
Private Search Over Big Data Leveraging Distributed File System

and Parallel Processing

Ayse Selcuk, Cengiz Orencik and Erkay Savas

Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul, Turkey

Email:{ayseselcuk, cengizo, erkays}@sabanciuniv.edu

Abstract—In this work, we identify the security and privacy
problems associated with a certain Big Data application, namely
secure keyword-based search over encrypted cloud data and
emphasize the actual challenges and technical difficulties in the
Big Data setting. More specifically, we provide definitions from
which privacy requirements can be derived. In addition, we
adapt an existing work on privacy-preserving keyword-based
search method to the Big Data setting, in which, not only data
is huge but also changing and accumulating very fast. Our
proposal is scalable in the sense that it can leverage distributed
file systems and parallel programming techniques such as the
Hadoop Distributed File System (HDFS) and the MapReduce
programming model, to work with very large data sets. We also
propose a lazy idf-updating method that can efficiently handle
the relevancy scores of the documents in a dynamically changing,
large data set. We empirically show the efficiency and accuracy
of the method through an extensive set of experiments on real
data.

Keywords–Cloud computing; Big Data; Keyword Search; Pri-
vacy; Hadoop.

I. INTRODUCTION

With the widespread use of the Internet and wireless
technologies in recent years, the sheer volume of data being
generated keeps increasing exponentially resulting in a sea of
information that has no end in sight. Although the Internet
is considered as the main source of the data, a considerable
amount of data is also generated by other sources such as smart
phones, surveillance cameras or aircraft, and their increasing
use in everyday life. Utilizing these information sources,
organizations collect terabytes and even petabytes of new data
on a daily bases. However, the collected data is useless unless
it is possible to analyze and understand the corresponding
information.

The emergence of massive data sets and their incessant
expansion and proliferation led to the term, the Big Data.
Accurate analysis and processing of Big Data, which bring
about new technological challenges, as well as concerns in
areas such as privacy and ethics, can provide exceptionally
invaluable information to users, companies, institutions, and
in general to public benefit. The information harvested from
Big Data has tremendous importance since it provides benefits
such as cost reduction, efficiency improvement, risk reduction,
better health care, and better decision making process. The
technical challenges and difficulties in effective and efficient
analysis of massive amount of collected data call for new

processing methods [1], [2], leveraging the emergent parallel
processing hardware and software technologies.

Although the tremendous benefits of big data are enthusi-
astically welcomed, the privacy issues still remain as a major
concern. Most of the works in the literature, unfortunately,
prefer to disregard the privacy issues due to efficiency concerns
since efficiency and privacy protection are usually regarded as
conflicting goals. This is true to certain extent due to technical
challenges, which, however, should not deter the research to
reconcile them in a framework, that allows efficient privacy-
preserving process of Big Data.

A fundamental operation in any data set is to find data
items containing a certain piece of information, which is often
manifested by a set of keywords in a query, namely keyword
based search. An important requirement of an effective search
method over Big Data is the capability of sorting the matching
items according to their relevancy to the keywords in queries.
An efficient ranking method is particularly important in Big
Data setting, since the number of matching data items will also
be huge, if not filtered depending on their relevance levels.

In this paper, we generalize the privacy-preserving search
method proposed in our previous work [3] and apply it
in the Big Data setting. The previous version [3], which
is sequentially implemented, was only capable of working
with small data sets that have sizes of only a few thousand
documents. In order to get more prominent and explicit results
using massive data, we leverage the Hadoop framework [4]
which is based on the distributed file systems and parallel
programming techniques. For relevancy ordering, we use the
well known tf-idf weighting metric and adjust it to dynamic
Big Data. Unlike the work in [3], we assume the data set
is dynamic, which is an essential property of Big Data.
Therefore, we propose a method that we call “Lazy idf Update”
which approximates the relevancy scores using the existing
information and only updates the inverse document frequency
(idf) scores of documents when the change rate in the data
set is beyond a threshold. Our analysis demonstrates that the
proposed method is an efficient and highly scalable privacy
preserving search method that takes advantage of the HDFS [4]
and the MapReduce programming paradigm.

The rest of this paper is organized as follows. In the
next section (Section II), we briefly summarize the previous
work in the literature. The properties of Big Data and the
new technologies developed for the requirements of Big Data

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

are summarized in Section III. In Section IV, we formalize
the information that we hide in the protocol. The details of
distributed file systems and the Hadoop framework are given
in Section V. Section VI briefly summarizes the underlying
search method of Orencik et al.[3]. The novel idf updating
method for adjusting the tf-idf scoring for dynamically chang-
ing data set is explained in Section VII. In Section VIII, we
discuss the results of the several experiments we applied on
multi-node Hadoop setting. Section IX is devoted for the final
remarks and conclusion.

II. RELATED WORK

There are a number of works dealing with search over
encrypted cloud data but most are not suitable for the require-
ments of Big Data. Most of the recent works are based on
bilinear pairing [5]–[7]. However, computation costs of pairing
based solutions are prohibitively high both on the server and on
the user side. Therefore, pairing based solutions are generally
not practical for Big Data applications.

Other than the bilinear pairing based methods, there are a
number of hashing based solutions. Wang et al. [8] proposed
a multi-keyword search scheme, which is secure under the
random oracle model. This method uses a hash function to
map keywords into a fixed length binary array. Cao et al. [9]
proposed another multi-keyword search scheme that encodes
the searchable database index into two binary matrices and
uses inner product similarity during matching. This method is
inefficient due to huge matrix operations and it is not suitable
for ranking. Recently, Orencik et al. [3] proposed another
efficient multi-keyword secure search method with ranking
capability.

The requirements of processing Big Data led the big com-
panies like Microsoft and Amazon to develop new technologies
that can store and analyze large amounts of structured or
unstructured data as distributed and parallel. Some of the
most popular examples of these technologies are the Apache
Hadoop project [4], Microsoft Azure [10] and Amazon Elastic
Compute Cloud web service [11].

III. CHALLENGES

As the name implies, the concept of Big Data is a massive
dynamic set that contains a great variety of data types. There
are several dimensions in Big Data that makes management a
very challenging issue. The primary aspects of Big Data is best
defined by its volume (amount of data), velocity (data change
rate) and variety (range of data types) [12].

Unfortunately, standard off-the-shelf data mining and
database management tools cannot capture or process these
massive unstructured data sets within a tolerable elapsed
time [13]. This led to the development of some new tech-
nologies for the requirements of Big Data.

In order to meet the scalability and reliability requirements,
a new class of NoSQL based data storage technology referred
as Key-Value Store [14]was developed and widely adopted.

This system utilizes associative arrays to store the key-
value pairs on a distributed system. A key-value pair consists
of a value and an index key that uniquely identifies that value.
This allows distributing data and query load over many servers

independently, thus achieving scalability. We also adapt the
key-value store approach in the proposed method, where the
details are explained in Section V.

IV. PRIVACY REQUIREMENTS

In the literature, the privacy of the data analyzed by Big
Data technologies is usually protected by anonymizing the data
[15]. However, anonymization techniques are not sufficient to
protect the data privacy. Although a number of searchable
encryption and secure keyword search methods are proposed
for the cloud data setting [5], [6], [9], none of them is suitable
for Big Data.

A secure search method over Big Data should provide the
following privacy requirements.

Definition 1. Query Privacy: A secure search protocol has
query privacy, if for all polynomial time adversaries A that,
given two different set of search terms F0 and F1 and a
query Qb generated from the set Fb, where b ∈R {0, 1}, the
advantage of A in finding b is negligible.

Intuitively, the query should not leak the information of the
corresponding search terms.

Definition 2. Data Privacy: A secure search protocol has data
privacy, if the encrypted searchable data does not leak the
content (i.e., features) of the documents.

The search method we adapted [3] satisfies both privacy
requirements. We do not repeat the proofs here and refer to
the original work.

V. DISTRIBUTED FILE SYSTEMS

It is not possible to process large amounts of data that are in
the order of terabytes by using only a single server, due to the
storage and computation power requirements. Therefore, we
utilize the cloud computing services by software as a service
(SaaS), which provide the use of shared computing hardware
resources over a network on a pay-as-you-go basis [16]. Most
of the cloud computing platforms use the Hadoop [4], which
is an open-source distributed and paralleled framework. It
provides easy and cost-effective processing solutions for vast
amounts of data. The Hadoop framework is comprised of two
main modules, which are the HDFS [17] for storing large
amounts of data and accessing with high throughput and the
MapReduce framework for distributed processing of large-
scale data on commodity machines.

A. Hadoop HDFS

The HDFS is an open source file system that is inspired
by the Google file system (GFS) [18]. The HDFS architecture
runs on distributed clusters to manage massive data sets. It
is a highly fault-tolerant system that can work on low-cost
hardware. In addition, the HDFS enables high throughput
access for application data and streaming access for file system
data. The HDFS is based on a master/slave communication
model that is composed of a single master node and multiple
data (i.e. slave) nodes. There exists a unique node called the
NameNode that runs on the master node. The master node
manages the file system namespace to arrange the mapping

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

between the files and the blocks and regulates the client access
to the files [1].

B. Hadoop Mapreduce

Hadoop’s MapReduce is based on Google’s MapReduce
algorithm [19]. The MapReduce programming model is de-
rived from the Map and the Reduce functions which are
used in functional programming beforehand. The MapReduce
Programming model which processes massive data, provides
large-scale computations for large clusters by dividing them
into independent splits. The input data for the MapReduce is
stored in the HDFS. The MapReduce utilizes the key-value
pairs for distributing the input data to all the nodes in the
cluster, in a parallel manner [20].

VI. SECURE SEARCH METHOD

The utilized privacy preserving search method is based
on our previous work [3]. In this section, we briefly explain
the method for completeness and refer the reader to [3] for
the details. The search method is based on the minhashing
technique [21]. Each document is represented by a constant
length set called signature. During the similarity comparison,
only the signatures are used and the underlying document
feature sets are not revealed to the cloud. While this method
cannot provide the exact similarity value, it can still provide
a very accurate estimation. The signature of a document is
defined as follows.

Definition 3. Minhash: Let ∆ be a finite set of elements, P
be a permutation on ∆ and P [i] be the ith element in the
permutation P . Minhash of a set D ⊆ ∆ under permutation
P is defined as:

hP (D) = min({i | 1 ≤ i ≤ |∆| ∧ P [i] ∈ D}). (1)

For the signatures, λ different random permutations on ∆
are used so the final signature of a document feature set D is:

Sig(D) = {hP1
(D), . . . , hPλ(D)}, (2)

where hPj is the minhash function under permutation Pj .

A. Index Generation

The index generation is an offline operation initiated by
the data owner and creates the secure searchable index that
is outsourced to the cloud. The searchable index generation
process is based on the bucketization technique [22], [23],
which is a well known method for data partitioning.

For each minhash function and corresponding output pair,
a bucket is created with bucket identifier Bi

k (i.e., ith minhash
function produces output k). Each document identifier is
distributed to λ different buckets according to the λ elements of
the corresponding signature. In addition to the document iden-
tifiers, the corresponding relevancy scores (i.e., tf-idf value)
are also added to the bucket content (VBik).

Note that, both the bucket identifiers (Bi
k) and the content

vectors (VBik) are sensitive information that needs to be en-
crypted before outsourcing to the cloud. The secure searchable
index I is the combination of the encrypted bucket identifiers
and the corresponding encrypted content vectors.

B. Query Generation and Search

The query is generated in the same way as generating
secure index entries. Given the set of keywords to be searched
for, the query signature is generated by using the same minhash
functions used in the index generation phase. The elements of
the query signature are indeed the identifiers of the buckets that
include the documents that contain the queried keywords. The
bucket identifiers in the query signature are encrypted using the
same secret keys used in index generation. The query is this set
of encrypted bucket identifiers. Independent of the number of
queried keywords, the query signature, hence the query itself
has constant length, which is λ.

In the search phase, the cloud server receives the query
and sends the requested encrypted content vectors to the user.
The user then decrypts the vectors and ranks the document
identifiers according to their relevancy with the query using
the tf-idf scores. Finally, the user retrieves the encrypted
documents with the highest relevancy scores from the server.
Alternatively, the operation performed by the user can be
handled by a trusted proxy, relieving the burden on the user.

VII. RELEVANCY SCORING

In the information retrieval setting, the results are required
to be ordered according to their relevancy with the query. A
commonly used scoring metric for information retrieval is the
tf-idf weighting [24]. Intuitively, it measures the importance of
a term within a document for a database collection. The tf-idf
weighting uses both the term frequency (tf) and the inverse
document frequency (idf) metrics. The term frequency of a
term w is the the normalized number of times that w occurs
in a document. The inverse document frequency measures the
rarity of a term within the whole data set. The tf-idf of a term
w in a document D is calculated as given in (3).

tf-idfw,D = tfw,D × idfw. (3)

Generally, some tools are used for calculating the tf-idf
weight such as the Rapid Miner [25], which is a popular
text mining tool. Li and Guoyong [26] proposed an efficient
method for calculating the tf-idf algorithm based on the
Hadoop Framework. We use this algorithm to calculate the
tf-idf weights in our test data sets.

A. Lazy idf Update

The Big Data necessitates high velocity in the data set
which means new data is added continuously. The tf-idf metric
uses the inverse document frequency (idf) (i.e., rarity within
the data set) of each keyword. Let a document D contain k
previously indexed terms. As this new document D is included
to the data set, the scores of all the documents that contain
any of those k terms should be updated since their idf values
change. However, dynamically applying this change for each
data item, added or removed from the data set, is not feasible.
Hence, we propose a lazy idf updating method which aims
to maintain the scores of existing documents as they are and
only set a new score for the newly added items. Moreover,
calculating the idf of each term of a newly added data item is
still a costly operation that requires scanning the whole data
set. In order to reduce the cost of scoring, we propose keeping
the idf values of the terms separately. As new data elements are

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

added, the idf values slightly change and the stored idf values
will not exactly be correct. However, they still provide accurate
estimates since the size of the existing data set is much larger
than the size of the data elements added. In a timely bases
(e.g., every 20 minutes), the whole data set is scanned and all
the idf values are updated with the exact results.

Due to the privacy requirements, the server cannot see the
actual documents but only stores the encrypted versions. It
is not possible to calculate, neither the term frequencies, nor
the inverse document frequencies from the encrypted data,
therefore a trusted proxy should be used for updating the
relevancy scores. Each new data item is first indexed and
encrypted by the proxy and then uploaded to the server.
Similarly, the idf value update operation is also done by the
proxy. Therefore, the idf values that are separately stored are
only kept in the trusted proxy. Since the idf update operation
is performed by the proxy, the cloud server will be up and
running during this period and the search operation can be
done using the existing relevancy scores.

We assume that the size of the data set will be very large,
hence the effect of the additional items on the idf values will be
very limited. Note that, the term frequency (tf) part of the tf-idf
score is calculated using only the document itself. Therefore,
the change in the data set does not affect the tf values of the
existing items. With this lazy idf updating method, very close
estimates on the real tf-idf scores can be calculated in a very
efficient way, hence it is suitable for the Big Data setting.
The actual comparative results using a large, real data set is
provided in Section VIII-C.

VIII. EXPERIMENTAL RESULTS

In this section, we extensively analyze and demonstrate
efficiency and effectiveness of the proposed method. The entire
system is implemented by Java language using 64-bit Ubuntu
12.04 LTS operating system. In order to observe the benefits
of distributed file systems, a multi-node Hadoop cluster is
configured. The interface of Cloudera CDH4 with a three node
(i.e., computer) cluster is utilized in the experiments. Two of
the computers have an Intel Xeon CPU E5-1650 @ 3.5 GHz
processor with 12 cores, 15.6 GB of main memory and the
other computer has an Intel i7 @ 3.07 GHz processor with 8
cores and 15.7 GB of main memory.

In our experiments we used the Enron data set [27],
which is a real data set that contains approximately 517, 000
email documents. Although the actual Enron data set is about
200 GB, we require a much smaller space as each document
is represented by a single signature only, regardless of the size
of the document.

A. Performance of the Method

In this section, we present the experiment results, where
we measure the time spent for generating the secure searchable
index and applying search operation.

The index generation time for 517, 000 documents, is given
in Fig. 1 for different values of λ. The experiments demonstrate
that the index generation, which is the most time consuming
part of the method, can be done in only a few minutes. And the
system can index about 2750 documents per second for λ =

100. Note that this operation is done only after the change in
the data set, due to the documents added, exceeds a threshold.
Moreover, since this operation is done by a trusted proxy, the
cloud server can still continue to serve the incoming search
requests, using the existing index.

Figure 1. Index Generation Time as λ change

The search operation has two major parts. First the server
fetches the content vectors of the queried buckets and sends
them to the user. Then the user (or trusted proxy) decrypts
those vectors and sorts the document identifiers according
to the corresponding relevancy scores. Unfortunately, due to
the distributed setting of the Hadoop file system, finding the
queried buckets requires a search over all the created buckets.
Fig. 2 demonstrates the average search time required both for
the server and user sides, in the data set of size 517, 000
documents.

B. Accuracy of the Method

In the information retrieval community, two of the most
common metrics for measuring the accuracy of a method are
precision and recall. The metrics compare the expected and
the actual results of the evaluated system. Precision measures
the ratio of correctly found matches over the total number
of returned matches. Similarly, recall measures the ratio of
correctly found matches over the total number of expected
results. Both precision and recall are real values between 0
and 1, where the higher the value the better the accuracy is.

In the case of a single term search, the proposed method
guarantees all the matches that have non-zero relevancy scores,
contain the searched term. Hence, retrieving all the items with
non-zero scores satisfies perfect precision and recall. In the
case of multiple keyword search, the matches with non-zero
scores definitely contain at least one of the queried keywords

Figure 2. Search Time

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

but it may or may not contain all. We test the accuracy of the
method for multi-term queries with λ = 100 (i.e., signature
length) using the precision and recall metrics. The average
precision and recall rates for a set of 20 queries with 2 and 3
keywords are given in Fig. 3 and 4, respectively. The retrieval
ratio in the figures represents the ratio of the documents with
nonzero scores that are considered as a relevant match with
the query. The figures show that while the precision slightly
decreases as retrieve ratio increases (i.e., more documents are
considered as match), the recall increases. The retrieve ratio
can be selected by the user according to the requirements of
the application. The figures also show that the increase in
the number of keywords decreases the precision but increases
recall. The main reason of this is that, as the number of queried
terms increases only very few documents contain all the
queried terms which have a positive effect on recall. However,
this also increases the documents with nonzero scores (i.e.,
contain at least one of the queried terms) which have a negative
effect on precision.

Figure 3. Average Precision Rate, λ = 100

Figure 4. Average Recall Rate, λ = 100

Although the precision and recall metrics are very com-
monly used and very suitable for several problems such as
conjunctive search and relational database search over struc-
tured data, they may not be very accurate for multi-keyword
search over unstructured data. The main difference between
search over structured and unstructured data is that, in the case
of structured data, each field has an equal importance and the
corresponding results should satisfy all the queried features.
However, in the case of search over unstructured data, some
of the queried features may be significantly more important
than the others. For example, let a query has three features
and a document contains only two of those features but with
very high tf-idf scores. The precision and recall metrics will
consider this document as a false match since it does not
contain all the queried features, but in the case of Big Data
we claim that this document is very relevant with the given
query and should be considered as a match. It is important
to note that, precision and recall metrics cannot consider the
importance of the queried features in the compared document,

hence may not perfectly measure the success rate of a search
method over Big Data. Therefore, we also compare the output
of the method with the ground truth. For calculating ground
truth, the documents with top 50 scores in the data set are
considered as the actual match results, where the complete tf-
idf scores of the documents are used without any encryption.
These actual results are then compared with the results evalu-
ated by the system. The average precision and recall rates in
comparison with the ground truth, for a set of 20 queries with
2 and 3 keywords and λ = 100, are given in Fig. 5 and 6,
respectively. The figures show that, the actual accuracy of the
method is quite promising when the tf-idf scores are considered
in calculating the actual results, instead of the conjunctive (i.e.,
contain all terms) case.

Figure 5. Average Precision Rate using Ground Truth, λ = 100

Figure 6. Average Recall Rate using Ground Truth, λ = 100

We also measure the effect of λ on accuracy. Fig. 7 and
8 show that an increase in λ has a positive effect on both
precision and recall. However, increase in λ also linearly
increases search and index generation times as shown in
Section VIII-A and improvement in accuracy is very limited.
Hence, an optimum value for λ should be set according to the
properties of the data set used, which is set as 100 in our case.

Figure 7. Average Precision Rate for different λ

C. Data Set Update

In Section VII-A, we propose a lazy update scheme that
does not update the idf scores of the existing scores at each
update but uses the existing scores as an approximation. In

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 8. Average Recall Rate for different λ

this subsection, we provide the change rate of the idf due to
update in the data set. We calculate the average idf scores of
a data set of size 400, 000 documents while adding a new set
of documents of size 10, 000. As Table I indicates, the effect
of adding new documents is very low especially if the data set
size is large, hence the lazy update does not reduce accuracy.

TABLE I. AVERAGE IDF VALUES

documents 400,000 410,000 420,000 430,000
avg idf 2.26678 2.26716 2.26713 2.26717

Inserting index entries for documents added first requires
calculating the corresponding signatures by a trusted proxy
and than updating the encrypted bucket content vectors accord-
ingly. We tested the update times for bulk insertions for 1000,
5000 and 10000 documents and the whole update operations
are calculated as 52.5, 59.5 and 67 seconds, respectively. This
shows that the update operation should be done for large sets
of documents which is also suitable for the Big Data setting.

IX. CONCLUSIONS

In this work, we addressed the problem of applying an
existing privacy-preserving search method for the case of Big
Data. We utilized the search method of Orencik et al. [3] as the
underlying search method and applied it for the HDFS and the
MapReduce programming model. We implemented the entire
system and tested for a three-node Hadoop with the Enron
email data set and demonstrate the effectiveness and scalability
of the system. We also proposed a lazy idf update method
that can be used for dynamically changing large data sets and
provide extensive results using a large real data set.

In the light of the promising results, we believe this method
will increase the applicability of privacy preserving search over
Big Data.

ACKNOWLEDGMENT

Ayse Selcuk was supported by ARGELA, under Grant
Number 3014-07. Dr. Orencik and Dr. Savas were supported
by TUBITAK under Grant Number 113E537.

REFERENCES

[1] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen,
“G-hadoop: Mapreduce across distributed data centers for data-intensive
computing,” Future Generation Computer Systems, vol. 29, no. 3,
pp. 739–750, 2013.

[2] L. Wang, M. Kunze, J. Tao, and G. von Laszewski, “Towards building
a cloud for scientific applications,” Advances in Engineering Software,
vol. 42, no. 9, pp. 714–722, 2011.

[3] C. Orencik, M. Kantarcioglu, and E. Savas, “A practical and secure
multi-keyword search method over encrypted cloud data,” in CLOUD
2013, pp. 390–398, IEEE, 2013.

[4] http://hadoop.apache.org/core/, 2009. [accessed Nov 2014].
[5] B. Zhang and F. Zhang, “An efficient public key encryption with

conjunctive-subset keywords search,” J. Netw. Comput. Appl., vol. 34,
pp. 262–267, Jan. 2011.

[6] Z. Chen, C. Wu, D. Wang, and S. Li, “Conjunctive keywords searchable
encryption with efficient pairing, constant ciphertext and short trapdoor,”
in PAISI, pp. 176–189, 2012.

[7] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rou, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Advances in Cryptology, CRYPTO 2013, vol. 8042
of Lecture Notes in Computer Science, pp. 353–373, 2013.

[8] P. Wang, H. Wang, and J. Pieprzyk, “An efficient scheme of common
secure indices for conjunctive keyword-based retrieval on encrypted
data,” in Information Security Applications, Lecture Notes in Computer
Science, pp. 145–159, Springer, 2009.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in IEEE
INFOCOM, 2011.

[10] https://azure.microsoft.com/, 2014. [accessed Jan 2015].
[11] http://aws.amazon.com/ec2/, 2014. [accessed Jan 2015].
[12] D. Laney, “3d data management: Controling data volume, velocity and

variety,” 2001.
[13] C. Snijders, U. Matzat, and U. Reips, “Big data: Big gaps of knowledge

in the field of internet,” in International Journal of Internet Science,
2012.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of 21st
ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pp. 205–220, ACM, 2007.

[15] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-phase top-
down specialization approach for data anonymization using mapreduce
on cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 25, pp. 363–373,
Feb. 2014.

[16] Amazon Web Services, “What is cloud computing.”
http://aws.amazon.com/what-is-cloud-computing/. [accessed Dec
2014].

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pp. 1–10, IEEE, 2010.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS Operating Systems Review, vol. 37, pp. 29–43, ACM,
2003.

[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[20] B. T. Rao and L. Reddy, “Survey on improved scheduling in hadoop
mapreduce in cloud environments.,” International Journal of Computer
Applications, vol. 34, 2011.

[21] A. Rajaraman and D. Ullman, Jeffrey, Mining of massive datasets.
Cambridge University Press, 2011.

[22] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql over
encrypted data in the database-service-provider model,” in Proceedings
of the 2002 ACM SIGMOD international conference on Management
of data, SIGMOD ’02, pp. 216–227, ACM, 2002.

[23] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure mul-
tidimensional range queries over outsourced data,” The VLDB Journal,
vol. 21, pp. 333–358, June 2012.

[24] H. S. Christopher D. Manning, Prabhakar Raghavan, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[25] https://rapidminer.com/. [accessed Jan 2015].
[26] B. Li and Y. Guoyong, “Improvement of tf-idf algorithm based on

hadoop framework,” 2012.
[27] “Enron email dataset.” http://www.cs.cmu.edu/enron, Jan. 2012. [ac-

cessed Nov 2014].

121Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

