
A Context-aware, Intelligent and Flexible Ambient
Assisted Living Platform Architecture

Hendrik Kuijs, Carina Rosencrantz, Christoph Reich
Faculty of Computer Science

Furtwangen University of Applied Science
Furtwangen, Germany

Email: {Hendrik.Kuijs, Carina.Rosencrantz, Christoph.Reich}@hs-furtwangen.de

Abstract—Ambient Assisted Living (AAL) solutions support
older people in remaining longer in their own environment. For
a system to be successful on the market, it is essential to be
flexible and adaptable to the individual needs of the elderly
person. In this paper, we present an approach for a context-
aware, intelligent and flexible AAL platform architecture, that
integrates existing concepts for home automation environments
with an extendable platform for information, communication and
learning to assist elderly users in their daily life. The platform has
the intelligence to react on environmental changes, by including
data provided by sensors or external services, as well as changes
of the medical state of the user by using a person centered
ontology to deliver adapted services at any time. The intelligence
to do this is assured by lightweight and autonomous software
agents. The custom platform itself is realized as a Platform as a
Service (PaaS) in the cloud. The setup is a Private Cloud, that
shares central services in the Public Cloud for better flexibility,
scalability and maintainability. It features a PaaS management
system to customize and preconfigure different environmental
settings. The user is able to add new services on demand or
adjust the configuration of the platform to his needs.

Keywords—PaaS; AAL; Cloud; OSGi; software agents; context-
aware.

I. INTRODUCTION

Due to the demographic change towards an aging popula-
tion and the emerging shortage of care facilities, the field of
AAL aims to support elderly people in their daily living to
enable them to stay in their own homes as long as possible.

As part of the research project ZAFH AAL [1], the
platform named Person Centered Environment for Information,
Communication and Learning (PCEICL) has been designed
[2]. PCEICL is a personal assistance system with the primary
goal to assist elderly people in staying at home longer and in
improving social participation in rural regions by delivering
social services. An essential requirement for such a platform
is an automatic adaptation and tailoring of the services to an
elderly maybe handicapped person’s needs.

In the field of AAL, Open Services Gateway initiative
(OSGi) [3] is often used to provide an easy integration frame-
work for sensors and actors in home-automation environments
[4][5][6]. OSGi enables developers to build up modular sys-
tems or to reuse existing services and therefore supports the
upgradeability and extensibility of AAL systems [7].

The key feature of PCEICL is the adaptation of function-
ality and presentation of information based on the medical

state and the physical environment of the user. Information
about the user is stored and retrieved by implementing the
PCEICL ontology [8] and information about the environment
is provided by attached sensors or external web-services. The
platform makes intelligent decisions based on the provided
information about the user and its environment. The PCEICL
platform tackles the problem of intelligent decision making by
a software agent platform, in this case Java Agent Development
Framework (JADE) [9]. While other platforms have a strong
focus on emergency detection and prevention, the main concept
of PCEICL is to provide information and communication
services to support social participation.

The outline of this paper is as follows: After presenting
related work in Section II, Section III explains two different
concepts for combining the OSGi component middleware
and the software agent framework JADE. The architectural
approach of the PCEICL platform with its different layers of
agents, OSGi bundles and the PCEICL ontology is explained
in Section IV and is put in relation to the cloud infrastructure in
Section V. The flexibility, context awareness and intelligence
of this architectural approach are worked out in Section VI.
Section VII presents a first evaluation based on different
scenarios, followed by a conclusion and a further outlook of
upcoming research topics in Section VIII.

II. RELATED WORK

OSGi gained wide currency in the field of home automation
and smart home as a middleware for different sensors and
actors [3]. ProSyst [10] offers a Home Gateway Middleware,
a SDK for developers and a Remote Management Service for
smart home service providers. This middleware is used, for
example, by Miele [11] to connect different household appli-
ances to deliver automated services based on user interaction
or environmental changes, like starting the vapor departure
hood when the stove or oven are used or starting the washing
machine when power is cheaper. ProSyst based environments
are hosted locally in the user’s home and can be monitored
or controlled with mobile devices via web interfaces. PCEICL
puts the user assistance in focus and wants to migrate the
hosting environment to the cloud. ProSyst also supports E-
Health scenarios [12] and is involved in several Ambient
Assisted Living projects, like SOPRANO [4] or universAAL
[5].

In the field of AAL, there are currently two projects
also developing a platform or a middleware which realize an

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

assistance-system for elderly people: SOPRANO and univer-
sAAL.

The SOPRANO Service Oriented PRogrammable smArt
enviroNments for Older Europeans (SOPRANO) project devel-
oped an open middleware for AAL solutions. The SOPRANO
Ambient Middleware (SAM) receives user commands or sensor
data, enriches them semantically and determines an adequate
system response, which is then performed by the connected
actors installed in the living environment. If, for example,
SAM receives the information that a window is open, it
analyses the remaining context information and can inform
the user about the open window before he is leaving the
house. The components communicate over semantic contracts
and are based on a common domain ontology. This ontology
is designed state-driven and every concept (device, person,
location, etc.) of the ontology is represented by its actual
state. The PCEICL platform, on the other hand, focuses on
the user. The most important is to describe the user, since for
information retrieval the user’s condition is essential.

The UNIVERsal open platform and reference Specification
for Ambient Assisted Living) (universAAL) project [5] aims
to join different approaches from lots of projects to a unique
AAL solution. One of this included projects is SOPRANO [4].
The goal of universAAL is a platform, that makes it viable to
develop AAL services. To meet this requirement, there will
be developer tools, a store for distributing AAL services and
a runtime environment to support all stakeholders. The uni-
versAAL platform is based on OSGi and ontologies are used
as a common language for the components, too. But due to
the OSGi-agent combination and the use of cloud technologies
the PCEICL platform is more flexible and intelligent than the
universAAL or the SOPRANO approach. The advantages of
using agents within the OSGi framework and the usage of
cloud technologies are described in Section VI.

Software agents are used in the Emergency monitoring
and prevention (EMERGE) project [13] by the Event-driven
Activity Recognition System (EARS) to process detected events
by sensors to system reactions. Sets of detected events can
be combined to assumed activities of the user. Self-StarMAS
[14] uses agents to automate the configuration of devices
in complex AAL scenarios. In the PCEICL approach JADE
agents are used to deliver information from the user-centered
ontology and to adapt the user experience and assistance by
intelligent decision making.

III. COMBINING OSGI AND AGENTS

To tailor the functionality and information presentation
according to the user needs, we integrated the software agent
platform JADE for supporting intelligent behavior with the
OSGi platform, which is often basis of smart home infrastruc-
tures.

There are several related studies that deal with the com-
bination of OSGi and JADE. They can be divided into two
main approaches: a) Deploying behavioral patterns of agents
as bundles in OSGi on top of the agent system or b) setting
up the JADE system as an OSGi bundle.

a) Gunasekera et. al introduced VERSAG (VERsatile Self-
Adaptive aGents), a general architecture for lightweight flexi-
ble multi-agent systems (MAS) [15]. Based on this architecture

they present a concrete implementation for JADE and OSGi
[16] (see right part of Figure 1).

In the VERSAG approach, software agents have the ability
to share their Capabilities with other agents. Capabilities
are OSGi bundles, that run within the agents. The kernel is
managing the agents and can pass the control over to other
modules. The Itinerary Service manages the route for the
mobile agents and provides them with the needed information
about the distinct location, in which the agents have to operate.
The Capabilities Repository holds all information about the ap-
plication specific Capabilities. The OSGi container is located
in the Capabilities Execution Service and runs Capabilities
that are available in the Capabilities Repository. In addition,
the Capabilities Execution Service is hosting an Adaption
Service that contains the logic for adapting the agent according
to the context, and a Context Service that influences the
aforementioned adaptation by providing context information.
The configuration and implementation of VERSAG requires
several significant changes to the OSGi platform, to use it
within the agent.

Fig. 1. Overview VERSAG Architecture

b) In Carneiro et. al [17], the JADE-system is running as
an OSGi bundle and controls and manages other JADE-OSGi
bundles that are independent software agents.

Jaszczyk and Król [18] follow the same approach, but
divide the devices into three tiers: 1.) Agentless Devices, that
do not have the power to provide a runtime environment with
agents but have interfaces to receive FIPA-based [19] Agent
Communication Language (ACL) messages [20], 2.) Agent
Devices that are powerful enough to provide their own OSGi
platform for software-agents or auxiliary OSGi bundles, and
3.) one Main Device that is a JADE Main Container where all
other JADE Containers are registered.

Telecom Italia has developed an official JADE-OSGi bun-
dle since JADE version 3.7, that is compatible with OSGi
compliant frameworks since version 3.4 [21]. The installation
and minimal configuration of JADE-OSGi is fairly easy and
fast. The basic idea of JADE-OSGi is that each agent is located
in a single bundle (see left part of Figure 1). The advantage of
this is the possibility to use standardized OSGi actions, e.g.,
update agents separately during runtime by using the OSGi
update functionality or deploying a Management Agent by
using the Configuration Admin Service. Besides this, it is also
possible to deploy other OSGi bundles in this environment

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

and agents can access the services of these bundles. This
leads to the possibility to keep the agents simple by reusing
functionality that is provided by other bundles. The dynamic
and modular architecture of OSGi is extended by JADE-OSGi
and introduces additional intelligence by adding flexible agents
to the framework.

The approach b) setting up the JADE system as an OSGi
bundle, is also the approach taken in the PCEICL platform.

IV. PLATFORM ARCHITECTURE OF PCEICL

The PCEICL platform combines the modular service plat-
form OSGi (Equinox [22]) and intelligent software agents
using JADE-OSGi [21]. The platform is built up on an infras-
tructure, that is provided by the Cloud Management System
(see Section V). First an architecture overview is given, second
an architecture layer model is described and finally it is shown,
how the PCEICL ontology is integrated into the platform.

A. Architecture Overview

PCEICL architecture is based on the OSGi platform with
several OSGi bundles for common services, like Sensor Bun-
dles, Smart Home Control Bundles, an Address Book Bundle
or a Web-Interface Bundle (see Figure 2).

JADE-OSGi is hosting the software-agents system but can
also register and communicate with agents, that are OSGi bun-
dles themselves. Only the agents have access to the PCEICL-
Ontology [8] and pass the aggregated data to the service
bundles. Authentication and access control is managed by the
Authentication and Security Module that is also securing the
OSGi framework. For example, a Message Access Control
Module controls the messages flow between the various OSGi
bundles in detail. Special OSGi bundles provide services
for installing new bundles and functionality or for updating
existing ones through a central Bundle Repository as described
in Section V.

Fig. 2. Overview of PCEICL Architecture

B. Architecture Layer Model

The architecture of the PCEICL platform can be divided
into three different layers (see Figure 3):

• Agent Layer
All agent bundles are located in the Agent Layer.
Communication between agents within this layer is
performed by Agent Communication Language (ACL)
[20].

There are Application Agents, like the Reminder
Agent, which can be developed by external developers
and provide several services for the user. Other agents
are System and Smart Agents, which are part of
the PCEICL platform. Smart Agents are for example
domain expert agents, which have access to the do-
main ontology data and are able to execute ontology
reasoning. System Agents can be used by other agents
for system matters, like access control or sensor data
acquisition.

• OSGi Bundle Layer
In this layer, all OSGi bundles are placed, that provide
services. These bundles are usually provided by smart
home service providers. They integrate sensors, like
temperature sensor, window status, etc.

• External Service Layer
This layer provides services, that can be accessed from
outside of the OSGi platform, e.g., a weather web
service.

The communication between the Agent and the OSGi
Bundle Layer is implemented by the OSGi framework itself.

Fig. 3. Layers of the PCEICL Platform

C. User-Centered PCEICL Ontology Integration

Based on the PCEICL-Ontology [8], the user context can be
semantically interpreted and can be used directly by the ACL
for exchanging messages. This is used to adapt all services of
the PCEICL platform to the needs of the user. The PCEICL
ontology is, unlike in other approaches, user-centered. This
means, that it models the user and his properties like personal
information, interests, preferences, health condition but also
the user’s environment (social contacts or information about
sensors, devices, weather, etc.). Additionally, the ontology is
easy to expand and offers the possibility to have a historical
view over the changing user data. To achieve access control of

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

the PCEICL-Ontology only the PCEICL-Ontology DB Agent
is allowed to access the stored information about the user.

V. PLATFORM IN THE CLOUD

PCEICL is a specialized platform, which delivers specific
core functionalities in the field of Ambient Assisted Living
as a service. It supports common home automation scenarios
but also adds another layer of interaction by services and user
interfaces to assist the user in his daily life.

Each environment is separated from other environments
for privacy reasons and is managed by a PCEICL PaaS
Management System. The PCEICL PaaS Management System
has the following functions:

• Multi-Tenant: Multiple customers can use the PCEICL
PaaS.

• Customizable: The PCEICL PaaS is customizable. For
instance, if the system is used in a facility for assisted
living, special devices need to be preconfigured during
the installation of the PaaS. This is done by installing
the needed bundles and services for these devices
without the participation of the user. After this, the
user can customize additional functionalities or install
the services that assist him in his daily life. The user
can proceed on his own or is helped by trained staff
during the initial setup of the PCEICL platform.

• Scalable: The PCEICL PaaS Management System
can also monitor the workload of the PCEICL PaaS
instance and request additional resources at the Cloud
Management System locally or remotely at the Public
Cloud.

• Granular Security Control: The PCEICL PaaS offers
a flexible access control system that allows detailed
control over the user’s data access and services access.

The private clouds share centralized services, hosted in
the Public Cloud, like the aforementioned Cloud Management
System or Community Event Services.

A. OSGi Bundle Repository

An OSGi Bundle Repository based on OBR [23] provides
new services or updates existing services and agents (see
Figure 4). In this example the Private Cloud is reporting a
misbehavior or error inside a service/agent through a Reporting
Module. This malfunction can be solved by an update of the
affected services. After the update is released to the central
Bundle Repository, the PCEICL PaaS Management System of
each Private Cloud is notified that there is a new version of the
service ready for deploying. The PCEICL PaaS Management
System then triggers the update on the PCEICL platforms. The
platforms evaluate if the update is part of a service, that is
running in the platform, and if the bundle is still in use by an
active service. If it is in the active bundle set but currently
not in use, the PCEICL platform pulls the updated bundle
from the Bundle Repository and deploys it. Otherwise the
new bundle is installed alongside the existing and currently
running bundle. When the deployment of the new bundle
is finished, the old bundle is stopped and deleted and new
requests will be processed by the new bundle. This update

process is implemented to keep the availability as high as
possible.

The central Bundle Repository is also accessed by the
installation bundle for new services. The first time this is
used, is during deployment of PCEICL by the PCEICL PaaS
Management System and during setup of the individual PaaS
instance through the primary user. Through the central Bun-
dle Repository, all PaaS instances are on the same software
version. This contributes to future development and maintain-
ability, because the currently deployed bundles are the same
across all PCEICL platforms and can be used as a basis for
new bundles and services.

B. Reporting Module

Besides the already mentioned service bundle update re-
porting, the Reporting Module has an anonymized information
interface. This interface is used to allow the improvement of
software agent reasoning in the PCEICL platforms. For exam-
ple, the suggestion of new services based on the installation
setup of other PCEICL platforms can be realized. But, further
ideas, like the collection of anonymized data about the user
behavior, can help to improve the PCEICL services.

VI. PARTICULARITIES OF THE PCEICL PLATFORM

Based on the presented technology the PCEICL archi-
tecture is context aware and supports intelligent behavior.
Especially the platform flexibility is worth mentioning and will
be pointed out next.

• Flexibility through Private Cloud:
New PCEICL service instances can be created or
deleted on demand. This is relevant in settings of
large facilities for assisted living that aim to keep their
inhabitants living a self-determined life as long as pos-
sible. The data of the user (e.g., profile, configurations,
etc.) are hosted locally.

• Flexibility through PaaS:
Based on the load of the platform, it can react by
requesting more resources through the PCEICL Man-
agement System and the attached monitoring. The
PaaS is able to grow with the user’s demand on
assistance or services. Detailed access control is part
of the platform.

• Flexibility through Service Adaptability:
Each PCEICL platform can be set-up with different
services and use-cases in mind. Home-automation
scenarios based on OSGi are possible and can be
extended with assistance systems to support the user in
his daily life. The user has the tools to customize the
user-experience by adding services or trying out new
application offers. The system itself has the flexibility
to support the user by responding to new requirements
based on the behavior or health state of the user.

• Flexibility through Functional Adaptability by Context
Awareness:
The service functionality varies according to the con-
text awareness [24] of the system. The system and its
services have the ability to communicate with sensors
in the living environment or with external services,

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 4. Private clouds share centralized services in the Public Cloud. Example: Private Cloud updates bundles from the Public
Cloud Bundle Repository based on the Reporting Module.

like, e.g., weather forecasts or calendars of events, to
react with special features or services. It also has the
ability to take the user’s condition into account and
adapt the services or to simply alert trained personnel
for help.

PCEICL platform therefore uses the technology of agent
systems to make the right decision at the right time. These
lightweight and intelligent software agents can be updated and
refined based on the anonymized data that can be retrieved by
the Reporting Module.

VII. EVALUATION

For a first evaluation of the architectural approach, we
follow the Software Architecture Analysis Method (SAAM)
[25] using the SAAM step: Perform Scenario Evaluation. The
developed four scenarios try to evaluate the main features of
the presented PCEICL architecture.

A. Scenario 1: Adding New Functionalities by the User

The direct scenario of adding new functionalities to a
PCEICL instance by the user involves the private PaaS of
the user and the Bundle Repository. The user has access to
a central market place AAL OSGi bundle repository, that will
list different applications, that can be added to the platform.
The user chooses the new functionality. The PCEICL PaaS

Management System requests for the new bundle at the Bundle
Repository. This bundle requires a set of bundles. The platform
evaluates, which required bundles are already running on it and
which have to be added for the new functionality. If all required
bundles and the bundle that contains the desired functionality,
are deployed on the user’s PCEICL platform, the functionality
is started and ready for further configuration, e.g., specifying
login details or changing color schemes based on the user’s
needs.

Involved PCEICL platform modules: Bundle Repository,
PCEICL PaaS Management System

B. Scenario 2: Adding Resources to a PCEICL Instance

Adding resources to a PCEICL PaaS, when predicting
performance shortcomings, is another direct scenario that is
fully supported by the presented architecture. The PCEICL
PaaS Management System continually monitors the platforms
inside the private cloud. If an increase in demand for resources
is measured or estimated, the PCEICL PaaS Management
System can request additional resources, e.g., memory or CPU,
at the Cloud Management System. The Cloud Management
System is responsible for the IaaS layer and can then assign
the resources to the platform.

Involved PCEICL platform modules: PCEICL PaaS Man-
agement System, Cloud Management System

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

C. Scenario 3: Updating a Bundle

As described in Section V and shown in Figure 4, the
updating process of a bundle is supported by the architecture,
which could imply a direct scenario. However, an updated
bundle is changing functionality of the platform itself and
is able to interact with other modules. This characterizes an
indirect scenario in SAAM.

If a developer wants to update a bundle, he can use an
instance of the PCEICL platform to test the functionality
against it before introducing it in the Bundle Repository.
Changes in bundles, which are only loosely coupled with
other services, are simpler to update than closely coupled
services. Changes in core services lead to a greater impact
on other bundles and have to be treated very carefully. The
difficulty of each change therefore has to be evaluated case
by case. The modularity of the system however supports the
process of updating bundles and the architecture can provide
the aforementioned testing platform.

Involved PCEICL platform modules: Bundle Repository,
PCEICL PaaS Management System

D. Scenario 4: Changing System Behavior Based on Context
Changes of the User

This direct scenario describes the context awareness of the
system using a simple Ride Offering Service. The user has
added an event to his calendar that he wants to attend. After
he had broken his leg in an accident, his health state in the
PCEICL system (PCEICL Ontology DB) is updated by his
doctor through the PCEICL Ontology DB Agent. The system
reacts to this new state by offering a request for a lift to the
event. This is also the adapted behavior for all new events that
he would like to attend. If the health state changes again and
the user is mobile again, the system can take back the changes
and respond as before the accident.

Involved PCEICL platform modules: PCEICL Ontology
DB, PCEICL Ontology DB Agent, (scenario specific: Ride
Offering Service)

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an architecture approach for
a context aware, intelligent and flexible PaaS for the use in
Ambient Assisted Living.

The PCEICL platform is based on OSGi and extended
by the JADE agent system. The agent system has access to
the PCEICL-Ontology and reacts to changes by adapting the
services, that are run on the platform. PCEICL is designed as a
Platform as a Service, has a PCEICL Management System and
runs in a private cloud for security and privacy reasons. The
PCEICL PaaS Management System has the ability to manage
the platform, preconfigure, start and stop services on demand,
does load balancing and monitors the resources. Several com-
mon services, that are used by the PCEICL platform, run in
the Public Cloud and can be accessed from all other platforms.
The user has the ability to configure the platform to his needs
and install new services from a central Bundle Repository. The
Bundle Repository contains new software bundles, updates for
existing bundles, special bundles with agents included, etc.

The paper discussed the improvement of flexibility by
combining OSGi and cloud mechanisms. At all layers of the
PCEICL architecture, this approach can improve the platform
for the field of AAL.

Most of the data, that is stored in PCEICL Ontology DB,
is only accessible by the user. Future work would be to refine
the access of the data by the agents, based on a Role Based
Access Control (RBAC), so that only services, that are trusted,
get access to the data they need to deliver the service. These
roles should be transparent to the users and developers of new
services. One promising approach could be the integration of
JADE-S [26] to dynamically assign permissions to agents.

The data privacy is also a matter for discussion, when
collecting data by the Reporting Module. How can data be
anonymous but still being significant across several private
cloud infrastructures? This has to be considered, when trying
to update services and agents to improve the experience of the
platform.

ACKNOWLEDGMENT

The project ZAFH-AAL (“Zentrum für Angewandte
Forschung an Hochschulen für Ambient Assisted Living”) is
funded by the Ministry of Science, Research and the Arts of
Baden-Württemberg, Germany. The funding program for the
universities of applied science is called: Zukunftsoffensive IV
“Innovation und Exzellenz” (ZO IV). The PCEICL project is
a sub-project of the project ZAFH-AAL [1].

REFERENCES

[1] “ZAFH-AAL - Zentrum für angewandte Forschung an Hochschulen
für Ambient Assisted Living (Collaborative Center for Applied Re-
search on Ambient Assisted Living),” http://www.zafh-aal.de, [re-
trieved: 2014.07.18].

[2] “PCEICL a Person Centered Environment for Information, Communica-
tion and Learning,” http://www.wolke.hs-furtwangen.de/currentprojects/
pceicl, [retrieved: 2014.07.18].

[3] OSGi Alliance, “Smart home market,” http://www.osgi.org/Markets/
SmartHome, [retrieved: 2014.08.02].

[4] M. Klein, A. Schmidt, and R. Lauer, “Ontology-centred design
of an ambient middleware for assisted living: The case of so-
prano,” http://publications.andreas.schmidt.name/klein schmidt lauer
AIM-CU KI07.pdf, [retrieved: 2014.07.11] 2007.

[5] R. Ram et al., “universaal: Provisioning platform for aal services,” in
Ambient Intelligence - Software and Applications, ser. Advances in
Intelligent Systems and Computing, A. Berlo, K. Hallenborg, J. M. C.
Rodrı́guez, D. I. Tapia, and P. Novais, Eds. Springer International
Publishing, 2013, vol. 219, pp. 105–112.

[6] Fraunhofer Institute for Open Communication Systems - FOKUS,
“AAL-Kompetenz - The information portal for developers of intel-
ligent assistance systems,” http://www.aal-kompetenz.de/, [retrieved:
2014.07.08].

[7] AALIANCE, Ambient Assisted Living Roadmap - AALIANCE Project
- Deliverable 2.7, March 2010, ch. Enabling Technologies, pp. 95–96.

[8] C. Fredrich, H. Kuijs, and C. Reich, “An ontology for user profile
modeling in the field of ambient assisted living,” in SERVICE COM-
PUTATION 2014, The Sixth International Conferences on Advanced
Service Computing, A. Koschel and A. Zimmermann, Eds., vol. 5.
IARIA, 2014, pp. 24–31.

[9] F. Bellifemine et al., “Java agent development framework,” http://jade.
tilab.com/, [retrieved: 2014.07.12].

[10] ProSyst, “Smart home / smart energy,” http://www.prosyst.
com/what-we-do/smart-home-smart-energy/products/, [retrieved:
2014.07.15].

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

[11] Miele & Cie. KG, “Miele@home,” http://www.miele.de/haushalt/
hausgeraetevernetzung-1912.htm, [retrieved: 2014.08.03].

[12] M. Petzold, K. Kersten, and V. Arnaudov, “Osgi-based e-health /
assisted living,” ProSyst, http://http://www.prosyst.com/fileadmin/
ProSyst Uploads/pdf dateien/ProSyst M2M Healthcare Whitepaper.
pdf, Whitepaper, September 2013.

[13] H. Storf et al., “An event-driven approach to activity recognition in
ambient assisted living,” in AmI 2009, M. Tscheligi et al., Ed. Springer
Verlag Heidelberg, 2009, pp. 123–132.

[14] I. Ayala, M. Amor, and L. Fuentes, “Self-starMAS: A multi-agent
system for the self-management of AAL applications,” in Sixth In-
ternational Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, IEEE. IEEE International, 2012, pp. 901–906.

[15] K. Gunasekera, A. Zaslavsky, S. Krishnaswamy, and S. W. Loke,
“VERSAG: Context-aware adaptive mobile agents for the semantic
web,” in COMPSAC ’08. 32nd Annual. IEEE International, July 2008,
pp. 521–552.

[16] K. Gunasekera, A. Zaslavsky, S. Krishnaswamy, and S. W. Loke,
“Building ubiquitous computing applications using the VERSAG
adaptive agent framework,” Journal of Systems and Software,
vol. 86, no. 2, pp. 501 – 519, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121212002695

[17] D. Carneiro, P. Novais, R. Costa, and J. Neves, “Developing intelligent
environments with OSGi and JADE,” in Artificial Intelligence in Theory
and Practice III, ser. IFIP Advances in Information and Communication
Technology, M. Bramer, Ed. Springer Berlin Heidelberg, 2010, vol.
331, pp. 174–183.

[18] P. Jaszczyk and D. Król, “Updatable multi-agent osgi architecture for

smart home system,” in Agent and Multi-Agent Systems: Technologies
and Applications, ser. Lecture Notes in Computer Science, P. Jedrze-
jowicz, N. Nguyen, R. Howlet, and L. Jain, Eds. Springer Berlin
Heidelberg, 2010, vol. 6071, pp. 370–379.

[19] “The foundation of intelligent physical agents,” http://www.fipa.org/,
[retrieved: 2014.07.08].

[20] “Agent communication language specifications,” http://www.fipa.org/
repository/aclspecs.html, [retrieved: 2014.07.12].

[21] E. Quarantotto and G. Caire, “JADE OSGi GUIDE,” http://jade.tilab.
com/doc/tutorials/JadeOsgiGuide.pdf, April 2010.

[22] The Eclipse Foundation, “equinox OSGi,” http://www.eclipse.org/
equinox/, [retrieved: 2014.07.14].

[23] W. J. Gédéon, OSGi and Apache Felix 3.0, 1st ed. Packt Publishing,
November 2010, no. 978-1-84951-138-4, ch. Using the OSGi Bundle
Repository.

[24] A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” in Computer Human Intraction 2000 Workshop
on the What, Who, Where, When, Why and How of Context-Awareness,
2000, pp. 304–307.

[25] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A Method
for Analyzing the Properties of Software Architectures,” Software
Engineering Institute, Carnegie Mellon University, White Paper, May
2007.

[26] JADE Board, “JADE Security Guide,” http://jade.tilab.com/doc/
tutorials/JADE Security.pdf, February 2005.

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

