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Abstract—Based on pay-per-use service-oriented architec-
tures, the cloud computing paradigm promises cost-efficient IT
solutions. To meet fluctuating demands efficiently, Platform-as-
a-Service solutions offer shared environments with on-demand
scalability. It remains an open challenge for service providers to
implement elastic scalability mechanisms capable of optimally
utilizing resource whilst simultaneously guaranteeing that ap-
plication performance continues to meet Quality of Service
metrics. Typically, cloud providers offer only reactive rule-
based mechanisms for triggering scaling actions. We introduce
a new elasticity management framework that combines reactive
and predictive controllers. Our elasticity controller builds pre-
dictive models online based on the reactive rules, representing
a natural extension to the common offering. We discuss the
underlying architecture of the framework and describe how the
controllers operate in tandem and complement each other. We
present a case study based on real datasets that demonstrates
the feasibility of our real-time cloud capacity framework.

Keywords-elasticity; predictive; auto-scaling; platform-as-a-
service.

I. INTRODUCTION

Cloud computing, with its promise of cost-effective com-

puting for end-users and improved resource utilization for

cloud providers, continues to grow in popularity. A recent

Gartner report predicts a compound annual growth rate of

36% for Infrastructure-as-a-Service (IaaS) and Platform-as-

a-Service (PaaS) from $7.6B in 2011 to $35.5B in 2016 [1].

This increase in user demand, coupled with new technolo-

gies, is driving a dramatic increase in cloud infrastructure

scale, heterogeneity and complexity [2][3]. To efficiently

handle their resources, cloud providers require intelligent

methods of automated dynamic infrastructure management.

One of the key features of cloud computing is elasticity.

Elasticity refers to the ability of a system to grow and

shrink dynamically such that it only uses resources that

are necessary to cope with the current load. This paper

presents details of the design and current implementation

of a real-time cloud capacity framework, Platform Insights.

The particular contribution of the paper is the design of an

elasticity controller that:

• Couples reactive and predictive elasticity management

techniques and coordinates auto-scaling requests

• Can be used without off-line training

• Utilizes multi-timeframe information to allow short-

term auto-scaling decisions to be made in the context

of the expected longer-term workload demand

The rest of the paper is organized as follows. Section II

presents a summary of related work. Section III gives details

on the architecture of Platform Insights. Section IV describes

the implementation of Platform Insights, giving an overview

of the configuration options and the integrated predictive

models. Section V presents a case study in which the

ClarkNet [4] and the 1998 World Cup data access logs

[4][5] are used to simulate driving the SPECjEnterprise2010

benchmark. Resulting QoS statistics and resource provision-

ing decisions are evaluated. Concluding remarks are given

in Section VI.

II. RELATED WORK

Auto-scaling techniques can be classified as either reactive

(the system reacts to changes but does not anticipate them)

or predictive (the system tries to predict future resource

requirements in order to ensure sufficient resource is avail-

able ahead of time) [6]. Reactive rule-based methods define

scaling conditions based on a target metric reaching some

threshold and are offered by several cloud providers such as

Amazon [7] or third party tools such as RightScale [8] or

AzureWatch [9]. Beyond static thresholds, [10] proposes a

regression method to dynamically adapt thresholds to meet

QoS targets, but does not predict future workload.

Predictive auto-scaling approaches tend to be based on

time series analysis, control theory, reinforcement learning,

or queuing theory. One strategy is to use a workload pre-

dictor and then use a performance model to determine the

number of servers required to service the predicted demand.

A variety of performance models has been proposed in the

literature. Examples include the use of splines to map the re-

quest rate to the observed percentage of slow requests given

the number of active servers [11], queuing networks [12],

and cost optimization models [13]. The predictive controller

component of Platform Insights also uses workload forecasts

and performance models: the workload forecast is used to

estimate a mid-term trend in demand, which is used as an

input to a performance model mapping workload-per-server

to future QoS.
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Hybrid methods, coupling reactive and predictive con-

trollers, have also been proposed. Proposals include using a

predictive method and a reactive method to determine when

to provision resource over a long time-scale (hours and days)

and a short time-scale respectively [14], or using a predictive

controller to control scale in and a reactive controller for

scale out [15][16]. In [15] a regression-based method is used.

In [16] the authors base their models on queuing theory and

they find that SLA violations are reduced by a factor of 2

to 10 compared to a purely reactive controller.

We also implement a hybrid approach, but our reactive

and predictive controllers are both capable of triggering

scale in and scale out actions. Auto-scaling decisions are

coordinated and conservative policies are applied to avoid

premature decommissioning of resource.

III. ARCHITECTURE OF PLATFORM INSIGHTS

Typical enterprise applications are composed of a number

of services that run on multi-tier architectures. To provide

adequate resource to handle client demand, each tier requires

monitoring and elasticity. Platform Insights monitors each

component of the platform stack individually and evaluates

appropriate elastic scaling actions. In Section III-A the archi-

tecture of the reactive controller is described, and this is then

extended in Section III-B to show how a predictive controller

operates in conjunction with the reactive controller.

A. Reactive Elasticity Management

Reactive elasticity management takes place by monitoring

scaling rules, which are configured by application architects

and administrators. The form of the scaling rules is discussed

later in Section IV. This section is dedicated to describing

the software agents that make up the reactive auto-scaling

alerter component of Platform Insights. Figure 1 shows the

steps taken by the system to register a new elasticity rule

when it is submitted by an administrator. In its current

form, Platform Insights allows rules to be submitted or

deleted at any time for running applications, but does not

take responsibility for checking that rules do not conflict;

this functionality is left to future work. Figure 2 shows the

operation of the reactive auto-scaling alerter component. The

two figures show the agents that are involved at each stage

and their interactions. Each agent is now discussed in turn.

• The Request Manager receives requests submitted to

the platform by users of the web portal. The web portal

has facilities for the application architect to a) monitor

resource usage consumed by each instance (real-time

or historical), b) configure and manage elasticity rules,

c) monitor utilization metrics associated with elasticity

rules, and d) receive relevant alerts and/or log messages.

• The Rule Creator receives instructions from the Request

Manager to set up new elasticity rules. When it receives

a new scaling rule, it liaises with other components to

coordinate the instantiation of the new rule.

Figure 1. Scaling rule submission sequence diagram.

Figure 2. Reactive auto-scaling sequence diagram.

• The Rule Translator is responsible for translating the

configured attributes of a newly submitted scaling rule

into EPL (Event Processing Language) statements that

can be monitored by the Rule Processor. It maintains

a dictionary of pre-set statement templates and parses

the incoming data against these templates.

• The Rule Manager is responsible for the lifecycle

management of elasticity scaling rules. It maintains a

repository of scaling rules for each application land-

scape and of associated EPL statements registered with

the Rule Processor.

• The Rule Processor is based on a complex event

processing (CEP) engine. Currently Esper is used as

the CEP engine as it is lightweight, can be easily

embedded in a Java application and allows new queries

to be registered dynamically so that scaling rules can

be submitted at any time [17].

• The Rule Alerter is responsible for determining what

scaling action should be taken upon violation of a

scaling rule and broadcasting any relevant information

to enable the platform to execute the scaling action.

• The Landscape State Manager stores and monitors

the application state throughout its entire lifecycle.
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Four states are defined for each application landscape:

offline, starting, operational and repairing.

• The Decision Manager is a centralized component re-

ceiving requests from both the Rule Alerter and the Tier

Manager (predictive component, see Section III-B). It

is responsible for ensuring coordination of auto-scaling

requests; this process is described in more detail in

Section IV-D below. Validated requests are broadcast

over the messaging bus.

• The System Orchestrator listens for the broadcast auto-

scaling requests. It is responsible for executing the

requests by provisioning and removing server instances.

The particular form of the scaling rules used by Platform

Insights is discussed in Section IV below. Rule-based elastic-

ity management only enables the system to scale after some

condition has already been met, and so predictive elasticity

management is also utilized in Platform Insights.

B. Predictive Elasticity Management

The Platform Insights predictive analysis engine estimates

the resource requirements needed by the workload in the

near future to satisfy QoS constraints. Platform monitoring

data is aggregated on each tier prior to being fed in to

the predictive models. Aggregating data at the tier level

is acceptable as the platform components are assumed to

have load balancers. Esper [17] is used to perform this pre-

aggregation of the data (both workload and QoS metrics).

More information on the specific data aggregations and pre-

dictive models will be given in Section IV-C. Esper listens

to the underlying stream of monitoring data, aggregates

it as appropriate, and then publishes the aggregated data

using the messaging system. Listeners for the predictive

models subscribe for all relevant data. The predictive engine

comprises the following software agents:

• The Data Listener subscribes for relevant data that

has been aggregated by Esper and published over the

messaging bus and distributes it to the Data Processor.

• The Data Processor has the responsibility of feeding

the data to the appropriate Model Updater.

• The Model Updater deals with the new data by updating

its model and/or doing a prediction using the new data.

On the basis of the prediction, it may decide an auto-

scaling action is necessary, in which case it sends a

request to the Tier Manager for assessment.

• The Tier Manager evaluates all auto-scaling actions

requested for the tier by the Model Updater. If the Tier

Manager agrees that the scaling action is appropriate

then a request is sent to the Decision Manager (see

Section III-A above).

This section has described the underlying architecture of

both the reactive and predictive components of the Platform

Insights elasticity management framework; the next section

gives details on their implementation.

IV. IMPLEMENTATION OF PLATFORM INSIGHTS

This section discusses the nature of the predictive models

built from the scaling rules and how they enable auto-scaling

decisions to be made. Section IV-A describes the configura-

tion of the scaling rules, Sections IV-B and IV-C describe the

implementation of the rule processing and predictive models

respectively, and Section IV-D describes how the Decision

Manager coordinates auto-scaling requests.

A. Configuration of Scaling Rules

The scaling rule strategy is to first perform some ag-

gregation of metric data pertaining to each server instance

over some time window. These per-server values are then

further aggregated to a single tier value, which is compared

against a threshold value. If the rule condition is met then

an action is triggered to add or remove some number of

instances whilst staying within some limits. The rules are

composed of the following elements. Metric: one of the

metrics exposed on the server and monitored by the system.

Operator: the comparison operator to be used in evaluating

the metric value; allowed operators are ‘EQ’, ‘LT’, ‘LTE’,

‘GT’and ‘GTE’. Value: the value threshold for the metric

being observed. Aggregate Function: the statistical aggregate

function to be used for metric evaluation; allowed values

are ‘average’, ‘sum’, ‘median’and ‘raw’(which indicates no

aggregation). Scope: the metric scope with respect to the

all the server instances in the tier; allowed values are ‘min’,

‘max’and ‘sum’. Time Window: the length of the sliding time

window over which to continuously monitor the metrics and

evaluate whether or not they meet the scaling rule condition.

Min Time Between Alerts: the minimum time between auto-

scaling actions. Limit: specification of the maximum or

minimum number of instances allowed in the tier. Scale By

Type: used to indicate that scaling should be implemented

by changing the number of currently running instances by

either a set number or by a given percent; allowed values are

‘Number’and ‘Percent’. Scale By Value: the value in units of

Scale By Type by which to change the number of currently

running instances when scaling. Rule Type: used to specify

whether the rule is based on metric values or on projected

values calculated through a linear regression; allowed values

are ‘Static’and ‘LinearRegression’. Time Ahead: for rules

based on projected metric values, this element defines how

far into the future to extrapolate the linear fit.
Scale out rules have a further element, Use As QoS with

allowed values of true or false. If it is true then the scaling

rule is additionally used by Platform Insights to form a

QoS condition to be taken account of by the predictive

controller, and in this case a predictive rule must also be

submitted with the following elements. Workload Metric:

a metric representing workload demand exposed on the

server and monitored by the system. Aggregate Function: the

statistical aggregate function to be used for workload metric

evaluation; allowed values are ‘average’, ‘sum’and ‘median’.
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Time Window: the length of the batch time window over

which the aggregate function is to be applied to the workload

metric. Min Instances and Max Instances: the minimum and

maximum number of instances in the tier. Confidence Level:

the confidence level used by the time series forecaster to

compute confidence bounds on the predictions it makes.

B. Rule Processing

Upon submission of a scaling rule, the sequences of events

depicted in Figures 1 and 2 take place. If the scaling rule is to

be used as the basis of a QoS condition, then a prediction

rule is also submitted, which triggers the creation of data

aggregation statements and their registration with the Esper

engine. These aggregation statements cover the workload

metric aggregated over the batch time window requested in

the prediction rule and both the workload and QoS metrics

aggregated over the sliding time window requested in the

scaling rule. The Esper engine again subscribes for relevant

data and outputs aggregated data for use as input to the

predictive models.

C. Predictive Models

The predictive auto-scaling algorithm currently employed

in Platform Insights comprises three models operating on

mid-term and short-term timescales. The first model is a time

series forecaster that estimates the workload at some future

point in time. The model takes as input the total number

of requests made by the application (Workload Metric is

‘number of requests’, Aggregate Function is ‘sum’) and

predicts the future workload some time later; typically the

prediction horizon is set to one hour (Time Window is ‘one

hour’). The Confidence Level is set to 95% and used to

calculate confidence intervals on the forecast.

By comparing the forecast value against the four-hour

moving average value this model also classifies the cur-

rent workload trend as ‘Increasing’(if >10% difference),

‘Decreasing’(<-10% difference) or ‘Steady’(otherwise).

Changes in enterprise workload demand should be observ-

able over a four hour period since typical workload cycles

exhibit daily or weekly trends [18].

The second model is an updateable Naive Bayes model

that learns the relation between the current workload per

server and the current QoS classification. The QoS classifica-

tion is a binary classification according to whether or not the

QoS condition is met or violated. The threshold for making

this classification is set to 5% below the actual QoS target

value to reduce the risk of under-provisioning, an approach

also adopted by others [19]. This model is used to predict

mid-term resource requirements taking as input the forecast

confidence interval output from the first model.

The third model is also an updateable Naive Bayes

model and it maps the total workload per server to a QoS

classification some time into the future, typically 30 minutes

as this will allow time to build confidence in any output auto-

scaling requests and to provision additional servers. This

model takes as input the current workload and the trend

output from the first model. It is used to estimate the optimal

number of server instances required to handle the short-term

workload, by finding the minimum number of servers such

that there is less than 5% chance of QoS violation in the

next 30 minutes. If this estimate, NEst, differs to the current

number of servers, N , then an auto-scaling decision is made

to add NEst −N server instances.

The Weka machine learning library is used to implement

the predictive models [20]. One of the main reasons for

choosing Weka is that it provides classifiers that are update-

able incrementally. Because such classifiers can be updated

one training instance at a time, in line with the arrival of the

new data, this feature is particularly relevant for Platform

Insights in analysing steady streams of monitoring data.

Platform Insights uses the time series forecasting plug-in

and incrementally updateable Naive Bayes models. An in-

depth discussion of the implementation and performance of

these algorithms is presented in [21]; the focus of this paper

is to demonstrate the feasibility of the approach.

D. Coordination of Controllers

When an application starts running, both controllers are

activated. The predictive controller can be used without off-

line training because it takes advantage of online incremental

learning techniques. If the predictive controller is uncertain

of what action to take then it does not make any auto-scaling

decisions, instead it continues to learn. In these cases auto-

scaling decisions can still be made by the reactive controller

since it is always running as a stand-by.

Both controllers are capable of triggering scale in and

scale out actions. The reactive controller is only able to do

so if sufficient time (Min Time Between Alerts) has passed

since the previous scaling action and if the landscape state

is ‘operational’. The predictive controller can submit scaling

requests at any time. Both controllers act independently but

forward their requests to the centralized Decision Manager

to deliver a coordinated elasticity mechanism.

The Decision Manager validates received requests with

information it has access to, or can obtain from the Land-

scape State Manager, regarding the current number of

instances running, any outstanding scaling requests currently

being executed, and specified limits on the number of

servers. This validation process may revise the request in

several ways. Firstly, the request may be rejected. This can

occur if it duplicates a request already being executed, or if

it instructs to scale in whilst a scale out action is currently

being executed. We choose to implement a conservative

policy stipulating that scale out takes precedence over scale

in so as to minimize QoS violations. Secondly, the requested

number of servers may be modified. This can happen to

enforce the specified limits. It will also happen if a) the
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Figure 3. Auto-scaling simulation using ClarkNet traces.

request would result in the number of server instances going

outside the mid-term resource requirements predicted from

the forecast confidence interval, or b) the request instructs

the addition of n2 servers whilst an earlier scale out action

instructing the addition of n1 servers is still being executed,

in which case the request is revised to max(n2 − n1, 0).

Upon successful validation, the Decision Manager for-

wards the (possibly revised) request to the System Orchestra-

tor for execution. It also updates the time of the last scaling

action and updates the state of the application landscape held

by the Landscape State Manager to ‘repairing’. The land-

scape state only returns to ‘operational’once the Landscape

State Manager detects the requested change in the number

of current running instances, indicating that the request has

been successfully carried out.

V. CASE STUDY

To evaluate the performance of the elasticity controller,

a simulation of the elasticity of the application server tier

has been carried out. Two real datasets, the ClarkNet web

server trace logs [4] and the FIFA 1998 Word Cup Access

logs [4][5], were used to simulate the incoming load to

the system. The log files were summarized to extract the

number of requests arriving every 2 minutes and then used to

simulate driving the SPECjEnterprise2010 benchmark. The

benchmark response times were observed to be in excess

of the target time of 2 seconds when the CPU utilization

went beyond 80%. A scale out rule was configured as: if

the minimum median value of CPU utilization over the past

40 minutes is > 80% then increase the number of instances

by 1. Similarly for scale-in: if the maximum median value

of CPU utilization over the past 60 minutes is < 50%

then decrease the number of instances by 1. After auto-

scaling, a period of at least the same time window again

must pass before the next auto-scaling decision can be made.

In the simulation it is assumed that the provisioning of a

new instance takes 10 minutes [22]. The QoS condition

extracted from the scale out rule was: minimum median CPU

utilization over a window of 40 minutes must be < 80%.

The number of requests using the August ClarkNet trace

together with the number of simulated running instances are
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Figure 4. Auto-scaling simulation using 1998 FIFA World Cup trace. Grey
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shown in Figure 3. In this simulation, the reactive controller

was only responsible for the first two scaling actions; all

subsequent scaling actions were generated by the predictive

controller. The figure demonstrates that the hybrid controller

is capable of making appropriate scaling actions and is

stable. The QoS metric is monitored throughout the course

of the run: less than 1% of all collected QoS values violated

the QoS condition. To quantify this fully, there were 28 two

minute periods where the QoS metric went above 80%, all

of which were at the very start of the run.

The FIFA World Cup access logs exhibit a higher degree

of burstiness than do the ClarkNet logs. Figure 4 shows

the auto-scaling decisions made by both the hybrid and the

purely reactive controllers, for days 6 to 25 of the logs. Day

26 in the figure is a repeat of day 6. The actions initiated

by the reactive controller in the hybrid model (blue circles)

are generally taken at times when the workload is different

to historical workload, and hence the predictive controller

has not built sufficient confidence in its online models, or

when the workload exhibits more burstiness than normal,

highlighting the advantage of operating the reactive and

predictive controllers in a coordinated parallel manner. The

figure suggests that the hybrid controller dynamically adjusts

resource more appropriately, and hence will result in better

utilization, than does the purely reactive controller. Figure 5

verifies this: CPU utilization is consistently maintained

within the target range of 50% to 80% (<50% less than

3% of the time and >80% less than 5% of the time). Again,

there are only a few QoS violations: 41 in total, which relate

to 3 separate incidents characterized by bursty workloads.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we described the architecture, design and

implementation of a new real-time cloud capacity frame-

work, Platform Insights. Platform Insights is a hybrid elas-

ticity controller employing both reactive rule-based and

predictive model-based elasticity mechanisms together in a

coordinated manner. The approach has been validated by

using traces based on two real datasets to simulate driving a

benchmark application. In both cases, Platform Insights was

able to provision resource for the application server tier more

appropriately than the reactive controller alone, yielding very

few QoS violations and maintaining consistently high CPU

utilization.

In the short-term, we will carry out further comparisons of

our approach with other auto-scaling methods and integrate

our framework in a real cloud infrastructure. For future

work, we intend to extend Platform Insights to handle mul-

tiple QoS objectives at once and to incorporate an algorithm

to detect change in workload mix.
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