the same
modeling language is supported. Standard workflow
modeling languages like XPDL [10] and WS-BPEL [11]
benefit most of this approach.

The main disadvantage is that the modeling of workflows
becomes more complex because the execution semantic is
integrated. Workflows must consider administrative tasks
instead of focusing on worker tasks.

Therefore, it is much more comfortable to the user when
the administrative tasks are integrated automatically into the
template during the workflow instantiation. Because the
deployment environment cannot decide where a task should
be executed, the usage of task annotations in the template
specifies where the task has to be executed. This is similar to
MAUI [12] where developers annotate which methods of an
application can be offloaded for remote execution.

Figure 2 shows the extended example workflow of
Figure 1. The two Cloud Tasks APURVA and Sort now have
administrative predecessor and successor tasks. The so
modified workflow is executed instead of the original one.
The end user will not notice the difference.

Many users instantiate workflows but not each of them
should be able to start arbitrary Cloud resources. Otherwise it
would not be possible to map caused costs to individual
Cloud usages and an abuse of resources would be possible.
Therefore, an authentication service is required on workflow
side. This service maps the authentication mechanism of the
organization to the authentication mechanism of the Cloud
Service Provider. The user privileges can be assigned
considering many strategies, e.g., a user could have access
only a limited time to a Cloud or she/he could have access
only to specific Clouds or for specific workflows. SAML
[13] assertions can be used for this. The granularity of user
privileges is not in focus of this paper. A standard based
security system like WS-Trust [14], Simple Authentication
and Security Layer (SASL) [RFC 4422], oAuth [RFC 5849],
or OpenID can be integrated into the workflow management
system.

Figure 2. Example workflow extended with administrative Create and Destroy tasks for the two computation intensive tasks APURVA and Sort.

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

The process of executing a workflow with Cloud Tasks is

summarized in the following with reference to Figure 3
where the numbers in circles indicate the order. First the user
requests an assertion token (1) with only limited use at the
secure token service by providing her/his own identification
together with the identification of all Cloud Tasks she/he
wants to use. The secure token service evaluates the request
and decides if the assertion can be granted. If the result is
positive, the user instantiates the workflow (2). The Create
Task uses this assertion at the factory (3) to proof its
eligibility. The factory then loads the Cloud account
authentication data from a secure storage (4) and starts the
Cloud instance (5) with the deployed web service. The
assertion is now invalidated. The APURVA Cloud Task
invokes the web service (6) that is running on the Cloud
instance. The web service processes the data on the high
performance Cloud hardware. After the web service returns
its results, the Destroy Task shuts down the Cloud instance.

A. Reuse of Web Services

In scenarios like parameter studies, the same workflow
task is executed frequently. Other examples of reusing the
same task are loops, multiple workflow instances, and
different workflows instances using the same Cloud Task.
The simple approach introduced above starts a new Cloud
instance for each Cloud Task instance and terminates the
Cloud instance after the web service’s execution. The Cloud
instance starting overhead slows down the workflow’s
execution but can be reduced for future invocations by
keeping alive the Cloud instance for reusability. A single
Cloud web service is then used multiple times by different
Cloud Task instances of the same abstract Cloud Task like
APURVA in Figure 4.

The implementation is described in the following: The
Destroy Task only notifies the Factory that the web service is
no longer needed by the Cloud Task. The integrated
scheduler keeps alive the Cloud instance if it expects future
web service invocations. Otherwise, the scheduler shuts
down the Cloud instance as usual. The prediction is possible
by evaluating the assertion requests at the Secure Token
Service.

Listing 1. Shell script to install the web service
#/bin/bash

scp -B ~/program.jar user@instance:~/program.jar

ssh user@instance java -jar program.jar parameter

B. Multiple Web Services on the same Cloud Instance

To reduce Cloud instance staring overhead and to avoid
costs, additional web services can be deployed on the same
Cloud instance if they are suitable for the hardware. Figure 4
depicts the IaaS Instance that hosts both: APURVA Service
and Sort Service. This optimization is most suitable for
workflows with different Cloud Tasks that can then be
executed in a pipeline on the same Cloud instance. Using this
optimization, static machine images cannot be instantiated
because additional software must be installed during the
uptime of the Cloud instance. The installation can be done
using SSH in a shell script like in Listing 1. The first line
copies the program via secure copy scp. The second line uses
ssh to start the remote program that will publish its web
service as an own endpoint on the Cloud instance by
considering the parameter. The password prompt is
suppressed using public/private key based authentication.

C. Dynamic Assignment of Tasks to Cloud Resources

The idea of outsourcing only single parts of an
application to the Cloud can be extended with a dynamic
assignment of the Cloud Task to the most suitable Cloud
resource at runtime that is illustrated as an example in Figure
5. The selection process is similar to the three-phase cross-
cloud federation model described in [15]. In the discovery
phase, the Cloud Service Broker creates a table in a database
which provides information about Assured Properties
offered by the Cloud Service Providers like in the first three
columns of TABLE I. Possible properties are special hardware
like general purpose GPUs, best performance, lowest price,
performance/price ratio, available volume resources of non-
pay-as-you-go contracts, and location of the Cloud for liable
reasons or for data nearness as well as data sensitiveness.
This table must always be kept up to date. In the workflow
template each abstract Cloud Task specifies its Required
Properties. In the example in Figure 5, APURVA has the
properties a and b whereas Sort has the property c. These
Required Properties are sent to the Cloud Service Broker
before the assignment of the Cloud Task to its Cloud

Figure 3. Relationship between workflow instance, Cloud instance,

and authentification center.

Figure 4. Reuse of Cloud web services and sharing of an IaaS

instance.

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

resource. Now in the match-making phase, the Cloud Service
Broker compares the Cloud Task’s Required Properties with
the Cloud Service Providers’ Assured Properties. The Cloud
Service Providers that assure all Required Properties of the
requesting task are potential task owners. The last two
columns of TABLE I indicate which resources are the potential
owner of which Cloud Task. In Figure 5, these potential
owners are encircled. In the authentication phase, the Cloud
Service Broker selects the cheapest potential owner as the
current owner for each Cloud Task: Resource 2 for APURVA
and Resource 3 for Sort.

D. Provenance

The importance of validating and reproducing the
outcome of computational processes is fundamental to many
application domains. It is exposed that there is a need to
capture extra information in a process documentation that
describes what actually occurred. The automated tracking
and storing of provenance information during workflow
execution could satisfy this requirement [16]. The amount
and the kind of data to be stored are always user and
implementation dependent. Provenance traces enable the
users to see what has happened during the execution of the
workflow. This also enables failure analysis and future
optimization. Provenance becomes even more important in
distributed environments because workflow tasks are loosely
bound to computational resources. Using provenance in the
Cloud-workflow domain enables the identification of Task to
Cloud assignments so that it is visible where the Cloud Task
has been executed and where its data have been stored.

TABLE I. ASSURED PROPERTIES OF CLOUD RESOURCE

Cloud
Resource

Assured
Properties

Price Potential Owner of

APURVA Sort

Resource 1 a 3

Resource 2 a, b 4

Resource 3 a, b, c 6

Resource 4 b, c 7

Provenance also shows at which time the Cloud instance
was running and therefore causing costs. Based on
provenance traces, statistics can be created showing which
workflows cause which costs, which users cause which
costs, which Clouds cause which costs, which users
instantiate which workflows, which Clouds execute which
Cloud Task, etc.. Also the runtime of Cloud Tasks can be
examined in the provenance trace to optimize future Cloud
Task to Cloud resource assignments.

A provenance model describes how the gathered
provenance data are interpreted and stored in the provenance
trace. Several provenance models exist and two of them are
described briefly in the following. A detailed comparison is
done in [17]. The Open Provenance Model (OPM) [18] is
very prominent in the e-Science domain. It provides a
comprehensive set of concepts to capture how things came
out to be in a given state and is designed to achieve inter-
operability between various provenance systems. Another
provenance model is the so-called History-tracing XML
(HisT) [9]. It was developed within the HiX4AGWS project
[19] and provides provenance following an approach that
directly maps the workflow graph to a layered structure
within an XML document. The Create and Destroy
workflow tasks can be used to identify and transmit the
provenance data according to the Cloud instances. HisT
directly supports the integration of digital signatures and is
therefore optimized for the e-Business and cross-
organizational domain where responsibility and liability play
an important role.

IV. RELATED WORK

Cloud Computing is the greatest IT hype of the last ten
years. Therefore, many publications deal with Cloud
Computing. Surprisingly the combination of Cloud
Computing with workflows is little addressed. The
integration of single off-premise Cloud Tasks into on-
premise workflows is not supported yet. In comparison to the
mobile smartphone domain, approaches like CloneCloud
[20] already exists to dynamically partition applications
between weak devices and Clouds. Some workflow
management systems claim to be ready for the Cloud but
they are mostly ported from the Grid domain and only
support running in the Cloud as extension to running in the
Grid. The flexible selection and interaction with Cloud
resources is not implemented in the workflow management
systems considering the requirements identified in section
III. One approach is presented in the following and then
delimited to the approach presented in this paper.

The Generic Workflow Execution Service (GWES) [21]
is an open source workflow management system and was
developed by Frauenhofer-Gesellschaft for the management
and the automation of complex workflows in heterogeneous
environments. The service orchestration goes through five
abstraction levels: User Request, Abstract Workflow, Service
Candidates, Service Instances, and Resources. The formal
described User Request represents an abstract operation and
is automatically composed into an infrastructure independent
non-executable Abstract Workflow. This Abstract Workflow
is mapped at runtime down to available Resources. During

Figure 5. Dynamic assignment of Cloud Tasks to Cloud resources.

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

this process Service Candidates web services are searched
and optimally selected to become Service Instances. GWES
was originally developed basing on Grid technologies like
Globus Toolkit as Grid Workflow Execution Service (also
GWES) and was then adjusted to the Cloud domain.

The proposed approach of this paper differs from the
basic GWES concept. GWES is a specific workflow
management system with an own workflow description
language. In contrast the interoperable approach of this paper
bases on an extension for existing modeling languages of
arbitrary workflow management systems by the integration
of the Cloud administrative tasks Create and Destroy which
connect the workflow instance with the Cloud Service
Broker to select, start, and stop the Cloud instance. By
choosing a workflow management system independent
approach the usage of the already known system is given for
the end-user. The approach is the migration of only
individual workflow tasks to the Cloud whereas the
remaining tasks stay in the local environment for execution.

V. CONCLUSION AND FUTURE WORK

This paper presented a general concept for the hybrid
execution of workflows by allowing the off-premise
execution of specific tasks in the Cloud whereat the
remaining tasks stay on-premise to avoid unnecessary costs.
The proposed architecture has the advantage that it is neither
depending to a particular workflow engine nor to a particular
workflow description language. It follows the approach of
automatically modifying workflow templates to incorporate
the steps for assigning the appropriate off-premise resource
in a flexible manner. This approach has been already
validated in the domain of provenance [9]. The Cloud
Service Broker automatically selects the most suitable Cloud
resource to guaranty the fulfillment of all task requirements.
The end users’ interfaces are not changed so that workflows
can be used the same way as before.

Next steps of work will be the implementation of the
introduced Cloud Service Broker including an analysis of an
according selection metric. The occurred costs of a partial
off-premise execution will be compared with the costs of a
full off-premise execution to calculate a costs reduction ratio.
The time overhead for migrating tasks across Cloud and
organizational boundaries has to be measured and set it into
relation with the avoided costs to figure out if the costs
reduction is worth the time overhead. Even data movement
strategies have to be implemented.

The security of the whole architecture plays an important
role which is minor addressed in this paper. The Secure
Token Service and the Factory are together the single point
of access. Unauthorized Cloud resource instantiations and
unauthorized Cloud web service invocations must be
protected against requests without permission to avoid a
misuse.

ACKNOWLEDGMENT

This work was carried out in the context of HiX4AGWS
[19]. HiX4AGWS is supported of the Federal Ministry of
Education and Research in Germany. Grant No.: 17N3409.

References
[1] S. Asano, T. Maruyama, and Y. Yamaguchi; “Performance

comparison of FPGA, GPU and CPU in image processing“,
International Conference on Field Programmable Logic and
Applications, 2009. FPL 2009, pp. 126-131.

[2] W. H. Davidow and M. S. Malone; “The virtual Corporation”. New
York: HarperBusiness, 1992.

[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor: „Workflows and
e-science: an overview of workflow system features and capabilities“,
Future Gener. Comput. Syst., 25 (2009), pp. 528–540.

[4] BIOWIC, Bioinformatics Workflow for Intensive Computation,
http://biowic.inria.fr/workflows/shrec.html 05.05.2012.

[5] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing”, Journal of Grid Computing, Vol. 3,
No. 3-4, pp. 171-200, 2005.2. Oxford: Clarendon, 1892, pp.68–73.

[6] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen, and Y.
Yang; “The Design of Cloud Workflow Systems”, SpringerBriefs in
Computer Science.

[7] P. Mell and T. Grance, National Institute of Standards and
Technology (NIST), “The NIST Definition of Cloud Computing”,
Special Publication 800-145, September 2011.

[8] Open Grif Forum (OFG), Open Cloud Computing Interface (OCCI),
June 2011.

[9] M. Gerhards, A. Belloum, F. Berretz, V. Sander, and S. Skorupa: “A
History-tracing XML-based Provenance Framework for Workflows”,
The 5th Workshop on Workflows in Support of Large-Scale Science
(WORKS), November 2010.

[10] R. M. Shapiro, Workfl ow Management Coalition Working Group
One, “XPDL 2.1 Integrating Process Interchange & BPMN”, January
2008.

[11] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Language Version 2.0 (BPEL)”, OASIS Standard, April
2007.

[12] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile
Cloud Computing: Architecture, Applications, and Approaches”,
Wireless Communications and Mobile Computing.

[13] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0”, OASIS Standard, 15 March 2005.

[14] K. Lawrence and C. Kaler, “WS-Trust 1.3 OASIS standard”, March
2007.

[15] A. Celesti, F. Tusa, M. Villari, A. Puliafito: "How to Enhance Cloud
Architectures to Enable Cross-Federation”, 3rd International
Conference on Cloud Computing (CLOUD), 2010, pp. 337-345.

[16] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science”, SIGMOD RECORD, vol. 34, 2005.

[17] M. Gerhards, V. Sander, T. Matzerath, A. Belloum, D. Vasunin, A.
Benabdelkader: “Provenance Opportunities for WS-VLAM: An
Exploration of an e-Science and an e-Business Approach”, The 6th
Workshop on Workflows in Support of Large-Scale Science
(WORKS), November 2011, pp. 57-66.

[18] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N.
Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. Van den Bussche, “The Open Provenance Model
Core Specification (v1.1),” Future Generation Computer Systems,
vol.27(6) pp.743-756, June 2011.

[19] History-tracing XML for an Actor-driven Grid-enabled Workflow
System, http://www.fh-aachen.de/en/research/projekt-hixforagws/
05.05.2012

[20] B. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti: “CloneCloud: Elastic
Execution between Mobile Device and Cloud”, Proceedings of the
sixth conference on Computer systems (EuroSys '11), 2011, 301-314.

[21] Generic Workflow Execution Service (GWES)
http://www.gridworkflow.org/kwfgrid/gwes/docs/ 05.05.2012.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

http://biowic.inria.fr/workflows/shrec.html
http://www.fh-aachen.de/en/research/projekt-hixforagws/
http://www.gridworkflow.org/kwfgrid/gwes/docs/

