
Maximizing Utilization in Private IaaS Clouds with Heterogenous Load

Tomáš Vondra, Jan Šedivý
Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27
Prague, Czech Republic

vondrto6@fel.cvut.cz, sedivja2@fel.cvut.cz

Abstract—This document presents ongoing work on creating a
computing system that can run two types of workloads on a
private cloud computing cluster, namely web servers and batch
computing jobs, in a way that would maximize utilization of
the computing infrastructure. The idea stems from the
experience with the Eucalyptus private cloud system, which is
used for cloud research at the Dept. of Cybernetics. This cloud
lets researchers use spare computing power of lab computers
with the help of our in-house queue engine called Cloud
Gunther. This application improves upon current practices of
running batch computations in the cloud by integrating control
of virtual machine provisioning within the job scheduler. In
contrast to other similar systems, it was built with the capacity
restrictions of private clouds in mind. The Eucalyptus system
has also been evaluated for web server use, and the possibility
of dynamically changing the number of servers depending on
user demand, which changes throughout the day, has been
validated. Although there are already tools for running
interactive services in the cloud and tools for batch workloads,
there is no tool that would be able to efficiently distribute
resources between these two in private cloud computing
environments. Therefore, it is difficult for the owners of
private clouds to fully exploit the potential of running
heterogenous load while keeping the utilization of the servers
at optimal levels. The Cloud Gunther application will be
modified to monitor the resource consumption of interactive
traffic in time and use that information to efficiently fill the
remaining capacity with its batch jobs, therefore raising the
utilization of the cluster without disrupting interactive traffic.

Keywords-Cloud Computing; Automatic Scaling; Job

Scheduling; Real-time Infrastucture.

I. INTRODUCTION

According to Gartner [1], private cloud computing is
currently at the top of the technology hype; but, its
popularity is bound to fall due to general disillusionment.

Why? While the theoretical advantages of cloud
computing are widely known – private clouds build on
the foundations of virtualization technology and add
automation, which should result in savings on
administration while improving availability, they provide
elasticity, which means that an application deployed to
the cloud can dynamically change the amount of
resources it uses, which is connected to agility, meaning
that the infrastructure can be used for multiple purposes
depending on current needs. Lastly, the cloud should

provide self-service, so that the customer can provision
his infrastructure at will, and pay-per-use, so he will pay
exactly for what he consumed.

The problem is that not all of these features are
present in current products that are advertised as private
clouds. Specifically, this document will deal with the
problem of infrastructure agility.

A private cloud can be used for multiple tasks, which
all draw resources from a common pool. This
heterogenous load can basically be broken down into two
parts, interactive processes and batch processes. An
example of the first are web applications, which are
probably the major way of interactive remote computer
use nowadays, the second could be related to scientific
computations or, in the corporate world, data mining.

When building a data center, which of course includes
private clouds, the investor will probably want to ensure
that it is utilized as much as possible. The private cloud
can help achieve that, but not when the entire load is
interactive. This is due to the fact that interactive load
depends on user activity, which varies throughout the
day, as seen in Figure 1.

Figure 1. Daily load graph of an e-business website [2]

In our opinion, the only way to increase the utilization
of a private cloud is to introduce non-interactive tasks
that will fill in the white parts of the graph, i.e., capacity
left unused by interactive traffic (which of course needs
to have priority over batch jobs).

HPC (High Performance Computing) tasks are
traditionally the domain of grid computing. Lately,
however, they also began to find their way into the cloud.
Examples may be Google’s data mining efforts in their
private cloud or Amazon’s Elastic MapReduce public
service [16]. The grid also has the disadvantage that it is
only usable for batch and parallel jobs, not interactive
use.

169Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Currently, there is not much support for running of
batch jobs on private clouds. The well known scheduling
engines Condor [17] and SGE (Sun Grid engine) [18]
both claim Amazon EC2 (Elastic Compute Cloud) [19]
compatibility, they however cannot control the cloud
directly, they only use resources provisioned by other
means (See Section II.). (SGE seems to be able to control
cloud instances in a commercial fork by Univa, though
[3].)

That is why the Cloud Gunther project was started. It
is a web application that can run batch parallel and
pseudoparallel jobs on the Eucalyptus private cloud [4].
The program does not only run tasks from its queue; it
can also manage the VM (virtual machine) instances the
tasks are to be run on.

What the application currently lacks is support for
advanced queuing schemes (only Priority FCFS (First
Come First Served) has been implemented). Further
work will include integration of a better queuing
discipline, which will be capable of maximizing
utilization of the cloud computing cluster by reordering
the tasks as to reduce the likelihood of one task waiting
for others to complete, while there are unused resources
in the cluster, effectively creating a workflow of tasks (see
Section IV).

The scheduler will be fed with data about the average
amount of free resources left on the cluster by interactive
processes. This will ensure that the cluster is always fully
loaded, but the interactive load is never starved for
resources.

This document has five sections. After Section I,
Introduction, comes Section II, Related Work, which will
present the state of the art in the area of grid schedulers
and similar cloud systems. Section III, Completed Work,
summarizes progress done in cloud research at the Dept.
of Cybernetics, mainly the Cloud Gunther job scheduler.
Section IV, Future Work, outlines the plans for
expansion of the scheduler, mainly to accommodate
heterogenous load on the cloud computing cluster.
Section V, Conclusion, ends the paper.

II. RELATED WORK

As already stated, the most notable job control
engines in use nowadays are probably SGE [18] and
Condor [17]. These were developed for clusters and thus
lack the support of dynamic allocation and deallocation
of resources in cloud environments.

There are tools that can allocate a complete cluster
for these engines, for example StarCluster for SGE [9].
The drawback of this solution is that the management of
the cloud is split in two parts – the job scheduler, which
manages the instances currently made available to it (in
an optimal fashion, due to the experience in the grid
computing field), and the tool for provisioning the
instances, which is mostly manually controlled.

This is well illustrated in an article on Pandemic
Influenza Simulation on Condor [10]. The authors have
written a web application which would provision
computing resources from the Amazon cloud and add

them to the Condor resource pool. The job scheduler
could then run tasks on them. The decision on the
number of instances was however left to the users.

A similar approach is used in the SciCumulus
workflow management engine, which features adaptive
cloud-aware scheduling [11]. The scheduler can react to
the dynamic environment of the cloud, in which instances
can be randomly terminated or started, but does not
regulate their count by itself.

The Cloud Gunther does not have this drawback, as it
integrates job scheduling with instance provisioning. This
should guarantee that there is no unused time between
the provisioning of a compute resource and its utilization
by a task, and that the instances are terminated
immediately when they are no longer needed.

A direct competitor to Cloud Gunther is Cloud
Scheduler [13]. From the website, it seems to be a plug-in
for Condor which can manage VM provisioning for it.
Similarly to Cloud Gunther, it is fairly new and only
features FCFS queuing.

An older project of this sort is Nephele [14], which
focuses on real-time transfers of data streams between
jobs that form a workflow. It provisions different-sized
instances for each phase of the workflow. In this system,
the number and type of machines in a job are defined
upfront and all instances involved in a step must run at
once, so there is little space for optimization in the area of
resource availability and utilization.

Aside from cluster-oriented tools, desktop grid
systems are also reaching into the area of clouds. For
example, the Aneka platform [12] can combine resources
from statically allocated servers, unused desktop
computers and Amazon Spot instances. It can provision
the cloud instances when they are needed to satisfy job
deadlines. This system certainly seems more mature than
Cloud Gunther and has reached commercial availability.

None of these systems deals with the issue of resource
availability in private clouds and fully enjoy the benefits
of the illusion of infinite supply. To the best of our
knowledge, no one has yet dealt with the problem of
maximizing utilization of a cloud environment that is not
fully dedicated to HPC and where batch jobs would have
the status of “filler traffic”.

III. COMPLETED WORK

A. Eucalyptus

Eucalyptus [4] is the cloud platform that is used for
experiments at the Dept. of Cybernetics. It is an open-
source implementation of the Amazon EC2 industry
standard API (Application Programming Interface) [19].
It started as a research project at the University of
California and evolved to a commercial product.

It is a distributed system consisting of five
components. Those are the Node Controller (NC), which
is responsible of running virtual machines from images
obtained from the Walrus (Amazon S3 (Simple Storage
Service) implementation). Networking for several NCs is
managed by a Cluster Controller (CC), and the Cloud

170Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Controller (CLC) exports all external APIs and manages
the cloud’s operations. The last component is the Storage
Controller (SC), which exports network volumes,
emulating the Amazon EBS (Elastic Block Store) service.
The architecture can be seen in Figure 2.

Figure 2. Eucalyptus architecture [4]

Our Eucalyptus setup consists of a server that hosts
the CLC, SC and Walrus components and is dedicated to
cloud experiments. The server manages 20 8-core Xeon
workstations, which are installed in two labs and 1/4 of
their capacity can be used for running VM instances
through Eucalyptus NCs. A second server, which is
primarily used to provide login and file services to
students and is physically closer to the labs, is used to
host Eucalyptus CC.

The cloud is used for several research projects at the
Cloud Computing Center research group [5]. Those are:

• Automatic deployment to PaaS (Platform as a
Service), a web application capable of automatic
deployment of popular CMS (Content
Management Systems) to PaaS.

• Effective scaling in private IaaS (Infrastructure
as a Service), a diploma thesis on adding
automatic scaling and load balancing support for
web applications in private clouds.

• Cloud Gunther, a web application that manages a
queue of batch computational jobs and runs them
on Amazon EC2 compatible clouds.

Aside from this installation of Eucalyptus, we also
have experience deploying the system in a corporate
environment. An evaluation has been carried out in
cooperation with the Czech company Centrum. The
project validated the possibility of deploying one of their
production applications as a machine image and scaling
the number of instances of this image depending on
current demand. A hardware load-balancer appliance
from A10 Networks was used in the experiment and the
number of instances was controlled manually as private
infrastructure clouds generally lack the autoscaling
capabilities of public clouds.

B. Cloud Gunther

While the Effective scaling in private IaaS project will
also be instrumental for further research, it is only just
starting. In contrast, the Master’s thesis on Cloud

Gunther has already been defended; the possibilities for
its further development are the main topic of this article.

The application is written in the Ruby on Rails
framework and offers both interactive and REST
(Representational State Transfer) access. It depends on
Apache with mod_passenger, MySQL and RabbitMQ for
operation.

It can control multiple Amazon EC2 [19] compatible
clouds. The queuing logic resides outside the MVC
(Model, View, Controller) scheme of Rails, but shares
database access with it. The communication scheme is on
Fig. 3.

Figure 3. Communication scheme in Cloud Gunther [6]

The Scheduler daemon contains the Priority FCFS
queuing discipline and is responsible for launching
instances and submitting their job details to the message
broker. The Agent on the instance then retrieves these
messages and launches the specified user algorithm with
the right parameters. It is capable of running multiple
jobs from the same user, thus saving the overhead of
instance setup and teardown.

The two other daemons are responsible for collecting
messages from the queue, which are sent by the
instances. The Instance Service serves to terminate
instances, which have run out of jobs to execute; the
Outputs daemon collects standard and error outputs of
user programs captured by the launching Agent. A
Monitoring daemon is yet to be implemented.

The web application itself fulfills the requirement of
multitenancy by providing standard user login
capabilities. The users can also be categorized into
groups, which have different priorities in the scheduler.

The cloud engine credentials are shared for each
cloud (for simpler cloud access via API and instance
management via SSH (Secure Shell)).

Each cloud engine has associated images for different
tasks, eg. image for Ruby algorithms, image for Java, etc.
The images are available to all users, however when
launched, each user will get his own instance.

The users can define their algorithm’s requirements,
i.e., which image the algorithm runs on and what
instance size it needs. There is also support for
management of different versions of the same algorithm.
They may only differ in command line parameters, or
each of them may have a binary program attached to it,
which will be uploaded to the instance before execution.

Individual computing tasks are then defined on top of
the algorithms. The task consists of input for the
algorithm, which is interpolated into its command line

171Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

with the use of macros, as well as the instance index and
total count of instances requested. These values are used
by pseudoparallel algorithms to identify the portion of
input data to operate on, and by parallel algorithms for
directing communication in message passing systems.

As one can see in Figure 4., the system is ready for
private clouds. It can extract the amount of free
resources from Eucalyptus and the scheduler takes it into
account when launching new instances.

Figure 4. Cloud Gunther – part of the New Task screen [6]

The Cloud Gunther has been tested on several real
workloads from other scientists. Those were production
planning optimization, recognition of patterns in images
and a multiagent simulation. They represented a
parameter sweep workflow, a pseudoparallel task and a
parallel task, respectively.

VM images for running the tasks were prepared in
cooperation with the users. Usability was verified by
having the users set up algorithm descriptions in the web
interface. The program then successfully provisioned the
desired number of VM instances, executed the algorithms
on them, collected the results and terminated the
instances.

The main drawback, from our point of view, is that
when there are jobs in the queue, the program consumes
all resources on the cluster.

This is not a problem in the experimental setting, but
in a production environment, which would be primarily
used for interactive traffic, and would attempt to exploit
the agility of cloud infrastructure to run batch jobs as
well, this would be unacceptable.

In such a setting, the interactive traffic needs to have
absolute priority. For example, if there was a need to
increase the number of web servers due to a spike in
demand, then in the current state, the capacity would be
blocked by Cloud Gunther until some of its tasks
finished. It would be possible to terminate them, but that
would cause loss of hours of work. A proactive solution to
the heterogenous load situation is needed.

IV. FUTURE WORK

Future work planned on the Cloud Gunther can be
split into two categories. First and more important is the
consideration of interactive load also present on the
cluster, see Subsection A. Second is integration of better
queuing disciplines to bring it up to par with existing
cluster management tools. Two ideas for that are
presented in Subsections B and C.

A. Estimation of the amount of interactive load in time

The interactive traffic needs to have priority over the
batch jobs. Therefore, once work is completed on the
general purpose autoscaler for private IaaS, it will be
possible to record the histogram of the number of
instances that the autoscaler is managing. From this
histogram, data on daily, weekly and monthly usage
patterns of the web servers may be extracted and used to
set the amount of free resources for Cloud Gunther.

The vision on the extraction method is that it will
employ machine learning techniques to approximate the
statistical distribution of the number of web server
instances at any hour of the year, probably breaking it
up to yearly, monthly, weekly and daily curves.

Instead of seeing only the current amount of free
resources in the cloud, the batch job scheduler could be
able to ask: “May I allocate 10 large instances to a
parallel job for the next 4 hours with 90% probability of
it not being killed?”

A similar problem exists in desktop grids. Article [15]
illustrates the collection of availability data from a
cluster of desktop machines and presents a simulation of
predictive scheduling using this data. The abstraction of
the cloud will shield away the availability of particular
machines or their groups, the only measured quantity
will be the amount of available VM slots of a certain size.

B. Out-of-order scheduling

This of course assumes a scheduler that will be
capable of using this information. Our vision is a queue
discipline that internally constructs a workflow out of
disparate tasks. The tasks, each with an associated
estimate of duration, will be reordered so that the
utilization of the cloud is maximized.

For example, when there is a job currently running
on 20 out of 40 slots and should finish in 2 hours, and
there is a 40 slot job in the queue, it should try to run
several smaller 2 hour jobs to fill the free space, but not
longer, since that would delay the large job.

These requirements almost exactly match the
definition of the Multiprocessor scheduling problem (see
[8]). Since this is a NP-hard class problem, solving it for
the whole queue would be costly. The most feasible
solution seems to come from the world of out-of-order
microprocessor architectures, which re-order
instructions to fully utilize all execution units, but only do
so with the first several instructions of the program. The
batch job scheduler will be likewise able to calculate the
exact solution with the first several jobs in the queue,
which will otherwise remain Priority FCFS.

172Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

C. Dynamic priorities

The estimation of job duration is a problem all for
itself. At first, the estimate could be done by the user.
Later, a system of dynamic priorities could be built on
top of that.

The priorities would act at the level of users,
penalizing them for wrong estimates, or better,
suspending allocation of resources to users whose tasks
have been running for longer time than the scheduler
thought.

Inspiration for this idea is taken from the description
of the Multilevel Feedback Queue scheduler used
historically in Linux [7]. However, the scheduler will set
priorities for users, not processes, and allocate VMs to
tasks, not jiffies to threads. It also will not have to be
real-time and preemptive, making the design simpler.

The scheduler’s estimate of process run time could be
based on the user estimates, but also on the previous run
time of processes from the same task or generally those
submitted by the same user for the same environment.
That would lead to another machine learning problem.

V. CONCLUSION

The cloud presents a platform that can join two
worlds that were previously separate – web servers and
HPC grids. The public cloud, which offers the illusion of
infinite supply of computing resources, will accommodate
all the average user’s needs, however, new resource
allocation problems arise in the resource-constrained
space of private clouds.

We have experience using private cloud computing
clusters both for running web services and batch
scientific computations. The challenge now is to join these
two into a unified platform.

Currently, Cloud Gunther, although not ready for
commercial deployment, already has some state of the art
features, like the automatic management of cloud
computing instances and a REST-compliant web
interface. It also differs from other similar tools by its
orientation towards private cloud computing clusters.

In the future, it could become a unique system for
managing batch computations in a cloud environment
primarily used for web serving, thus allowing to exploit
the dynamic nature of private cloud infrastructure and to
raise its overall utilization.

ACKNOWLEDGMENTS

Credit for the implementation of Cloud Gunther,
mainly the user friendly and cleanly written web
application goes to Josef Šín.

We thank the company Centrum for providing
material for our experiment and insights on private
clouds from the business perspective.

REFERENCES
[1] D. M. Smith, “Hype Cycle for Cloud Computing,” Gartner, 27

July 2011, G00214915.

[2] T. Vondra and J. Šedivý, “Od hostingu ke cloudu,” Research
Report GL 229/11, CTU, Faculty of Electrical Engineering,
Gerstner Laboratory, Prague, 2011, ISSN 1213-3000.

[3] T. P. Morgan, “Univa skyhooks grids to clouds: Cloud control
freak meets Grid Engine,” The Register, 3rd June 2011,
<http://www.theregister.co.uk/2011/06/03/univa_grid_engine_clo
ud/> 19 March 2012.

[4] “Installing Eucalyptus 2.0,” Eucalyptus,
<http://open.eucalyptus.com/wiki/EucalyptusInstallation_v2.0>
19 March 2012.

[5] J. Šedivý, “3C: Cloud Computing Center,” CTU, Faculty of
Electrical Engineering, dept. of Cybernetics, Prague,
<https://sites.google.com/a/3c.felk.cvut.cz/cloud-computing-
center-preview/> 19 March 2012.

[6] J. Šín, “Production Control Optimization in SaaS,” Master's
Thesis, CTU, Faculty of Electrical Engineering and University in
Stavanger, Department of Electrical and Computer Engineering,
Supervisors J. Šedivý and C. Rong, Prague, 20 December 2011.

[7] T. Groves, J. Knockel, E. Schulte, “BFS vs. CFS - Scheduler
Comparison,” 11 December 2011 <
http://slimjim.cs.unm.edu/~eschulte/data/bfs-v-cfs_groves-
knockel-schulte.pdf > 11 May 2012.

[8] “Multiprocessor scheduling,” in Wikipedia: the free
encyclopedia, San Francisco (CA): Wikimedia Foundation, 12
March 2012 ,
<http://en.wikipedia.org/wiki/Multiprocessor_scheduling> 19
March 2012.

[9] “StarCluster,” Massachusetts Institute of Technology, <
http://web.mit.edu/star/cluster/index.html> 11 May 2012.

[10] H. Eriksson, et al., “A Cloud-Based Simulation Architecture for
Pandemic Influenza Simulation,” AMIA Annu Symp Proc. 2011;
2011: 364–373, pp. 364–373.

[11] D. de Oliveira, E. Ogasawara, K. Ocaña, F. Baião and M.
Mattoso, “An adaptive parallel execution strategy for cloud-based
scientific workflows,” Concurrency Computat.: Pract. Exper.
(2011), doi: 10.1002/cpe.1880.

[12] R. N. Calheiros, C. Vecchiola, D. Karunamoorthya and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds,” Future Generation
Computer Systems 28 (2012), pp. 861-870, doi:
10.1016/j.future.2011.07.005.

[13] “Cloud Scheduler,” University of Victoria,
<http://cloudscheduler.org/> 11 May 2012.

[14] D. Warneke and O. Kao, “Nephele: efficient parallel data
processing in the cloud,” MTAGS '09: Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and
Supercomputers, November 2009, doi: 10.1145/1646468.1646476.

[15] K. Ramachandran, H. Lutfiyya and M. Perry, “Decentralized
approach to resource availability prediction using group
availability in a P2P desktop grid,” Future Generation Computer
Systems 28 (2012), pp. 854–860, doi: 10.1109/CCGRID.2010.54.

[16] R. Grossman and Y. Gu, “Data mining using high performance
data clouds: experimental studies using sector and sphere,” In
Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD '08). ACM, New
York, NY, USA, 2008, pp. 920-927, doi: 10.1145/1401890.1402000.

[17] M. J. Litzkow, M. Livny and M. W. Mutka, “Condor-a hunter of
idle workstations,” 8th International Conference on Distributed
Computing Systems (1988), pp. 104-111.

[18] W. Gentzsch, “Sun Grid Engine: towards creating a compute
power grid,” Proceedings of the first IEEE/ACM International
Symposium on Cluster Computing and the Grid (2001), pp. 35-
36.

[19] “Amazon Elastic Compute Cloud (EC2) Documentation,”
Amazon, <http://aws.amazon.com/documentation/ec2/> 27 May
2012

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

