
Provenance in the Cloud: Why and How?

Muhammad Imran
Research Group Entertainment Computing

University of Vienna, Austria
Email: imran.mm7@gmail.com

Helmut Hlavacs
Research Group Entertainment Computing

University of Vienna, Austria
helmut.hlavacs@univie.ac.at

Abstract—Provenance is an important aspect in the ver-
ification, audit trails, reproducibility, privacy and security,
trust, and reliability in many fields ranging from art, food
production, medical sciences, in-silico experiments, and dis-
tributed computing. On the other hand, Cloud computing is
the business model of distributed computing and is considered
the next generation of computing and storage platforms.
Cloud computing requires an extension of the architecture
of distributed and parallel systems by using virtualization
techniques. Key to this extensible architecture is to support
properties such as compute “on demand” and “pay as you go”
model. Clouds are in use since a few years and they already ex-
panded in the business domain (Amazon EC2, Microsoft Azure,
IBM SmartCloud) and research environments (EUCALYPTUS,
OpenNebula, Nimbus). Many research domains have already
adopted Cloud technology into their existing computational and
storage platforms and, thus, a shift of technology is in progress.

In this paper, we present provenance description in comput-
ing sciences. Then, we give an overview of Cloud architecture
and answer why provenance is important for Cloud computing.
We introduce a mechanism to include provenance in the
Cloud which requires minimal knowledge and understanding
of underlying services and architecture. Therefore, we detail
the importance along with the characteristics identified and
present a framework for provenance in Cloud computing.
We assure trust by augmenting a Cloud infrastructure with
provenance collection in a structured way and present first
performance results of the extended architecture. Finally, we
discuss the results and summarize challenges and open issues
of provenance in Clouds.

Keywords-provenance; research or open Clouds.

I. INTRODUCTION

Oxford dictionary [1] defines provenance as “the place
of origin or earliest known history of something”. In many
fields including art, science and computing, provenance is
considered as the first class data of importance for tracing
an object to its origin. Provenance is defined by a set of
different properties about the process, time, and input and
manipulated data. Provenance is used to answer a few basic
questions such as when the object was created, the purpose
of creation, and where the object originated from (e.g., the
creator of the object).

In computing sciences, a provenance system is used
to collect, parse, and store related metadata. Such data
is used for verification and tracking back, assurance of
reproducibility, trust, and security, fault detection, and audit

trials. These metadata include functional data required to
trace back the creation process of objects and results, but
also non-functional data such as the performance of each
step including, e.g., energy consumption.

Since Cloud is an evolving technology which is based on
virtualization and offer, on-demand computing, pay-as-you-
go model, and is highly scalable and more abstract. There
is a strong need to propose a provenance scheme for this
dynamic, abstract and distributed environment. In addition
to challenges for distributed computing, the abstraction and
highly flexible usage pose new demands, i.e., a provenance
framework for Clouds has to support these issues. Rajendra
Bose et al. [2] present a detailed survey of computational
models and provenance systems in distributed environment,
specifically workflows execution. However, none of the
approaches support provenance in the Cloud environment.
These existing schemes rely on the support of native ser-
vices from distributed or workflow computing, e.g., process
schedulers. Generally, provenance systems in grid, workflow,
and distributed computing are either strongly part of the
enactment engine or they use Application Programming
Interfaces (APIs), which are enactment engine specific [3].

Cloud infrastructure is not extensible by nature and
therefore, existing techniques are not a good fit to Cloud
environment and to address Cloud specific challenges. A
better approach is to follow an independent and modular
provenance scheme as described in [4]. Such a scheme is
possible by extending the middleware of Cloud infrastructure
where various components and services are deployed (exten-
sion of third party tools and libraries). This scheme which
is a loosely coupled (domain and application independent)
works independently of Cloud infrastructure, client tools and
is of high importance to support future e-science.

In this paper, we provide a general discussion of prove-
nance in different fields with a particular focus on open
or research Clouds. We present underlying architecture of
open Cloud, and propose a framework for provenance data
collection in the Cloud. Hereby, we address the most impor-
tant properties of a provenance system that is, independence
of the Cloud architecture, low storage and computational
overhead of provenance data, and usability. Provenance for
Clouds to the best of our knowledge has not been fully
addressed yet. The major contributions of this paper are

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

following:
• analysis of provenance in distributed computing, giving

reasons of the importance and highlight challenges of
provenance in the Clouds and distributed environment;

• a novel proposed scheme which can be deployed to the
Cloud environment while addressing different vendors
and architectures;

• first performance test results of the provenance frame-
work.

The rest of the paper is organized as follows. In Section II,
we discuss the related work in computing sciences. In
Section III, Cloud architecture is discussed along with a pre-
sentation of Eucalyptus Cloud and its dependencies tools and
applications. Section IV presents challenges and provenance
data applied to Cloud computing. In Section V, we discuss
the proposed framework, configuration of provenance sys-
tem to Cloud middleware and its main components. Sec-
tion VI describes first test results and Section VII concludes
our work and details future implementation directions.

II. RELATED WORK

Numerous techniques and projects have been proposed
during the last few years for provenance systems in com-
putational sciences for validation, reproduction, trust, audit
trials and fault tolerance. These techniques range from
tightly coupled provenance system to loosely coupled sys-
tems [5]–[8]. Provenance Aware Service Oriented Architec-
ture (PASOA) [9], [10] uses Service Oriented Architecture
(SOA) [11] for provenance collection and its usage in
distributed computing for workflow management systems.
myGrid [12] and Kepler [13] are examples of projects for
executing in-silico experiments developed as workflows and
they use Taverna [14] and Chimera [15] schemes respec-
tively for Provenance data management in these compu-
tational systems. However, none of these approaches were
designed specifically for Cloud computing architecture. Re-
cently, Muniswamy-Reddy et al. [16] discussed the impor-
tance of provenance for Cloud computing services offered
by AMAZON EC2 [17] using Provenance-Aware Storage
Systems (PASS) [18] system.

In the e-science domain, experiments are performed in
dry labs (in-silico); provenance system has to address
data collection and availability in distributed environment.
Provenance systems use different methods and approaches
to address these challenges. Each approach has pros and
cons which are related properties of a provenance system
in distributed computing. Distributed computing challenges
in general and Cloud specific challenges in particular are
discussed in detail in Section IV-B, where Section IV-C gives
a brief overview of Cloud specific provenance data.

III. CLOUD ARCHITECTURE

Cloud vision is to address a complex engineering, medical
or social problem by mega scale simulation and handling

huge amount of data with a massive computation power.
Clouds are generally categorized as business cloud, research
or private cloud and hybrid cloud. IaaS (Infrastructure as a
Service), PaaS (Platform as a Service) and SaaS (Software as
a Service) are the terms heavily used in a Cloud computing
paradigm and is mostly broken into these three segments.

IaaS: a service provided for the infrastructure (hardware
and software) over the internet. Such an architecture pro-
vides servers, virtualized operating systems and data storage
units. Elastic Cloud is a commonly used term for IaaS and
users pay for required resources as they go. Amazon Elastic
Compute Cloud (Amazon EC2), Nimbus [19], OpenNeb-
ula [20] and EUCALYPTUS [21] are the leading examples
of IaaS. PaaS and SaaS are built on top of IaaS. PaaS
provides an interface for software developers to build new or
extend existing applications, e.g., Google App Engine and
Microsoft Azure. SaaS is an application service provided to
the end user by a vendor, e.g., google mail.

Private Cloud IaaS schemes are mostly used in a research
environment and small businesses by using open source
technologies. They are rapidly growing in the size and
magnitude and expanding in different domains. With the
new technologies and advancements, a private Cloud can
be part of other public or private Clouds thus, providing the
functionality of a hybrid Cloud.

A. EUCALYPTUS

Eucalyptus is an open source implementation of Cloud
computing IaaS scheme using JAVA and C/C++ for vari-
ous components. Users can control an entire Virtual Ma-
chine (VM) instance deployed on a physical or virtual
resource [22]. It supports modularized approach and is
compatible with industry standard in Cloud, i.e., Amazon
EC2 and its storage service S3. It is one of the most used
platforms to create scientific and hybrid Clouds. Eucalyptus
gives researchers the opportunity to modify and instrument
the software which is been lacking in the business offerings,
e.g., Amazon EC2.

Figure 1 presents the extended architecture of Eucalyptus
Cloud. There are three main components involved: Cloud
Controller (CLC, i.e., middleware), Cluster Controller (CC)
and Node Controller (NC). CLC, CC and NC communicates
with each other and outside applications using Mule [23]
and Apache Axis2/C framework. CLC interacts with CC,
where CC is the part of Cloud used to manage clusters
in the network. CC interacts and controls different NCs by
associating and differentiating them using unique addresses
and also balancing load in the cluster. NC assign a VM for
the job execution submitted by a user. Walrus is web service
used for distributed storage management of virtual images
and users metadata. All the communications between differ-
ent components of Eucalyptus Cloud is achieved by using
SOAP, XML, WSDL, and HTTP communication protocols
via Axis2/C and Mule framework.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

IV. PROVENANCE IN CLOUD: Why
There are various definitions of Cloud computing (utility

computing, autonomic computing) and is used as per the
understandings, knowledge and requirements by different
companies and users. Yes, there are some differences from
previous computing technologies specifically to mention
virtualization, on demand, pay as you go model, extremely
flexible and more abstract. Ian Foster et al. [24] present an
overview of the major differences between Cloud and grid
and mentions the most important feature of Cloud technol-
ogy is the total dependence on services (SOA architecture).
There is underlying architecture for networking of software
and hardware but, to the end user it is completely abstract
and hidden. The abstraction allows the end user to send data
to Cloud and get data back, without bothering about the
underlying details. This behavior is fine for a normal user
but, in research environment, scientists are more interested
in the overall process of execution and a step by step
information to keep a log of sub-data and sub-processes to
make their experiments believable, trust able, reproducible
and to get inside knowledge. With improvements of in-silico
experiments, most of the computation and processing is done
by using computing resources and not in a real lab.

Users of Cloud environment may not be interested in the
physical resources, e.g., brand of computer but, surely they
are interested in the invoked service, input and output pa-
rameters, time stamps of invocation and completion, overall
time used by a process, methods invoked inside a service and
the overall process from start to finish. This metadata which
provides the user an ability to see a process from start to
end or simply track back to find the origin of a final result is
called provenance. Generally provenance is used in different
domains by scientists and researchers to trust, track back,
verify individual input and output parameters to services,
sub process information, reproducibility, compare results and
change preferences (parameters) for another simulation run.
Provenance is still missing in Cloud environment and needs
to be explored in detail as mentioned in [16], [25].

A. Implication of a Provenance Enabled Cloud
Introducing the provenance data into Cloud infrastructure

would result in following advantages:
• Patterns: The use of provenance data to find patterns

in the Cloud resources usage. These patterns can be
further utilized to forecast a future request.

• Trust, reliability and data quality: The final data output
can be verified based on the source data and transfor-
mation applied.

• Resources utilization: In Cloud, provenance data can
be used to utilize the existing running resources by
allocating copy of a running resource. This will be
achieved by comparing a new request to the already
running resources and this information is available in
provenance data.

CLC(Cloud

Controller)

LAN/WAN

Computing resources

Eucalyptus Cloud

Storage Center

(Users, Images)

Communication resources

Euca2ools/

ApplicationController API

Walrus (Storage

Controller)

Storage API

Node Controller

VM VM

KVM/XEN

hypervisor

Cluster A

CC(Cluster

Controller)

Node

Controller

Node

Controller

Cluster B

CC(Cluster

Controller)

Node

Controller

Node

Controller

VM: virtual machine

REST web

service

Deployed

using mule

framework

Deployed

using Axis2C

Figure 1. Extended architecture of Eucalyptus Cloud.

• Reduced cost and energy consumption: Provenance
data results in a cost and energy efficiency by using
patterns to forecast a future request and by utilizing
existing running resources.

• Fault detection: Provenance data can pinpoint the exact
time, service, method and related data in case of a fault.

B. Provenance Challenges in Cloud

Usual provenance challenges include: collecting prove-
nance data in a seamless way with a modularized design and
approach, with minimal overhead to object identification,
provenance confidentiality and reliability, storing provenance
data in a way so it can be used more efficiently (energy
consumption) and presenting such information to the end
user (query, visualization). Cloud brings more challenging
to these existing challenges because we have to address the
scalable, abstract and on demand architecture of Cloud. A
provenance system in Cloud should address the following
challenges:

• Domain, Platform and Application independence: How
the provenance system works with different domain
(scientific, business, database), platforms (windows,
linux) and applications.

• Computation overhead: How much extra computation
overhead is required for a provenance system in a
particular domain.

• Storage overhead: How and where is the provenance
data stored. It depends on the type, i.e., copy of original
data or a link reference to original data, granularity

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

(coarse-grained or fine-grained) and storage unit (SQL
server, mySQL, file system) of provenance data.

• Usability: It determines the ease of use of a prove-
nance system from a user and Cloud resources provider
perspective. How to activate, deactivate and embed a
provenance system into existing Cloud infrastructure
and services, e.g., is it completely independent or
modification is required on Cloud services layer.

• Object identification: Identify an object in the Cloud
and link the provenance data to source by keeping a
reference or by making a copy of the source object.

• Automaticity: With huge amount of data and process
computation within Cloud, collecting and storing prove-
nance data should be automatic and consistent.

• Cloud architecture: Addressing the on-demand, abstract
and scalable structure of Cloud environment with avail-
ability and extensibility of different components.

• Interaction with Cloud services: Cloud services are not
extensible therefore, they cannot be modified. Business
Clouds are propriety of organizations and open source
Clouds needs understanding of every service if change
is required. The better approach is to provide an inde-
pendent provenance scheme which requires no change
in the existing services architecture.

C. Provenance Data

A provenance system should address two different per-
spectives in collecting metadata for Cloud architecture. Ap-
plications running on Cloud as SaaS or PaaS and provenance
of Cloud infrastructure (IaaS). Users of Cloud are more in-
terested in their application provenance where, providers are
interested in IaaS services provenance to observe resource
usage and find patterns in applications submitted by users
to provide with a more sophisticated model for resources
usage. Following, is the list of mandatory metadata in a
Cloud environment:

1) Cloud process data: Cloud code execution and control
flow between different processes (web services), e.g.,
in EUCALYPTUS are CLC, CC and NC services. Web
service and method name in particular.

2) Cloud data provenance: Data flow, input and output
datasets which are consumed and produced and pa-
rameters passing between different services.

3) System provenance: System information or physical
resources details, e.g., compiler version, operating
system and the location of virtualized resources.

4) Timestamps: Invocation and completion time of Cloud
services and methods.

5) Provider and user: Details about Cloud users and
services provider, e.g., location of clusters and nodes.
Different providers have different trust level and there
could be laws against usage of resources for a partic-
ular geographical area.

V. PROVENANCE FRAMEWORK: How

A Cloud infrastructure is deployed and it relies on the
open source third party tools, libraries and applications.
Eucalyptus Cloud in particular depends on the Apache Axis,
Axis2/C, and Mule framework. These third party libraries
are used for the communication mechanism between various
components of Cloud infrastructure. Cloud infrastructure is
the orchestration of different services and the third party
libraries works as a middleware to connect these services.
The purpose of Cloud computing is more abstraction than
previous technologies like Grid and Workflow computing
and therefore, Cloud services are not extensible.

One method to implement provenance into the Cloud
infrastructure is by changing the source code. This could
be very cumbersome as deep understanding of the code is
required. This will also restrict the change to the particular
version of the Cloud. This method is not feasible to address
the provenance challenge for various Cloud providers, do-
mains and applications. The second method is to capture
the provenance data on the middleware of a Cloud. This is
possible by extending the third party libraries used by Cloud
infrastructure and add custom methods to collect provenance
data at various different levels. Such a scheme will lead
to the minimum efforts and can be deployed across any
Cloud scheme. Further, there will be no change required in
Cloud services architecture or signature. To understand this
techniques and hence the proposed provenance framework,
we give a brief overview to the most important Mule and
Axis2/C architecture.

A. Mule Enterprise Service Bus

Mule is a lightweight Enterprise Service Bus (ESB) writ-
ten in JAVA and is based on Service Oriented Architecture
(SOA). Mule enables the integration of different application
regardless of the communication protocol used by those
applications. Eucalyptus CLC services are deployed using
Mule framework. CLC services are divided into different
components including core, cloud, cluster manager, msgs,
etc. These different components are built and deployed as
jar files and they use Mule framework messaging protocols
(HTTP, SOAP, XML, etc.) to communicate with each other
and with other Eucalyptus services (NC and CC).

Extending Mule: Mule framework is based on layered
architecture and modular design. Mule offers different kind
of interceptors (EnvelopeInterceptor, TimeInterceptor and
Interceptor) to intercept and edit the message flow. Since,
provenance is metadata information flowing between differ-
ent components (services) and we do not need to edit the
message structure; therefore, we use EnvelopeInterceptor.
Envelop interceptors carries the message and are executed
before and after a service is invoked.

Configuring Mule Interceptor: There are two steps in-
volved for configuring a Mule interceptors to Cloud services.
First step is to built a provenance package (JAVA class files)

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

and copying to the Cloud services directory. Second step
requires editing Mule configuration files used by different
CLC components. Interceptors can be configured globally
to a particular service or locally to a particular method of
a service. Listing 1 is a sample “eucalyptus-userdata.xml”
mule configuration file used to verify user credentials and
groups.

Listing 1. Configuration of Provenance into Mule
<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesource.org/...">
<interceptor-stack name="CLCProvenance">

<custom-interceptor class="eucalyptus.CLC
provenance"/>

!.. indicating path of the package and class name
for CLC services provenance data
</interceptor-stack>
<model name="eucalyptus-userdata">

<service name="KeyPair">
<inbound>

<inbound-endpoint ref="KeyPairWS"/>
</inbound>
<component>

<interceptor-stack ref="CLCProvenance"/>
!.. configuring "keypair service" to provenance
module

<class="com.eucalyptus.keys.KeyPair
Manager"/>

</component>
<outbound>

<outbound-pass-through-router>
<outbound-endpoint ref="ReplyQueue

Endpoint"/>
</outbound-pass-through-router>

</outbound>
</service>

</model>
</mule>

B. Axis2/C Architecture

Eucalyptus NC and CC services are exposed to other
components by using Apache Axis2/C framework. Axis2/C
is extensible by using handlers and modules [26]. Handlers
are the smallest execution unit in Apache engine and are
used for different purposes, e.g., web services address-
ing [27] and security [28]. A message flow between different
components of CC and NC go through Axis2/C engine and
we deploy custom handlers for provenance data collection
inside Axis2/C. Similar concept is used in [29] for workflow
services deployed in a tomcat container. This framework
is not extensible to Cloud services and architecture. We
differ from that work in many factors including interceptors
for Mule, Apache Axis and Apache Axis2/C. There is no
tomcat container available for Cloud services to deploy the
provenance framework and Cloud services use HTTP, XML,
SOAP and REST based protocols. Further, Our framework is
developed for Cloud services provenance data collection and
therefore, parsing, storing, and accessing provenance data is
different than their architecture.

Configuration: Axis2/C modules and handlers can be
configured globally to all services by editing axis2.xml

file, or to a particular service and method by modifying
servies.xml file. Listing 2 describes the configuration of
provenance module to Eucalyptus NC service.

Listing 2. Configuration of Provenance into Axis2/C
<?xml version="1.0" encoding="UTF-8"?>
<service name = "EucalyptusNC">
<module ref="NCprovenance"/>

!..this will configure provenance to all methods
in NC
<Operation name="ncRunInstance">

<Parameter name = "wsmapping">
EucalyptusNCncRunInstance

</Parameter>
</Operation>
<Operation name="ncAttachVolume">

<module ref="NCprovenance"/>
!..this will configure provenance to this
particular method

<Parameter name = "wsmapping">
EucalyptusNCncAttachVolume

</Parameter>
</Operation>

</Service>

C. Framework Components

Proposed framework is divided into the following com-
ponents to address the modularity and layered architecture:

• Provenance collection: Collecting important prove-
nance data in a seamless and modular fashion using
Mule, Apache Axis and Axis2/C interceptors.

• Provenance storage: Provenance data can be stored as
part of Cloud storage unit or, to a dedicated database
system. Properly indexing and linking provenance data
to original data objects is compulsory.

• Provenance query and visualization: Providing an inter-
face to query provenance data and visualize the results
in a graph or chart form.

• Provenance usage: Using collected provenance data to
enhance the trust on Cloud environments, reproducibil-
ity of applications and fault detection etc. Provenance
usage is the extension of provenance query by pro-
viding with a standard output to make it compatible
with other systems. Particular usage of provenance data
is to find access pattern in resources usage, resources
utilization (energy consumption) and faults detection.

Figure 2 describes the extended architecture of Axis2/C
(particular version of Apache Axis used by EUCALYPTUS)
and Mule, the main components of proposed framework and
the deployment of provenance module.

VI. TESTING AND EVALUATION

Test cases are performed on Mule and Axis2/C framework
with provenance module for collection, parsing and logging
metadata. Here, we present results for time increase with
provenance module in Axis2/C for the execution chains
called Inflow and Outflow. The underlying architecture and
system details are following:

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

SOAP

Provenance

framework

collection

visualization

storage

query

T
ra
n
s
p
o
rt

lis
te
n
e
r

T
ra
n
s
p
o
rt

s
e
n
d
e
r

In
flo
w
/In
fa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

O
u
tflo
w
/O
u
tfa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

Message

receiver

Axis2/C

engine

CC and NC

services

Eucalyptus

Cloud

CLC

services

Service

Component

Inbound router

Outbound

router

M
u
le

M
e
s
s
a
g
e

M
u
le

M
e
s
s
a
g
e

Provenance Interceptor

surrounding service

component

Mule

framework

HTTP, SOAP, XML etc.

Figure 2. Framework components.

Operating system: Ubuntu 10.04, Processor: Intel Core 2
(2 GHz), RAM: 2 GB, Axis2/C version: 1.6.0, Web service:
Echo

Echo service is invoked 100 times in a row for getting
real data for comparison. Five multiple runs are performed
for the calculation of best time, worst time and average
time of execution. The process is executed by considering
overall (Inflow and Outflow), only Inflow and only Outflow
provenance. Apache Axis2/C engine is extended by using
custom handlers and modules in the corresponding flows.

Figure 3 presents the performance of these different
execution runs on Axis2/C engine. Left side of the figure
details multiple runs of echo service without provenance,
with provenance (Inflow and Outflow), only Inflow and only
Outflow provenance. Y-axis represents the time required for
execution. Right side of the figure shows the increase in
time by comparison to without provenance. This increase
in time is calculated for overall provenance, only Inflow
provenance and only outflow provenance. The comparison is
done for average values by using formula 1, where T2 is time
including provenance and T1 is time excluding provenance.

Time increase = T2 − T1 (1)

The average increase in time for 100 simulation runs of
echo service for collecting and logging overall provenance
data is only 0.017 ms when compared to the execution with-
out provenance. The average increase in time for only Inflow
provenance is 0.009 ms and for only Outflow provenance
is 0.013 ms when compared to without provenance. The
individual Inflow and Outflow provenance was collected for
experimental purposes to observe the respective overhead.
In a real lab experiment the overall provenance of process

is essential. The increase in time is too less and negligible
when considering the advantages like fault tracking, resource
utilization, patterns finding and energy consumption of a
provenance enabled Cloud. Furthermore, the successful de-
ployment of provenance collection to Axis2/C and Mule
frameworks support our theory of a generalized and inde-
pendent provenance framework

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

T
im

e
 i
n

 m
s

Provenance Scenarios

Best Case

Worst Case

Average Case

0

0.005

0.01

0.015

0.02

T
im

e
 i
n
 m

s

Time Increase

Figure 3. Test results of Echo service.

VII. CONCLUSION AND FUTURE WORK

Provenance is an important aspect in e-science. With the
technology shift and changes, open Clouds are becoming
an important part of e-science. Open Clouds are used in
research and private business domain for storage, com-
putation and execution of complex scientific applications.
This paper considers provenance as an important metadata
for Cloud environment and present provenance properties,
Cloud architecture, open Clouds dependencies, and finally
propose a framework. Proposed framework can be deployed
to any Cloud scheme without modifying the basic ser-
vices architecture or source code. Further, we gave a brief
overview for the need of provenance in Cloud and present
the major challenges and properties of such a framework.
An independent system is proposed with advantages being
simple, easy to use, easy to deploy, and works with open
Cloud providers.

In future work, we will give insight details of the frame-
work, simple user interface to configure provenance to Cloud
service, evaluation of provenance framework for Cloud
services and working example of provenance usage for fault
detection and resources utilization (energy consumption).

REFERENCES

[1] Oxford dictionaries. [retrieved: may, 2012]. [Online]. Avail-
able: http://oxforddictionaries.com/definition/provenance

[2] R. Bose and J. Frew, “Lineage retrieval for scientific data
processing: a survey,” ACM Comput. Surv., vol. 37, no. 1, pp.
1–28, Mar. 2005.

[3] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance Techniques,” Computer Science Department, In-
diana University, Bloomington IN, Tech. Rep., 2005.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

[4] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M.
S. d. Cruz, E. Ogasawara, and M. Mattoso, “Provmanager:
a provenance management system for scientific workflows,”
Concurrency and Computation: Practice and Experience,
2011.

[5] M. Szomszor and L. Moreau, “Recording and reasoning
over data provenance in web and grid services.” in Coop-
IS/DOA/ODBASE, ser. Lecture Notes in Computer Science,
R. Meersman, Z. Tari, and D. C. Schmidt, Eds., vol. 2888.
Springer, 2003, pp. 603–620.

[6] Y. Cui and J. Widom, “Lineage tracing for general data
warehouse transformations,” in Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, ser. VLDB
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 471–480.

[7] P. Buneman, S. Khanna, and W. chiew Tan, “Why and
where: A characterization of data provenance,” in ICDT ’01:
Proceedings of the 8th International Conference on Database
Theory. Springer, 2001, pp. 316–330.

[8] M. Imran and K. A. Hummel, “On using provenance data
to increase the reliability of ubiquitous computing environ-
ments,” in Proceedings of the 10th International Conference
on Information Integration and Web-based Applications &
Services, ser. iiWAS ’08. New York, NY, USA: ACM, 2008,
pp. 547–550.

[9] S. Miles, P. Groth, M. Branco, and L. Moreau, “The re-
quirements of recording and using provenance in e-Science
experiments,” University of Southampton, Tech. Rep., 2005.

[10] pasoa. [retrieved: may, 2012]. [Online]. Available:
http://www.pasoa.org/

[11] oasis. [retrieved: may, 2012]. [Online]. Available:
http://www.oasis-open.org/

[12] mygrid project. [retrieved: may, 2012]. [Online]. Available:
http://www.mygrid.org.uk/

[13] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock, “Kepler: an extensible system for design
and execution of scientific workflows,” in Scientific and
Statistical Database Management, 2004. Proceedings. 16th
International Conference on, Jun. 2004, pp. 423–424.

[14] Taverna workflow management system. [retrieved: may,
2012]. [Online]. Available: http://www.taverna.org.uk/

[15] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance col-
lection support in the kepler scientific workflow system,” in In
Proceedings of the International Provenance and Annotation
Workshop (IPAW). Springer-Verlag, 2006, pp. 118–132.

[16] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Making
a cloud provenance-aware,” in First workshop on on Theory
and practice of provenance, ser. TAPP’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 12:1–12:10.

[17] Amazon elastic compute cloud. [retrieved: may, 2012].
[Online]. Available: http://aws.amazon.com/ec2/

[18] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.
Seltzer, “Provenance-aware storage systems.” in USENIX An-
nual Technical Conference, General Track. USENIX, 2006,
pp. 43–56.

[19] Nimbus. [retrieved: may, 2012]. [Online]. Available:
http://www.nimbusproject.org/

[20] Opennebula. [retrieved: may, 2012]. [Online]. Available:
http://opennebula.org/

[21] Eucalyptus. [retrieved: may, 2012]. [Online]. Available:
http://open.eucalyptus.com/

[22] S. Wardley, E. Goyer, and N. Barcet, “Ubuntu enterprise cloud
architecture,” Technical White Paper, Aug. 2009.

[23] Mule esb. [retrieved: may, 2012]. [Online]. Available:
http://www.mulesoft.org/what-mule-esb

[24] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing
and Grid Computing 360-Degree Compared,” in 2008 Grid
Computing Environments Workshop. IEEE, Nov. 2008, pp.
1–10.

[25] M. A. Sakka, B. Defude, and J. Tellez, “Document prove-
nance in the cloud: constraints and challenges,” in Pro-
ceedings of the 16th EUNICE/IFIP WG 6.6 conference on
Networked services and applications: engineering, control
and management, ser. EUNICE’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 107–117.

[26] A. S. Foundation, “Apache axis2/java - next generation web
services,” Website http://ws.apache.org/axis2/, 2009.

[27] Axis2- ws-addressing implementation. [retrieved: may, 2012].
[Online]. Available: http://axis.apache.org/axis2/java/core
/modules/addressing/index.html

[28] Apache axis2/c manual. [retrieved: may, 2012].
[Online]. Available: http://axis.apache.org/axis2/c/rampart
/docs/rampartc manual.html

[29] F. A. Khan, S. Hussain, I. Janciak, and P. Brezany, “Enact-
ment engine independent provenance recording for e-science
infrastructures.” in Proceedings of the Fourth IEEE Inter-
national Conference on Research Challenges in Information
Science RCIS’10, 2010, pp. 619–630.

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

