CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

An Architecture for a Heterogeneous Private IaaS Management System

Rodrigo Garcia-Carmona, Mattia Peirano, Juan C. Dueiias, Alvaro Navas
Departamento de Ingenierfa de Sistemas Telematicos
ETSI Telecomunicacién, Universidad Politécnica de Madrid
Madrid, Spain
rodrigo@dit.upm.es, peirano.m@gmail.com, jcduenas@dit.upm.es, anavas@dit.upm.es

Abstract—Cloud computing and, more particularly, private
IaaS, is seen as a mature technology with a myriad solutions to
choose from. However, this disparity of solutions and products
has instilled in potential adopters the fear of vendor and
data lock-in. Several competing and incompatible interfaces
and management styles have given even more voice to these
fears. On top of this, cloud users might want to work with
several solutions at the same time, an integration that is
difficult to achieve in practice. In this paper, we propose a
management architecture that tries to tackle these problems;
it offers a common way of managing several cloud solutions,
and an interface that can be tailored to the needs of the user.
This management architecture is designed in a modular way,
and using a generic information model. We have validated
our approach through the implementation of the components
needed for this architecture to support a sample private IaaS
solution: OpenStack.

Keywords-private laaS; cloud management; management ar-
chitecture; cloud interoperability; OpenStack.

I. INTRODUCTION

Cloud computing has, during recent years, gained traction
both in the enterprise world and the academia. Among all
possible cloud service models, one in particular, the private
TaaS, has experienced an exceptional growth in the number
of solutions available [1]. Several competing products, both
open-sourced and proprietary, are contending for attaining
relevance and are constantly trying to surpass each other.
This fact creates a climate in which the user has the
possibility of choosing among a huge array of possible
solutions.

However, this ample offer of private laaS cloud tech-
nologies also involves an important drawback: each one
is managed using different abstractions (sometimes for the
same concepts) and through different management inter-
faces. This is aggravated by the use of different technologies
for these interfaces. This presents problems for a more
widespread adoption of private IaaS cloud computing, since
potential users fear of being locked-in with a particular
solution that falls behind the others in terms of features
or support. The infrastructure’s owner should be able to
change his previously chosen technology for private laaS
without having to modify the management interfaces, a fact
that sometimes incur in expensive retraining and even more
expensive errors during production deployments. Vendor and

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

data lock-in are considered two of the bigger factors that
hinder the development of cloud computing [2] [3].

Moreover, an enterprising private IaaS user could have the
desire of deploying two or more different cloud offerings,
leveraging the strong features of each for a solution better
tailored to his or her specific needs. In this situation the
user would benefit greatly from an integrated management
interface that could wrap this mixture of products in a uni-
form whole. Another reason for deploying two private [aaS
solutions at the same time is to compare their performance
side to side or ease the migration from one to the other.

With this problem in mind, we propose a generic man-
agement system for private IaaS clouds, decoupled from any
particular solution but able to work with all of them, and
using a set of common abstractions that could be translated
to the specifics of each targeted product. This management
system should also be able to provide its interface through
the use of different technologies (like a REST web service,
a command line, or a web page), to better suit the user’s
needs.

To achieve this goal, we have defined a modular archi-
tecture, in which components for both different private IaaS
technologies and interfaces can be developed and plugged as
needed. In this paper, we present this architecture, validating
it through the implementation of the components needed for
the management of OpenStack clouds.

The next section of this paper features a brief view
of existing private IaaS management solutions and related
research. After it, in Section 3, we show the general architec-
ture of the proposed management system. Section 4 covers
the specifics related to the OpenStack implementation of the
management system. Finally, the last section of this paper
summarizes our achievements and what was learned in the
experience, while also exposing some possible future lines
of work.

II. PRIVATE IAAS MANAGEMENT SOLUTIONS

There are a multitude of management interfaces for
cloud infrastructure and storage services. Every solution has
at least one, and they can be found in multiple shapes:
command-line tools, locally installed management applica-
tions with a GUI, web browser extensions, online tools, etc.

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

All private IaaS solutions offer their own management
interfaces, tailored to its specific needs and features, and
rarely able to interact with other solutions, or even other
cloud deployments of the same solution. The only exceptions
to this fact are not by design: it is just that some private
IaaS solutions try to replicate the same capabilities and
abstractions offered by more popular public offerings, like
Amazon AWS. And, in doing so, they develop very similar
or even identical interfaces. Among these the more extended
are Eucalyptus, Nimbus, OpenNebula and OpenStack. Com-
parisons between the IaaS solutions usually include a com-
parison between their management interfaces [4]-[6]. All
considered, these management systems are usually solutions
particularized to work only with a specific cloud technology,
and they are not compatible with others.

Third party solutions for managing private IaaS clouds
also exist, some of them suited to just one cloud solution
[7], while others support several technologies. KOALA
(Karlsruhe Open Application (for) cLoud Administration)
is a web based application able to manage and control AWS
compatible cloud services [8]. It allows to work with a
large variety of services of various public and private cloud
providers in a seamless and transparent way [9]. KOALA
innovative characteristic is that it does not require a local
installation since itself could be deployed in the cloud. The
user interface allows customers to start, stop and monitor
their instances or volumes in various cloud infrastructure
regions, and have access to the console output of virtual
machines. KOALA supports S3, Google Storage and Walrus
storage services.

Scalr is a cross platform, cloud management software that
provides auto scaling disaster recovery and server manage-
ment [10]. It is open source, available at Google Code but
a hosted version is available as paid service. The manager
is able to scale the virtual infrastructure according to the
load. Scaling strategies could be based on CPU, RAM, disk,
network or date. The latter can be useful in case of an
increase in traffic is expected, like during scheduled public
events. The code is distributed under Apache 2 license.

Puppet is an IT automation software that helps system
administrators manage infrastructure throughout its lifecycle,
easing the automation of the repetitive tasks [11]. This con-
figuration management tool is written in Ruby and provides
some specific modules for cloud management. The software
is distributed for free with some utilization restrictions. The
paid version offers a solution without limits.

Finally, there are open source initiatives like Libcloud
[12], jcloud [13] or deltacloud [14], but they are more
concerned with the management of public IaaS providers,
even if they include support for some private laaS solutions.
They are centred in the management of virtual instances,
and do not give much attention to the physical underlying
infrastructure while doing so. Also, they are limited to a
specific programming language or interface.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

As can be seen, none of them offers a true solution-
agnostic view. The academia has produced systems that offer
a generic management interface that could potentially be
adapted to any particular product. However, they present
an important drawback: their interface is fixed, since their
generic model and interface are built with a specific tech-
nology in mind, like REST [15] or SOAP [16] web services.
Therefore, it is difficult to extend them to provide other kind
of interfaces, like command-line tools or web pages.

In the end, the fact that the existing management interfaces
are focused in exposing low-level infrastructure elements
makes working with several solutions or migrating from one
to another a complex affair, since there is no exact match
between the features and abstractions being used by each
one [17]. This is mainly because they are focused in the
management of resources, not applications.

III. MANAGEMENT SYSTEM ARCHITECTURE

The first step for developing a technology-independent
management system is to have a generic information model
that covers all the elements that need to be managed in
a private IaaS. We have developed a model that bridges
the gap between the applications deployed into a cloud
and the actual resources allocated to them. This way the
user of the management infrastructure can have a view of
the big picture. This model has already been accepted for
publication [18] and, therefore, will not be the topic of this
paper. However, its elements related to the IaaS resources are
summarized in Figure 1. They are mostly self-explanatory,
but it is important to note the fact that all elements are
Resources (and because of that are managed uniformly),
and that there are relationships between the physical and
virtual Resources, enabling traceability. The VirtualMachine
element represents the VMs managed.

This model is able to cover every solution, but none
of them are able to work with it without modification; a
transformation from this model to the internal representation
specific for each cloud technology is necessary. Similarly,
a translation between the generic management actions and
the operations enabled by each cloud technology must be
provided. This two tasks are fulfilled by the management
system, and these needs determine its architecture, which is
shown in Figure 2. The management system is divided in
three separate layers:

o The topmost layer, named Control Layer, is responsible
of providing an interface to the outer world, and makes
use of the set of services provided by the Management
Layer to execute the management actions.

o Under it lies the Management Layer, which is the heart
of the system. This layer is composed by a set of
interfaces that define the capabilities of the system and
one or more implementations of them, providing man-
agement over specific functional areas of a particular
private IaaS cloud technology.

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

=] Memory
T MemoryType : EString | 1.*
T TotalSize : EBiglnteger
T Assigned : EBiginteger
= Reserved : EBiglnteger

H virtualmemory &)

(from virtualenvironment) 0.% 1.7

3| T virtualMemoryType : EString
T Size : EBiginteger

B virtualNetworkinterface =
(from virtualenvironment)

T Address : EString

= Subnet : EString

T Duplex : EBoolean

= Throughout : EBigInteger

T VirtualNetworkinterfaceType : EString

E,

H virtualMachine] Hl PhysicalMachine
(from virtualenvironment) T QwnerlD : EString

T 1D @ EString <
T OwnerlD : EString > T PhysicalMachineType : EString

H Networkinterface
T NetworkInterfaceType : EString
T Address : EString
= Subnet : EString
T Throughput : EBigInteger
T Duplex : EBoolean

[

H Resource

. . T Status : EString
T VirtualachineType : EString

BN 7

—— 1 T i
H ProcessingUnit
1. T ProcessingUnitType : EString 0.

13 SupportedaArchitecture : EString H storageUnit

f [E] \'/Tirtu‘aISt_uragﬂuTt 1] | = speed : EInt S StorageDeviceType : EString
|from virtualenvironment) T Totalize : EBigInteger

z VB\U!.'HETYFE + EString o 1.+| T Assigned : EBiginteger
T Size : EBigInteger “{ = Reserved : EBigInteger

Figure 1. Generic Information Model

o The lowest layer is the Client Layer, which connects
the system to the cloud solution itself.

The target of this division is to support a) several inter-
faces for the same management system, b) several cloud
solutions, and c) several client technologies for the same
cloud solution. We will analyse each of this layers in detail
in the following subsections.

A. Control Layer

This layer is divided in 2 other: the Control Interface and
the High-Level Managers.

The Control Interface is the outward interface that con-
nects the system to the manager. This layer is designed to
be interchangeable and support several interface implemen-
tations at the same time. The motivation for this schema
is that different users could prefer different management
interfaces. Moreover, the user does not need to be a human
operator at all, it can be other system, and therefore there is a
need for interfaces more suited to this task. Samples of these
interfaces could be command-line tools or an administration
web page for a human operator, and a web services interface
for an autonomic system that keeps care of the private cloud
infrastructure.

Under the Control Interface lies the High Level Managers,
which intermediate between the aforementioned interface
implementations and the Management Layer. The High
Level Managers sublayer provides to the Control Interface
two components: an Infrastructure Manager for controlling
the cloud through a set of management actions defined in
our information model (and therefore technology-agnostic),
and an Authentication Manager in charge of monitoring
and enforcing the security model for the private cloud. This
component deserves to be separated from the Infrastructure

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

Shell WEB REST

¢ 9 9

MANAGEMENT ARCHITECTURE

CONTROL INTERFACE

COMMAND LINE I

WEB INTERFACE l

REST INTERFACE

HIGH-LEVEL
VANAGERS INFRASTRUCTURE
MANAGER

AUTHENTICATION
MANAGER

RETRIEVEQ CHECK Q
INTERFACE INTERFACE

wmooiry Q)

AUTH
INTERFACE INTERFACE

MANAGEMENT
INTERFACES

C AUTH
5 MANAGER
INTERFACE

MANAGER IMPLEMENTATION
IMPL TECHNOLOGY B |]
IMPLEMENTATION TECHNOLOGY A

Vi XX - AUTH
MANAGER MANAGER MANAGER

CLIENT TECHNOLOGY B

CLIENT TECHNOLOGY A

CLOuD
CLIENT

| =
® -

CLOUD TECHNOLOGY
TECHNOLOGY A
B

Figure 2. Management System Architecture

Manager because of the high importance of security in a
cloud environment, where there could be multiple tenants,
and the different implementations of the security system
that each cloud solution features. It is necessary to have
a common interface that abstracts from this differences and
complexities.

B. Management Layer

This layer is again divided in 3 other: General Interfaces,
Management Interfaces and Manager Implementations.

The General Interfaces sublayer offer three interfaces
which provide management primitives that can be applied
to every Resource as defined in our information model.
These primitives are very simple, and the more complex
management activities are built upon them:

e Retrieve, which encompasses the actions to obtain data
from the cloud: getList and getSpecific.
o Modify, which includes the actions tailored to modify

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

the state of the cloud: create and delete. Modification
is just a deletion followed by a creation.

o Check, used to check if a element already exists in the
cloud. It includes just one action of the same name:
check. This feature is needed to be kept up to date
with the state of the environment.

The General Interfaces also include two other interfaces:

o VM, for controlling Virtual Machines, one of the most
important elements of our model. It provides the actions
Suspend, Resume, Resize and Migrate.

o Authentication, which does not perform actions over
entities at all. Instead, it controls who can perform them
and under what circumstances.

Under the General Interfaces lie the Management Inter-
faces. This sublayer particularises the primitives of the upper
level to specific Resources of the infrastructure. We have
defined the following interfaces, whose responsibility can
be easily inferred from their names: VM Manager, Image
Manager, Virtual Appliance Manager, Compute Manager,
Network Manager, Host Manager, Key Manager, Group
Manager, Tenant Manager and Authentication Manager.
These interfaces extend one or more of the General Inter-
faces level interfaces.

These interfaces are in turn implemented in the remaining
sublayer: Manager Implementation. Since this implementa-
tion has to be tailored for each cloud technology, it is here
where the adaptation between our generic information model
and the solution’s specific one is performed. Therefore,
we must implement the General Interfaces for each cloud
technology we desire to support. If this is done correctly
several solutions could be used at the same time, without
each one being conscious of the others.

C. Client Layer

Finally, in the Client Layer is where the adaptation
between the management system and the real infrastructure
is realised. This is done through one or more modules,
each designed to work with a particular access technology
and cloud solution. These modules connect each with the
appropriate Manager Implementation and interact with the
private IaaS itself.

IV. OPENSTACK MANAGEMENT

To validate our proposal, we decided to create an imple-
mentation of the management architecture able to interface
with one of the existing private IaaS solutions: OpenStack.
We chose this product because its open sourced nature would
help us in solving any problems that might arise. On top of
that, it is a relatively mature solution that is seeing intense
development at the moment.

To adapt a cloud solution to our proposal, we had to
complete three tasks: 1) specify a translation between our

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

TABLE I. MAPPING BETWEEN INFORMATION MODELS

Generic Model
Virtual Instance

OpenStack Model
Virtual Machine (Server)
Image
Flavor
Name
Security Group
Metadata
Flavor (RAM)
Flavor (Disk)
Volume
Flavor (CPU)
Virtual Network

Virtual Appliance

Virtual Memory
Virtual Storage

Processing Unit
Virtual Network Iface.

Owner Tenant
Physical Machine Host
- User

Initial Configuration Key Pair

- Floating IPs

generic information model and the solution’s own, 2) de-
velop a corresponding set of Manager Implementations, and
3) create at least one interface for the Client Layer.

Table I shows the mapping between our generic infor-
mation model and the OpenStack representation that we
developed. Each column includes some elements that are not
present in the other. For example the Virtual Appliance ele-
ment is not defined in the OpenStack environment. However,
a correspondence between several disparate elements of the
OpenStack model to it can be made. Even if they are placed
in different relative places inside their own model, most
components of every private IaaS can be traced to elements
of our information model. There are exceptions, though, like
the User and Floating IPs. But in these cases the culprits are
always relevant to specifics of each implementation, and can
be managed inside the Manager Implementation sublayer
without hampering the view of the environment.

After the mapping is defined the grunt work of the adap-
tation to OpenStack lies in the development of the Manager
Implementations and Client Layer. Most of this work is
just programming and is no relevant to this text, but one
aspect of it took a special importance during the process: an
OpenStack component named Quantum. Quantum provides
advanced high level network management, enabling the
definition of L2 and L3 network topologies and multiple
networks across different VMs and tenants. Quantum was
still in its early stages of development while we were
validating our proposal and, in fact, there was no complete
support for it in the OpenStack interface. Therefore, the
development of our ClientLayer involved modifying the
OpenStack code itself. Also, Quantum forced us to rethink
some aspects of the network-related elements in our model,
to support its more advanced capabilities. The Client Layer
was designed to use the OpenStack REST interface.

To illustrate how the different managers interact among
themselves, encompassing both operations over the generic
information model and the actual infrastructure, we repro-

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Check Cloud Parameters and retrieve VA

(Check Host H é{ Check Keypair]
——>>| Retrieve VA

Check
Networks

Check Authentication }%‘

\l/ [Not Authorized] L
Send Authentication

[Authorized]

Exception

Handle

Parameters Exception

[Not Conform] l [Conform]

| Create the instance and
l return VM reference

Authentication
Manager Exception

Handle Manager
Exception

|

Figure 3.

duce here a sample activity, the process of starting a VM
(see Figure 3). This activity involves an authentication check
(to be sure that the tenant can perform the creation), a state
of the environment check (to ensure that the intended action
is feasible), and the start of the VM action itself.

To complement our work with OpenStack and have a
complete and usable management system, we have also
developed two Control Interfaces: a REST service and a web
page. The latter is intended to used by a human operator and
the former is connected to an autonomic system of our own
creation. The whole system was written in Java.

V. CONCLUSION AND FUTURE WORK

In this paper, we have established the need for a man-
agement architecture for private IaaS clouds that support
several solutions (to avoid data and vendor lock-in), working
alone or together, and several user interfaces. To this end, we
have proposed the use of a generic information model that
captures all the relevant information for the infrastructure,
and a modular architecture that can be adapted to fit several
TaaS products and needs. We have detailed this architecture,
making a special emphasis in how it achieves the desired
results. In doing that, we have explained its three layers and
how they fit inside the big picture.

To validate our approach, we have developed and tested a
sample implementation with support for one cloud solution
(OpenStack) and two interfaces (REST services and a web
page). In this text, we have explained the aspects of this
implementation more relevant to the development of the
modules needed to support other cloud technologies.

In this process, we had to confront the realities of actual
products and how to apply our proposal to them. This gave
us some interesting realizations, like the pressing need for
a more fine-grained network configuration support in clouds
(already established in the literature [19]), and how to use

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

@

Starting a Virtual Machine

the improved network customization features offered by
solutions like Quantum to achieve this end.

Therefore, our next efforts will be focused on this topic.
In the future, we also want to develop support for at least
another cloud solution: This way we will be more able to
test a federation of several private clouds and achieve a
true working common management interface for multiple
technologies. This matter will include the difficult topic of
deciding where to physically put the management interface
itself when working with several infrastructures. This inte-
gration will definitely test if our generic approach to security
is suitable for use with different cloud solutions at the same
time.

Finally, another line of work we want to follow is the
application of our architecture to the management of public
cloud offerings, since the interest in hybrid clouds that mix
public and private IaaS is steadily growing.

REFERENCES

[1] B. Sotomayor, R. Montero, I. Llorente, and 1. Foster, “Virtual
infrastructure management in private and hybrid clouds,”
Internet Computing, IEEE, vol. 13, no. 5, sept.-oct. 2009,
pp. 14-22.

[2] N. Leavitt, “Is cloud computing really ready for prime time,”
Computer, vol. 42, no. 1, 2009, pp. 15 -20.

[3] M. Armbrust et al., “A view of cloud computing,” Commun.
ACM, vol. 53, no. 4, Apr. 2010, pp. 50 -58.

[4] A. Lonea, D. Popescu, and O. Prostean, “A survey of
management interfaces for eucalyptus cloud,” in Applied
Computational Intelligence and Informatics (SACI), 2012 7th
IEEE International Symposium on, may 2012, pp. 261 —266.

[5] S. Wind, “Open source cloud computing management plat-
forms: Introduction, comparison, and recommendations for
implementation,” in Open Systems (ICOS), 2011 IEEE Con-
ference on, sept. 2011, pp. 175 —-179.

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[6] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison
of open-source cloud management platforms: Openstack and
opennebula,” in Fuzzy Systems and Knowledge Discovery
(FSKD), 2012 9th International Conference on, may 2012,
pp. 2457 -2461.

[7]1 L. Xu and J. Yang, “A management platform for eucalyptus-
based iaas,” in Cloud Computing and Intelligence Systems
(CCIS), 2011 IEEE International Conference on, sept. 2011,
pp- 193 -197.

[8

—_—

C. Baun, M. Kunze, and V. Mauch, “The koala cloud man-
ager: Cloud service management the easy way,” in Cloud
Computing (CLOUD), 2011 IEEE International Conference
on, july 2011, pp. 744 —745.

[9

—

C. Baun and M. Kunze, “The KOALA cloud management
service: a modern approach for cloud infrastructure manage-
ment,” in Proceedings of the First International Workshop on
Cloud Computing Platforms, ser. CloudCP °11. New York,
NY, USA: ACM, 2011, p. 1:1-1:6.

[10] “Scalr,” http://code.google.com/p/scalr/, retrieved: 28th March
2013. [Online]. Available: http://code.google.com/p/scalr/

[11] “Puppet labs: IT automation software for system
administrators,” http://puppetlabs.com/, retrieved: 28th March
2013. [Online]. Available: http://puppetlabs.com/

[12] “Apache libcloud,” http://libcloud.apache.org/, retrieved: 28th
March 2013. [Online]. Available: http://libcloud.apache.org/

[13] “jcloud,” http://www.jclouds.org/, retrieved: 28th March
2013. [Online]. Available: http://www.jclouds.org/

[14] “Apache deltacloud,” http://deltacloud.apache.org/, retrieved:
28th March 2013. [Online]. Available: http://deltacloud.
apache.org/

[15] H. Han et al., “A restful approach to the management of
cloud infrastructure,” in Cloud Computing, 2009. CLOUD
’09. IEEE International Conference on, sept. 2009, pp. 139
—-142.

[16] Z. Lu, J. Wu, and W. Fu, “A novel cloud-oriented ws-
management-based resource management model,” in Web
Services (ICWS), 2010 IEEE International Conference on,
july 2010, pp. 676 —677.

[17] T. Harmer, P. Wright, C. Cunningham, J. Hawkins, and
R. Perrott, “An application-centric model for cloud manage-
ment,” in Services (SERVICES-1), 2010 6th World Congress
on, july 2010, pp. 439 —446.

[18] R. Garcia-Carmona, F. Cuadrado, A. Navas, A. Celorio, and
J. Dueiias, “Multi-level monitoring approach for the dynamic
management of private iaas platforms,” Journal of Internet
Technology, vol. Special Issue on Dynamic Intelligence for
Sustainable Computing, no. to appear, 2013, p. to appear.

[19] J. Wickboldt, L. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “A new approach to the design of flexible cloud
management platforms,” in Network and Service Management
(CNSM), 2012 8th International Conference on, oct. 2012, pp.
155 -158.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

