
Provenance Framework for the Cloud Environment (IaaS)

Muhammad Imran
Research Group Entertainment Computing

University of Vienna, Austria
Email: imran.mm7@gmail.com

Helmut Hlavacs
Research Group Entertainment Computing

University of Vienna, Austria
helmut.hlavacs@univie.ac.at

Abstract—Cloud providers can optimize resource utilization
and energy consumption by finding patterns in their usage.
One way of finding such patterns is to study the history of
Cloud resources activity. This approach is known as Cloud
provenance. Provenance can also be used to track errors and
faults in Cloud services. We have developed a provenance
framework for research Clouds in order to find the history
of the resources usage. Our framework collects provenance
data in response to the request of users for IaaS scheme. In
this paper, we discuss a provenance framework in the Clouds
and present different possible approaches of the provenance
collection process. To the best of our knowledge, provenance
is yet to be addressed in the Cloud environment. Hereby, we
provide details of our proposed framework and present its
performance evaluation. The experimental results show that
our provenance framework has a very low overhead (less than
milliseconds), which makes it ideal for the Cloud infrastructure.

Keywords-provenance framework; cloud IaaS.

I. INTRODUCTION

The vision of Cloud is to address a complex engineering,
medical or social problem. Cloud enables the end user
to process huge amount of data and/or satisfy his needs
for mass computational power via resource virtualization.
The experiments are performed on Cloud on a large scale
and shift of technology is already in progress [1], [2].
Infrastructure as a Service (IaaS) is the new paradigm for
researchers to deploy complex applications into Cloud. This
is different than Grid [3] and distributed environments where
a user had to adopt their application to the grid infrastructure
and policies. IaaS scheme provides a raw resource which
is hired and updated according to the requirement of the
application by a user without knowing the complexity and
details of the underlying architecture. A resource is hired
when a match is found based on a user and application
requirements such as memory, disk space, resource type
and/or Cloud provider. This is called on-demand computing
and in the process of resource allocation, a user is charged
with some price. Once a resource is updated and used, the
user may take a snapshot of the resource if the same resource
is to be used later on.

Workflow [4] is designed to execute activities in order
for a complex application in e-Science. Provenance of a
workflow activities [5] is the information about intermediate
data and processes to verify the execution of an application.

Provenance in general means; “the origin or source of an
object”. In Clouds, provenance can be broadly categorized
into user data (applications installed on a virtual machine),
instance type (memory, disk size, number of instances) and
resource type (image ID, location). Such information is
of high importance to utilize the cloud resources, e.g., a
resource already built and updated by one user can be used
by others with minimum or no change of the installed ap-
plications and components. Furthermore, mining provenance
data can be used to forecast a future request, e.g., Eddy
Caron [6] used string matching algorithm on recent history
data to forecast a next request. Similarly, networks in general
and Clouds in particular are prone to errors, and the history
data can be utilized in Clouds to resolve the errors with
minimum effort.

Clouds are still in the process of evolution and provenance
is yet to be implemented (addressed) in Clouds. Contribu-
tions of this paper are the following:

• A brief overview of research Clouds IaaS and a detailed
discussion of possible schemes to incorporate prove-
nance into Cloud environment.

• A use case of provenance usage and example metadata
from IaaS Cloud.

• Detailed architecture of our provenance framework for
Cloud IaaS and the evaluation of collecting and storing
provenance data.

The rest of the paper is organized as follows. Section II
summarizes the research Cloud architecture and discusses
the possible provenance schemes. Section III gives the
details of the underlying architecture (middleware) used by
the research Clouds and the extension of this architecture to
collect provenance data. Section IV gives a brief overview
to use the provenance data and utilize Cloud resources. In
Section V, we present the test results of the collection and
storage module. Section VI concludes our work and presents
the directions for the future implementations.

II. RESEARCH CLOUD IAAS ARCHITECTURE AND
DISCUSSION OF PROVENANCE SCHEMES

A. Research Cloud IaaS

Cloud computing is generally categorized into three types
which are business, Research or private and hybrid Clouds.

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

User

Cloud Tools

(Cloud API) Cloud

Cloud

Controller

Cluster

Controller

Node

Cotroller

Virtual

Machine

Storage

Controller

Uses

Cloud API

Cluster API

Storage API
Node API

Cloud

Storage

Manages

Figure 1. Generalized Cloud Architecture.

They are further subdivided into three schemes which are In-
frastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). Three different Clouds,
i.e., EUCALYPTUS [7], Nimbus [8] and OpenNebula [9]
were explored to understand their internal architecture and
communication mechanism between various components.
This helped us to discuss the possible provenance schemes
for Cloud IaaS and implication of our proposed framework.
The main components of IaaS Cloud are summarized below:

• Application tools: Application Programming Interface
(API) available to communicate with Cloud services,
e.g., resource hiring, starting, stopping, saving and/or
describing the state of a particular resource.

• Cloud, Cluster and Node: The request of users is
handled by the Cloud and routed to Clusters and Nodes
respectively. The Node communicates with Virtual
Machine (VM) and the job of Cluster is to manage
different nodes in the network.

• Storage: Cloud offers storage unit (file system) to save
user data and raw disk images to be run as resources.
Communication with a storage unit is controlled by a
service, e.g., Walrus in Eucalyptus Cloud and a user
can save the updated state of a running machine. The
process of saving the updated machine into Cloud is
called snapshot.

Figure 1 presents a generalized architectural overview and
control flow from user to VM in Cloud IaaS.

B. Provenance as a Part of Cloud Services

In this scheme, the Cloud provider needs to provide a
service which will communicate with other Cloud services
including cluster, node and storage to collect provenance
data. This scheme proposes the application of provenance
as a part of overall Cloud Infrastructure. The following list
the advantages of provenance inside the Cloud IaaS.

• Easy to use as provenance is already a part of Cloud
infrastructure and a user can decide to turn it on/off
just like other Cloud services.

User

Cloud

Cloud

Services

Storage

Service

Provenance

service Provenance store

Cloud applicatoin

Application services

Service 1

Service 2

Service 3

Figure 2. Provenance Service as Part of Cloud Services.

• Users will prefer this scheme as they do not need to
understand the structure of provenance framework and
is the responsibility of the Cloud provider to embed
such a framework.

The following lists the disadvantages of such a provenance
scheme.

• Cloud providers cannot charge users for such a scheme
unless it has some benefits of resource utilization and
initialization for users.

• In case of Cloud services failure, provenance system
will also fail and there is no way to trace the reason
for the failure.

• There will be extra burden on the Cloud provider
because the usage of Cloud resources must increase
due to incorporating the provenance system as a part
of Cloud framework.

• Such scheme can only work with a particular version
of Cloud IaaS. Any change in Cloud model or services
signature needs an appropriate change in provenance
application.

In distributed, grid and workflow computing, there are many
examples of provenance data management and schemes
[10]–[13]. Each of these schemes is designed for a partic-
ular environment and they rely on the underlying services
model. Therefore, the existing techniques cannot be applied
to Cloud environment and further, Cloud services are not
extensible to third party applications. Figure 2 presents a
provenance system as a part of Cloud services.

C. Provenance is Independent of Cloud Services

A provenance scheme which adopts a modular and an
agent like approach to address cross platform, applications
and different Cloud providers is independent of Cloud infras-
tructure. Such a scheme must address on-demand, pay as you
go and extremely flexible Cloud architecture. Advantages of
an independent provenance scheme are:

• Independent of Cloud services and various applications
domain.

• Failure of Cloud will not affect provenance scheme as
it is not a part of Cloud.

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

User

Provenance

service

Cloud applicatoin Application services

Service 1

Service 2

Service 3

Cloud

Cloud

Services

Storage

Service

cloud store

Provenance

store

Prov
enan

ce

colle
ction

Figure 3. Provenance as an Independent Module

• The users and Cloud providers will be able to track
faults and errors if some Cloud services failed to work
properly.

• Usability and simplicity of such a scheme is very high
because the user has complete control of the provenance
system.

Disadvantages of such a scheme are as follows:
• Complete understanding of Cloud services is required

to make any changes and communicate with the Cloud
infrastructure.

• Trust is required on behalf of the Cloud provider
because of request, permission and response from the
Cloud services to the provenance module.

• Any change in Cloud services, their signature, or com-
munication mechanism will need an appropriate change
in provenance scheme.

In workflow computing, Karma [14] is using a notification
broker where all the activities are published to and stored in
a provenance store. The technique proposed by the Karma
service is not part of a workflow enactment engine and it
works as a bridge between the provenance store and the
enactment engine. Figure 3 gives a brief overview of an
independent provenance scheme in Cloud.

D. Discussion

Both of these approaches have their pros and cons. While
considering provenance for Cloud IaaS, the major challenge
is to address the Cloud extensibility. Clouds are not exten-
sible by nature and in case of open Clouds, a developer
needs a deep understanding of the source code in order to
make any changes. Keeping this point in view, we propose a
provenance framework which is independent of Cloud IaaS
provider and with minimal or no changes required in Cloud
services.

III. PROVENANCE FRAMEWORK

Research Clouds rely on the open source technologies to
provide an infrastructure (IaaS). These open source tech-
nologies includes JAVA and C/C++ languages, and Apache,
Axis and Mule [15] communication frameworks. A general
consensus is that Cloud would not be possible without these

open source technologies. Research Cloud, e.g., Eucalyptus
use Apache, Axis2/C and Mule engines to deploy Cloud ser-
vices as IaaS and built a communication mechanism between
different components. Apache is widely used for its speed,
lightweight engine and its support of SOAP, WSDL and
REST interfaces. Similarly, Mule is an integration platform
used to connect various applications and/or services. These
technologies are used to connect various Cloud components
and are called middleware.

This middleware is extensible and a developer can add
custom methods to the already deployed applications and
service. The proposed framework is based on this feature
of extensibility from Apache, Mule and other third party
tools and consists of the following components: Provenance
Collection, Provenance Parsing, Provenance Storage,
Provenance Query and Provenance Visualization. First,
the explanation of Apache architecture and its extension for
the development of the provenance framework is given.

A. Apache (Axis2/C)

To develop a provenance framework, the following com-
ponents of the Apache architecture are utilized.

Handler: or interceptor is the smallest execution unit
in the message passing system of the Apache Engine. The
idea is to intercept the flow of a message and perform the
additional task submitted by a user. Handler can read and
write to the message context (apache messaging system). A
handler has two parts: header and body. The header specifies
the name and body the operation. There are predefined
handlers in the Apache Axis execution chain and also
the ability to provide custom handlers developed by the
developers [16]. A group of handlers that is orchestrated
and deployed within the Apache engine is called a module.

Phase: is the concept in Apache Axis to support the
dynamic ordering of the handlers. It acts like a bucket in
which where the handler is put. A phase can have one or
more handlers. Apache provides different kinds of phases
spanning from global (for overall axis communication) to
operational (for a particular operation or web method).

Flow: is a collection of phases. Phase is more like a
logical collection where flow is a real execution chain. There
are four types of flows in Apache engine.

• InFlow
• OutFlow
• InFaultFlow
• OutFaultFlow
Similarly, other third party libraries and frameworks used

by Clouds are also extensible. Examples of such frameworks
are the use of Mule in Eucalyptus, Axis in Nimbus and
Apache xml-rpc in OpenNebula. The basic architecture of
these libraries is different but the main idea of an interceptor
or handler is the same. For example, in Mule, the message
context is referred to as Mule Message. Interceptors can
be deployed before and after a component is invoked in the

154Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Mule framework. The Mule message before and after resides
in flows which are called inbound-router and outbound-
router respectively.

B. Provenance Collection
When a message enters Apache engine, it goes through

InFlow and invokes all the handlers inside. InFaultFlow is
similar and handles a faulty incoming request, e.g., sending
wrong arguments to the web service method or any other
unexpected condition that prevents the request to succeed.
OutFlow is invoked when a message is moving out of
Apache engine (invoking all handlers in OutFlow) and
the OutFaultFlow is invoked when something goes wrong
in the out path, e.g., a host is shut down unexpectedly.
Various Flows within Apache engine and the execution of
a service with input and output messages is described in
figure 4. The left side of figure details the different flows
and the right side gives an overview of one single flow
with phases and handlers concepts (both built in and user
defined). Custom handlers, using C/C++ for provenance
collection are deployed in four different Flows of the Apache
execution chain. When a component inside Cloud IaaS is
invoked, provenance collection module intercepts the flow,
collects and parses the message for provenance data in the
corresponding execution flow.

C. Provenance Parsing and Storing into XML File
SOAP message inside Apache engine is intercepted by the

collector module which passes this message to the parser.
The parser reads the SOAP message, parse it accordingly
and store the data in a well defined XML file. We used
XML schema for the collected provenance data because it
is widely used model for data representation. The XML can
be used to maximize the advantages of custom algorithms
and third party applications. To query the provenance data,
it is better to provide a standard schema and hence the usage
according to individual preferences.

TableI presents a sample of collected, parsed and stored
provenance data by our provenance framework. This data
represent user activity for methods of Eucalyptus clus-
ter service and detail the timestamps, resource type and
instance specific information. <UserData> is the list of
applications specified by user to populate the resource and
<TimeStamp> are corresponding start and finish time for a
web service method.

D. Provenance Query
Custom applications can query provenance data based on

the user requirements. We find the activity pattern in Cloud
IaaS based on a resource type, instance type, time used or
user ID in our example query. This information can be used
to monitor Cloud IaaS and the frequently used resources can
be moved to a faster CPU/disk unit for better performance.
Algorithm 1 is used to find activity patterns based on the
the resource-ID.

Algorithm 1 Solve Query Q: Q = Return Resource Types
(emi-IDs) in XML Store
Require: XMLStore, ClusterName
Ensure: XMLStore is not Empty

Begin
Array ResouceType[] T
OpenXMLFile(XMLStoreLocation)
FindCluster(ClusterName)
while ParentNode<MethodName> == RunInstance) do

T ← ChildNode(<ImageID>)
end while
End

Figure 5. User Interface for Engaging Provenance Module into Cloud

E. User Interface

Usability of the proposed provenance framework is very
high. Cloud providers can enable/disable the provenance
module according to their choice. Different options are
available to enable/disable the provenance module based
on the requirements of the Cloud provider. Some of the
options are: to enable/disable provenance module for all
clusters, a particular cluster, all nodes, a particular node, or
selected methods from a particular cluster or node. Figure
5 presents a prototype of user interface available to Cloud
IaaS provider.

F. Framework Experience

By extending the middleware (Apache and Mule) using
handlers, we are independent of Cloud provider and different
IaaS schemes. We followed a modular approach and divided

155Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Web Service Execution Flow

InFlow

InFaultFlow

OutFlow

OutFaultFlow

Message

In
Message

Out

Message

In
Message

Out

Message

In

Message

In

Message

Out

Message

Out

Axis2C engine

P1 P2 P3 P4

H1 Hu Hn

Pi=phase

Hi=handler

Hu=custom handler

F
lo
w
w
ith
c
u
s
to
m
h
a
n
d
le
r

Figure 4. Apache Axis2C Architecture

<EucalyptusServiceName> ClusterController</EucalyptusServiceName>

<MethodName>StartNetwork</MethodName>
<TimeStamp> Start and End Time of Method</TimeStamp>
<ClusterAddress> 131.130.32.12</ClusterAddress>
<UserID>admin</UserID>

<MethodName>RunInstance</MethodName>

<ImageID>emi-392B15F8</ImageID> Instance Type
<KernelID>eki-AE1D17D7</KernelID> <Name>m1.small</Name>
<RamdiskID>eri-16981920</RamdiskID> <Memory>512</Memory>
<ImageURL>emi-URL</ImageURL> <Cores>1</Cores>
<RamDiskURL>eri-URL</RamDiskURL> <Disk>6</Disk>
<KernelURL>eki-URL</KernelURL> <UserData>DataFile</UserData>

<MethodName>StopNetwork</MethodName> <TimeStamp> Start and End Time of Method</TimeStamp>
<UserID>admin</UserID>

Table I
SAMPLE METADATA FOR CLOUD IAAS

our framework into different components. The future of
provenance in Cloud lies in a lightweight and independent
provenance scheme to address cross platform, Clouds IaaS
and application domains. The proposed framework can be
deployed without making any changes to the Cloud services
or architecture. Advantages of the scheme are:

• It is independent of Cloud services and platform and
it works with any Cloud IaaS which use the Apache,
Mule or similar frameworks.

• The proposed framework follows a soft deployment
approach and therefore, no installation is required.

• Some of the challenges offered by Cloud infrastructure
are virtualization, “on demand” computing, “pay as you
go” model, more abstract, extremely flexible and the
services are not extensible by nature. The proposed
framework address these challenges in automatic fash-
ion as being part of Cloud middleware.

Major Disadvantage of proposed framework is:

• Rely completely on the extension of the middleware
and cannot work on any other Cloud IaaS where
middleware is not extensible.

IV. CLOUD PROVENANCE: A USE CASE FOR EFFICIENT
RESOURCE INITIALIZATION AND ENERGY CONSUMPTION

Description: Resource utilization is critically important
both from the resource provider and Cloud performance
perspective. In the Cloud resource allocation process, a
user may request a resource with the input file of required
applications that is the same as a previously initialized
resource but will still need to build the resource from scratch.
The Cloud resource utilization can be maximized if one
is able to provide automatic discovery of already running
instances, saved volumes and snapshots. The automatic
discovery will not only help in resource utilization but will
also provide means to reduce the time and energy consumed.
Our proposed framework collects the metadata information
regarding time, user, cluster and location of newly created
volumes or snapshots and stores it in a provenance database.
To make the process of resource allocation efficient and
automatic, the broker (which takes input from user) com-
pares the user input file with existing provenance data. If
the comparison of input file results in an exact match then
instead of starting a new resource from scratch, the existing
resource volume and snapshot are deployed.
Actors: End-user and Cloud provider. A user benefits from

156Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Table II
UNDERLYING ARCHITECTURAL COMPONENTS

Cloud provider Operating system Cloud services engine Languages Storage unit Virtualization Service tested
Eucalyptus 1.6.2 Linux Ubuntu 10.04 Server Axis2/C 1.6.0 C,C++ File system (XML) KVM/XEN Cluster controller

Resource broker

Provenance

data

Initialize existing

resource

Request for resource

Query provenance for pattern

Cloud

Match found

Start resource

Start new

resource
Match not found

Start resource

R
e
s
o
u
rc
e
a
s
s
ig
n
e
d

Figure 6. Resource Initialization Using Provenance

this scheme by saving his time and effort to build a resource
from scratch. On the other hand, the Cloud provider utilizes
existing deployed resources and saves energy.
Advantages:

• Faster resource initialization in case a match is found.
• Utilization of existing deployed resource (volumes,

snapshots) to save energy, cost and time.
• Overall Cloud performance will increase.

Figure 6 describes the process of using provenance data and
making Clouds more efficient and proactive.

V. EVALUATION

Different approaches are proposed in literature for collect-
ing and storing provenance data to reduce the computation
and storage overhead [17]. Mainly, there are two methods.
The first method proposes to collect provenance data and
store a copy of the parent object. The disadvantage of this
method is a huge storage overheard. The second method
proposes to store links of the parent object. This method is
faster and storage overhead is very low. Disadvantage of this
method is consistency in case a parent object is deleted or
moved.

To store provenance data we followed the second ap-
proach and the proposed framework stores only the link in-
formation about the activity of users and Cloud components.
The provenance data consists of information like: Cloud
images, snapshots, volumes, instance types and user data
etc. Real data is already stored in the Cloud storage unit
and we do not make a copy of this data. Since links are
lightweight, therefore computation and storage overhead for
the provenance data is negligible.

We evaluated the cluster controller service and results
were surprising for collection and storage module. To get
physical evidence, timestamps were calculated at the begin-
ning of provenance module invocation and later on when
the data is parsed and saved into XML file. Time overhead
including the provenance module for Inflow and Outflow
phases of Apache were less than milliseconds. To find the
storage overhead we calculated file size of provenance data
for individual methods. We chose a worst case scenario
where all the incoming and outgoing data was stored. This
process was performed for every method in Eucalyptus clus-
ter service and the average file size of stored provenance data
is about 5 KB for each method. Evaluation was performed
by using the underlying architecture detailed in table II.
Physical machine details for running IaaS Cloud are the
following:
Number of PCs: 2 (PC1 with Cloud, Cluster and Storage
Service, PC2 with Node service), Processor: Intel Core (TM)
2: CPU 2.13 GHz, Memory: 2GB, Disk Space: 250 GB

It is essential to note that the low computation and storage
overhead of the provenance frameworks is because of two
reasons. First, we used an approach where the extension
of the middleware is achieved by built in features. This
approach does not add any extra burden except the collection
of provenance data. Second, we store the provenance data
by using a link based approach. This approach saves on
duplicating the storage of huge amounts which already exists
in Cloud database.

VI. CONCLUSION AND FUTURE WORK

With the evolution of technology and IaaS, complex
applications are target environment for Clouds. Clouds offers
“on demand” computing and “pay as you go” model, where
applications discover resources at run time. The focus of this
paper is provenance data for Cloud IaaS scheme. A client
application hires resources from IaaS and populates them
according to the requirements. These populated resources
are saved in Cloud storage unit and can be used by other
applications having the same requirements. This process
requires storage of users or application activity. First, we
discussed general approaches to collect activity information
performed on Cloud IaaS with their pros and cons. By using
those approaches as the basis of our study, we developed
a framework which is not dependent on Cloud services or
underlying architecture. We divided our framework into dif-
ferent components and proposed a use case scenario where
the collected provenance data can be used to utilize Cloud
resources and to save cost, energy and time. Collecting and

157Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

storage overhead of the proposed framework is very low.
In the future we will extend the framework for resource
utilization in order to save cost, time and energy using
provenance.

REFERENCES

[1] C. N. Hoefer and G. Karagiannis, “Taxonomy of cloud com-
puting services,” in Proceedings of the 4th IEEE Workshop on
Enabling the Future Service-Oriented Internet (EFSOI’10),
Workshop of IEEE GLOBECOM 2010, Miami, USA, ser. 2010
IEEE GLOBECOM Workshops. USA: IEEE Communica-
tions Society, December 2010, pp. 1345–1350.

[2] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the use of cloud computing
for scientific workflows,” in Proceedings of the 2008 Fourth
IEEE International Conference on eScience, ser. ESCIENCE
’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 640–645.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the grid: Enabling scalable virtual organizations,” Int. J. High
Perform. Comput. Appl., vol. 15, no. 3, pp. 200–222, Aug.
2001.

[4] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Work-
flows for e-Science: Scientific Workflows for Grids. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[5] R. S. Barga, Y. L. Simmhan, E. Chinthaka, S. S. Sahoo,
J. Jackson, and N. Araujo, “Provenance for scientific work-
flows towards reproducible research.” IEEE Data Eng. Bull.,
vol. 33, no. 3, pp. 50–58, 2010.

[6] E. Caron, F. Desprez, and A. Muresan, “Forecasting for
grid and cloud computing on-demand resources based on
pattern matching,” in Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, ser. CLOUDCOM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 456–463.

[7] Eucalyptus. [retrieved: may, 2012]. [Online]. Available:
http://open.eucalyptus.com/

[8] Nimbus. [retrieved: may, 2012]. [Online]. Available:
http://www.nimbusproject.org/

[9] Opennebula. [retrieved: may, 2012]. [Online]. Available:
http://opennebula.org/

[10] M. Szomszor and L. Moreau, “Recording and reasoning over
data provenance in web and grid services.” ser. Lecture Notes
in Computer Science, R. Meersman, Z. Tari, and D. C.
Schmidt, Eds., vol. 2888. Springer, 2003, pp. 603–620.

[11] Y. Cui and J. Widom, “Lineage tracing for general data
warehouse transformations,” in Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, ser. VLDB
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 471–480.

[12] P. Buneman, S. Khanna, and W. chiew Tan, “Why and
where: A characterization of data provenance,” in ICDT ’01:
Proceedings of the 8th International Conference on Database
Theory. Springer, 2001, pp. 316–330.

[13] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance Techniques,” Computer Science Department, In-
diana University, Bloomington IN, Tech. Rep., 2005.

[14] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, “Per-
formance evaluation of the karma provenance framework for
scientific workflows,” in in: International Provenance and
Annotation Workshop (IPAW). Springer, 2006, pp. 222–236.

[15] Mule esb. [retrieved: may, 2012]. [Online]. Available:
http://www.mulesoft.org/what-mule-esb

[16] A. S. Foundation, “Apache axis2/java - next generation web
services,” Website http://ws.apache.org/axis2/, Jul. 2009.

[17] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T.
Silva, “Bridging workflow and data provenance using strong
links,” in Proceedings of the 22nd international conference
on Scientific and statistical database management, ser. SS-
DBM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
397–415.

158Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

