
Towards a SLA-compliant Cloud Resource
Allocator for N-tier Applications

Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow and Bryan Scotney
School of Computing and Information Engineering

University of Ulster
Coleraine, Northern Ireland

Email: a.mcconnell@ulster.ac.uk, gp.parr@ulster.ac.uk, si.mclean@ulster.ac.uk, pj.morrow@ulster.ac.uk, bw.scotney@ulster.ac.uk

Abstract—Cloud vendors commonly offer users IaaS where vir-
tual machines (VMs) can be created and run on cloud resources.
The resource allocation for each VM is defined by the user and
the VM is created on a physical machine (PM) where ample
resources exist to support the VM’s operation at its maximum
capacity. There are a number of opportunities for improvement
when allocating host resources to VMs. VM-resident applications
are often n-tier, with different VMs responsible for parts of the
distributed application. It may be important that these VMs are
placed within a given network proximity to one another. The
network proximity to the user may also be an issue for some
applications. Resource allocation to VMs should also be such that,
rather than a user over-provisioning the VM, the VM’s minimal
operational requirements are specified so that the VM can be
resource-throttled at times of heavy load. This paper presents
an outline for a system called Innkeeper, which aims to allocate
resources to a VM in a way that ensures the VM will always
function adequately, but where the VM is not over-provisioned.
Innkeeper also aims to place VMs so that a VM ”family” are
kept within a necessary network proximity to one another and
where the proximity to the user is also considered when placing
VMs.

Keywords-cloud computing; resource allocation; virtualisation.

I. INTRODUCTION

Cloud Computing offers virtualised data centre resources to
users as a service. Organisations can use cloud platforms to
outsource their IT infrastructure, resulting in reduced Capital
Expenditure (CAPEX) and Operating Expediture (OPEX) and
dynamically scaling capacity. Cloud providers offer pay-per-
use pricing schemes where users pay an amount to reserve
certain resources and a further amount for the amount of
a resource used, e.g., bandwidth. Allocating physical host
resources to users and their VMs is carried out on-the-fly and
is often achieved using greedy algorithms. It is necessary for
a set of operational constraints to be established before any
optimisation method can be successful. PMs have finite sets
of resources and VMs have operational requirements in terms
of resources. A VM should only be placed on a physical host
where the physical host has sufficient resources to satisfy the
demands of all resident VMs. VMs also have a set of network
requirements that are often ignored when defining a VM’s
resource needs. Cloud applications are often n-tier applications
[1], with one element of the application residing within a
separate VM from other elements. The network distance (in

terms of bandwidth and latency) between application elements
should be short enough that the entire application functions to
the user’s requirements. This is especially a concern in the
situation where a cloud provider has resources in more than
one geographic location, or where the user migrates part of his
organisation’s application to the cloud, whilst retaining other
parts within the organisation.
The work presented in this short paper is at an early stage and
is ongoing. The proposed solution provides a system, which
1) provides a Service Level Agreement (SLA) framework for
n-tier cloud applications, 2) provides an automated scalable,
three-tiered approach for assessing the suitability of distributed
resources for VM placement, 3) considers network links
between all application entities and the user.
The next section discusses related work, followed by a de-
scription of the proposed model and its design. Results from
some initial experiments are presented in section IV.

II. RELATED WORK

Existing literature details that cloud computing offers dif-
ferent models for VM consumption in cloud environments [2],
reservation, on-demand and spot market [3], with each model
catering for a different need. Placing VMs in each model
requires that a decision is made about placing the VM on
an appropriate host [4], [5] or migrating a VM from one host
to another in order to provide some kind of optimisation (e.g.,
performance increase, financial cost saving). The current state-
of-the-art focuses heavily on optimisation of VM placement
with various types of focus on different constraints; there are
systems aimed at cloud resource provisioning for existing VMs
[6], [7], [8], but there is no work on providing an open, scal-
able platform for assessing host, cluster and cloud capability,
particularly for SLA-compliant n-tier VM placement.

III. MODEL DESCRIPTION

Innkeeper is designed to provide three brokers, one for each
host, one for each cluster of hosts and one for the cloud of
clusters (see Fig. 1). The function of each broker is as follows:

a) Host Innkeeper: Each Host Innkeeper (HIk) responds
to a request for VM placement with either accept or refuse
depending on whether or not the host can accommodate the
VM. This decision is based upon a VM SLA, which defines

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 1. The Three-tier Innkeeper structure

metric thresholds for minimal VM performance, e.g., a VM
may require a minimum of 800 Mhz of CPU share and 1 GB of
virtualised memory in order to perform adequately. For each
metric, the HIk subtracts the SLA value from the currently
available resources for the host, e.g., if the host has 4 GB of
memory remaining and the VM’s SLA is requesting 1 GB then
the HIk would calculate that accepting the VM means 3 GB of
free memory would remain for the host. The HIk would define
host-level thresholds as well, meaning that it would never be
the case that 100% of any host-level metric is ever consumed.
In the case that some metric request in a to-be-placed VM
caused the host to consume levels of that metric at host level,
then the VM would not be placed and a refuse response would
be generated.

b) Cluster Innkeeper: Each Cluster Innkeeper (CIk) acts
as a placement broker at the cluster level. The CIk aims to
place VMs on hosts, in the cluster it is responsible for, by
interfacing with each HIk and querying whether or not the
host can accept a VM with a given SLA. Three outcomes
are possible when a CIk attempts to place a VM. Either one
of the HIks accepts the VM, more than one HIk accepts the
VM or none of the HIks accepts the VM. The first case is
straight-forward and the VM is placed via the accepting HIk.
In the second scenario, where there are multiple hosts on,
which the VM may be placed, there is room for employing
some intelligence when choosing which host to place the VM
with, e.g., one host may offer more of a desired resource than
another. The third scenario, where no hosts can accommodate
the VM, presents a situation where either another CIk is
used or an optimisation is attempted in order better place
existing VMs and free up capacity so that a new VM can be
added to a host. This type of optimisation is discussed in sub-

section III-B. CIks also provide knowledge about the network
proximity, in terms of bandwidth and latency, between CIks.
This is necessary in order to ensure that VMs are placed within
adequate proximity to other VMs they communicate heavily
with, and with the end-user, as defined in the VM’s SLA.

c) Cloud Innkeeper: The Cloud Innkeeper (CLIk) is a
central system, which acts as a broker for the entire cloud.
The CLIk is presented with a user’s VM SLA and attempts to
place the VM on a cluster by interfacing with each CIk. There
are again three possible scenarios, one CIk can accommodate
that VM, multiple CIks can accommodate the VM, or no CIks
can accommodate the VM. The second scenario again presents
an opportunity to place the VM at a host where some benefit
may be had over placement at other hosts, e.g., an important
resource is more abundant. The third scenario, where no CIks
can accommodate the VM, presents a further opportunity to
optimise the placement of existing VMs at one or more CIk. It
is also possible that the CLIk will be presented with a n-tier set
of VMs to place, each with constraints regarding the network
proximity to others. An optimisation problem is created in this
instance, which may be solved with the implementation of a
greedy algorithm.

These brokers provide a highly dynamic and scalable hi-
erarchy for SLA-compliant VM placement. A common Ap-
plication Programming Interface (API) is shared between the
HIk, CIk and CLIk as shown in Table I. An API relevant to
network metrics is unique only to CIks, where bandwidth and
latency values between a queried CIk and another address,
e.g., another CIk or an end-user I.P. address, are returned.

A. Monitoring

Host and VM monitoring is carried out by accessing the
monitoring Web services of the underlying virtualisation plat-
form. This monitoring is carried out by each HIk. CIks and
the CLIk access monitoring information via the HIk API.
Network monitoring, of the links between CIks and with end-
users, is carried out by using Bwping [9] to acquire bandwidth
and monitoring statistics. Host and VM real-time monitoring
statistics are stored in a database within each HIk with network
monitoring statistics stored with each CIk.

B. Optimisation

Optimisation opportunities exist when a scenario occurs
where a HIk, CIk or the CLIk cannot accommodate a new
VM. It may be possible to free up resources at a host by
attempting to reconfigure the hosting of existing VMs so that
the overall capacity utilisation of a given host is higher while
not breaching utilisation thresholds for any given host-level
metric. This type of optimisation can be viewed as the Multi-
objective Knapsack Problem (MKP), which is a combinatorial
optimisation problem [10], [11], [12]. The MKP requires
that a compromise or trade-off is made when considering
multiple optimisational sub-objectives. Therefore MKP cannot
guarantee an optimal solution for each sub-objective. Chu et
Beasley [13] formulate the MKP as:

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I
THE INNKEEPER COMMON API

Interface Description

GetAggCPU (Return Integer) Returns the aggregated CPU capacity for the broker’s hosts (MHz)
GetAggMem (Return Integer) Returns the aggregated memory capacity for the broker’s hosts (MB)
GetAggDisk (Return Integer) Returns the aggregated disk capacity for the broker’s hosts (GB)
GetMaxCPU (Return Integer) Returns the single largest amount of CPU available at a host (MHz)
GetMaxMem (Return Integer) Returns the single largest amount of Memory available at a host (MB)

GetVmAllocation (Return Integer) Returns the current allocation of VMs for the broker’s hosts
CanHostVM(VMSLA *sla) (Return Boolean) Is passed VM’s SLA and returns true or false indicating the ability to host the VM

AddVM(VMID *vmId) (Return Boolean) Is passed an ID for the VM so an attempt can be made to place it at the appropriate host
RemoveVM(VMID *vmId) (Return Boolean) Is passed an ID for the VM so an attempt can be made to remove the VM from cloud/cluster/host

maximise
n∑

j=1

pj xj ,

subject to
n∑

j=1

rij xj ≤ bi, i = 1, ...,m,

xj ∈ {0, 1}, j = 1, ..., n,

where each of the m constraints is defined as a knapsack
constraint. The MKP attempts to place a subset of n items
such that the total value of all items is as high as possible
within given constaints. The value of each item is defined as
p, with x defining whether or not item pj is placed (x is
assigned a value of 1 if the item is placed and 0 if it is not).
The constraint value for pj is rij , with i referring to a given
constraint, e.g., for placing a VM it might be CPU or memory.
The total constraint value for the sum of constraints for all
placed items must not exceed the maximum allowed value for
that constraint bi. This problem is often solved using a greedy
algorithm, e.g., a genetic algorithm.

IV. INITIAL RESULTS

Some initial experimentation was carried out in order to
assess host metric utilisation as VMs are placed on a host.
These experiments were carried out using a Fujitsu Siemens
Celsius R550 servers, with two Intel Xenon E5440 processors
(2.8 GHz, 6 MB L2 cache) and with 8 GB of main memory.
This host ran VMware ESX 4.0 [14] and was used to host
VMs, containing a standard Joomla v1.5.20 Web Server [15],
each with a resource allocation of 2 virtual CPUs, 512 MB
of main memory and an 8 GB thin-provisioned virtual hard
drive. Load was placed on each VM’s application (two page
requests per second) using OpenLoad [16] on the Web Server
over port 80 (the standard HTTP port). Fig. 2 illustrates the
resource usage for both the host and the first VM placed. The
host’s CPU runs at 100% utilisation when four loaded VMs
(each one had a VM CPU load of≈ 95%) are placed on it. This
host CPU load causes resource contention between VMs. It is
interesting to note that, after 3 heavily-loaded VMs are placed
on the host, the CPU resource consumption of the monitored
VM appears to drop. This decrease in CPU consumption by
the VM is because it is starved of access to the underlying

Fig. 2. Host and VM Resource Consumption

host resources and is forced to queue for CPU resources. This
creates the illusion, in the reported VM performance metrics,
that the VM is not consuming resources due to lack of demand
on the VM when in fact the drop in CPU consumption is
because the VM does not have the opportunity to consume
the host’s CPU. This is backed up the graph in Fig. 3 where
OpenLoad reports an increasing response time, as the number
of VMs on the host is increased, for the monitored VM. The
horizontal dashed line on Fig. 2 illustrates a potential host CPU
utilisation threshold beyond which no further VMs should be
added. With this threshold defined within a HIk, the HIk would
prevent further VMs being added beyond the second VM, as
illustrated by the vertical dashed line in Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

This model attempts to provide a system for SLA-compliant
placement of n-tier VMs in a cloud computing environment.
Initial experimentation illustrates a need for such a system, to
ensure near-optimal use of distributed cloud resources while
enforcing SLA constraints. There is also a need to ensure

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 3. VM Response Times

that communicating VMs are placed within a relatively close
network proximity, in order that they perform adequately.
A key requirement for cloud-based systems is the ability to
provide scalability. The Innkeeper design offers this scalability
and ensures that each of the three tiers is agnostic to the
function of the other tiers. This design reduces complexity
and provides a relatively simple but powerful means by which
hosts can be monitored and VMs placed. One of the key
motivators for this work is to create a platform for cloud
monitoring and orchestration where intelligent optimisation,
with various focuses, e.g., power-saving, reduction in network
load, can be easily implemented.

A. Future Work

This body of work presents challenges and opportunities, all
of which will be explored in the near future so that a live alpha
prototype system is in place before the end of the calendar
year. The impending implementation of the prototype system
requires that the means of monitoring live VMs, hosts and
network links are in place within a cloud test-bed environment.
This will most likely be carried out on a VMware test-bed with
a number of clusters of industry-standard, multi-core hosts.
Network degradation will be created between these clusters
(and between clusters and emulated end-users) using WANem
[17]. A standardised means of n-tier VM SLA definition
remains a challenge, with an associated problem of optimally
placing multiple, communicating VMs. An associated issue
with n-tier VM placement is that heavy VM load, on existing
VMs, may force SLA failure despite the SLA metric thresholds
being set for a given amount of maximum load. Failure to
ensure that a VM’s load does not exceed that for which its
SLA is defined may result in the HIk’s resource provisioning
calculations becoming pointless. A methodology must be
developed to ensure that a VM is resource-throttled when its
load causes it to consume resources to the extent that resource
contention is caused for other VMs on the same host. The

other perspective is that this throttling shouldn’t be a constant
- if host resources are unused then they should be available to
VMs, in the hope of increasing the quality of user experience,
rather than the host experiencing low utilisation. However,
optimisation opportunities exist to place VMs such that, with
VM resource-throttling in place, low utilisation on hosts does
not occur.

REFERENCES

[1] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe, and C. Pu,
“Economical and robust provisioning of n-tier cloud workloads: A multi-
level control approach,” in Distributed Computing Systems (ICDCS),
2011 31st International Conference on, June 2011, pp. 571 –580.

[2] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement
algorithms for on-demand clouds,” in Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, 29
2011-Dec. 1 2011, pp. 91 –98.

[3] I. Fujiwara, K. Aida, and I. Ono, “Applying double-sided combinational
auctions to resource allocation in cloud computing,” in Applications and
the Internet (SAINT), 2010 10th IEEE/IPSJ International Symposium on,
July 2010, pp. 7 –14.

[4] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1 –9.

[5] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in Green Computing and Com-
munications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), Dec.
2010, pp. 179 –188.

[6] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic
SLA-driven Provisioning for Cloud Applications,” 2011 11th
IEEEACM International Symposium on Cluster Cloud and
Grid Computing, pp. 434–443, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5948634

[7] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine
Provisioning Based on Analytical Performance and QoS in
Cloud Computing Environments,” 2011 International Conference
on Parallel Processing, pp. 295–304, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6047198

[8] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879,
2011. [Online]. Available: http://dx.doi.org/10.1016/j.future.2010.10.016

[9] O. Derevenetz, “Bwping - open source bandwidth measurement tool,”
http://bwping.sourceforge.net/, Jun. 2011, [retrieved: April 2012].

[10] C. Cheng, Y. Huang, Z. Chen, X. Zhang, and J. Xu, “Solving the 0-
1 multi-objective knapsack problem using self-assembly of dna tiles,”
in Bio-Inspired Computing, 2009. BIC-TA ’09. Fourth International
Conference on, Oct. 2009, pp. 1 –9.

[11] Z. Shurong, W. Jihai, and Z. Hongwei, “Multi-population cooperative
ga and multi-objective knapsack problem,” in Management and Service
Science (MASS), 2010 International Conference on, Aug. 2010, pp. 1
–4.

[12] D. Vianna and J. Arroyo, “A grasp algorithm for the multi-objective
knapsack problem,” in Computer Science Society, 2004. SCCC 2004.
24th International Conference of the Chilean, Nov. 2004, pp. 69 – 75.

[13] P. C. Chu and J. E. Beasley, “A genetic algorithm for
the multidimensional knapsack problem,” Journal of Heuristics,
vol. 4, no. 1, pp. 63–86, Jun. 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1009642405419

[14] Vmware, “Virtualization overview,” whitepaper,
http://www.vmware.com/pdf/virtualization.pdf, Jan. 2010, [retrieved:
April 2012].

[15] Turnkey-Linux, “Joomla 1.5 appliance - cutting edge content
management — turnkey linux virtual appliance library,” online,
http://www.turnkeylinux.org/joomla15, Nov. 2011, [retrieved: April
2012].

[16] P. Johnsen, “Openload,” online, http://freecode.com/projects/openload,
Jun. 2001, [retrieved: April 2012].

[17] WANem, “Wanem - the wide area network emulator,” online,
http://wanem.sourceforge.net, Dec. 2009, [retrieved: April 2012].

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

