
CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) 127IARIA, 2015. ISBN: 978-1-61208-388-9

A Reliability Assessment Framework for Cloud Applications

Xiaowei Wang

Institute of Computer Science

University of Goettingen

Goettingen, Germany

xiaowei.wang@cs.uni-goettingen.de

Jens Grabowski

Institute of Computer Science

University of Goettingen

Goettingen, Germany

grabowski@cs.uni-goettingen.de

Abstract—Cloud computing enables users to use computing

resources, platforms and applications with reduced

deployment and maintenance cost. The reliability of cloud

applications becomes one of the key concerns of cloud service

providers and users. Meanwhile, the deep dependency stack of

layered cloud objects makes it challenging to evaluate the

reliability of cloud applications. To tackle this problem, we

propose a layered dependency graph-based reliability

assessment framework. To verify our framework, we conduct

an initial case study which shows its feasibility.

Keywords-cloud application; reliability assessment; deep

dependency.

I. INTRODUCTION

Cloud computing emerges as a promising paradigm that
has potential to provide computing services as a utility [1]. It
virtualizes computing resources (such as servers, networks,
platforms and software) into resource pools, which can be
used on demand via the Internet. In recent years, increasingly
more companies and organizations have migrated their
applications and data into clouds to reduce the in-house
hardware and maintenance cost. Beside the rapid growth of
cloud computing, the reliability of cloud applications is still
on the road to satisfy cloud users. As unreliable cloud
services may lead to revenue loss and data loss, the
assessment and improvement of cloud system and
applications’ reliability attract significant attention of both
academia and industry [2][3].

However, the deep dependency stack [4] of cloud
objects, such as physical servers, virtual machines (VMs),
platforms, services and management software etc., in
different layers: Software as a Service (SaaS), Platform as a
Service (PaaS), Infrastructure as a Service (IaaS) and
physical infrastructure, makes it a system-level task to assess
the reliability of cloud applications, since the reliability of
objects in upper layers is dependent on the reliability of
objects in lower layers. The hierarchical dependency among
cloud objects makes it tough to find out root causes of
failures, i.e., where to put efforts to improve the reliability.

To address this issue, we propose a framework to assess
and analyze the reliability of cloud applications. The
framework utilizes a layered dependency graph to model
dependencies between related cloud objects and the
application deployed on clouds. Furthermore, a reliability
assessment method is proposed based on the layered
dependency graph. According to the modeled dependency
and the field monitoring data, the reliability of each object
and the application is assessed.

The rest of the paper is organized as follows: Section II
discusses related work. Section III describes the layered
dependency graph. Section IV illustrates the reliability
assessment method of cloud objects. Section V introduces
our framework. Section VI shows a preliminary case study
of our framework. Section VII presents the conclusion and
future work.

II. RELATED WORK

Recently, the assessment of cloud applications’ reliability
has become a hot research field. Zheng et al. [5] propose a
framework to select the most significant components to
determine the optimal reliability strategy for component-
based cloud applications. But [5] does not take hardware
components into consideration. In [6], Dai et al. divide the
cloud service failures into request stage failures and
execution stage failures, and then employ Markov model and
graph theory to model and analyze the reliability of cloud
services. Thanakornworakij et al. [7] propose a reliability
model for high performance computing applications
considering the correlation of software failures and hardware
failures. However, neither [6] nor [7] considers the structure
of the application. In [8], Tamura et al. propose a reliability
model for open source cloud software focusing on the
operational environment fluctuation. But [8] is more about
the reliability of cloud systems rather than the reliability of
cloud applications. Comparing with existing work, the
framework proposed in this paper is capable to assess the
reliability of cloud applications combining the reliability of
software as well as hardware objects based on the structure
of the application and the deployment of service instances.

III. LAYERED DEPENDENCY GRAPH

A cloud application is composed of several services, each
of which has one or more service instances. For simplicity,
we assume that one physical server can host more than one
VM, but one VM can hold only one service instance. We
define the chain of dependencies among service instances,
VMs and physical servers as deep dependencies [4].

As assumption, some or all VMs used by a service may
be deployed on the same physical server, as Figure 1 shows,
which means that the failure of one physical server may
bring down several service instances. The above case should
be avoided when we improve the reliability of cloud
applications. Therefore, a Layered Dependency Graph
(LDG) is employed to model deep dependencies. A LDG
contains three layers from bottom to top: physical server
layer, VM layer and service instance layer, as shown in

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) 128IARIA, 2015. ISBN: 978-1-61208-388-9

Figure 1. Cloud objects that are taken into consideration are
service instances, VM instances and physical servers. In the
service instance layer, service instances of one service type
are clustered.

Figure 1. An example of the layered dependency graph.

We define two kinds of dependencies between cloud
objects. The function dependency (solid arrows in Figure 1)
is the relationship between two services that a service needs
another one for its full function, e.g., a website needs a
database to store users’ information. And the deployment
dependency (dashed arrows in Figure 1) is the relationship
between objects in adjacent layers indicating that an object is
deployed onto another one, e.g., a service instance is
deployed on a VM.

IV. RELIABILITY ASSESSMENT

We define reliability as “the ability of a system or
component to perform its required functions under stated
conditions for a specified period of time” [9]. To illustrate
the impact of dependencies to objects’ reliability, we assume
that the reliability (R) of a cloud object is determined by the
reliability of itself (inner reliability, denoted by r) and the
reliability (Ri) of objects on which it depends [10]. Based on
the LDG model, the reliability of an object is represented as

1

*
n

i

i

R r R

where n is the number of dependent objects. Equation (1),
with the given inner reliability of all objects and time, can be
used to obtain the application reliability based on the LDG.
The reliability of cloud objects will be calculated in the
following sections.

A. Physical Server Reliability

Physical server reliability (RPS) is defined as the
probability that a physical server performs its functions
without failures in a period of time. Physical servers are
considered failed when they crash or are unreachable.
Physical servers depend on no other objects, as a result, their

reliability is fully determined by their inner reliability (
PSr).

Because physical servers work with constant failure rates

(λPS) during the operational phase [6], we utilize the
exponential reliability model to assess the physical server
reliability with

PSt

PS PSR r e

where t is the working time of the physical server. λPS is
usually evaluated by mean time to failure (MTTF) with

1
=PS

MTTF
 .

B. VM and Service Instance Reliability

As discussed in [8], the exponential distribution performs
well for modeling software failures. Thus, we estimate the
inner reliability of VM instances and service instances with
the exponential reliability model by

tr e

where λ is the failure rate of the object and t is the running
time of the object. Software failures are not able to be
tolerated by redundancy, except for timing or transient
failures (called Heisenbugs) [11], which are usually caused
by the complicated runtime environment. We assume that
not only service instances of a service but also VMs on a
physical server have the same failure rate.

VMs are considered failed if not in the running state or
not reachable. Failures of the network, hypervisors and the
cloud manager etc. that may lead to VM failures are deemed
failures of VMs. Therefore, a VM will only fail due to VM
failures or failures of the corresponding physical server,
which means that all VMs on the same physical server will
run or fail simultaneously, since they run in the same
environment. The inner reliability of every VM on a physical

server (VMr) is

VM t

VMr e

where λVM is the internal failure rate of the VM.
Combining with the reliability of physical servers, we get

the reliability of a VM with

*VM VM PSR r R

Equations (5) and (6) also apply for the inner reliability
(

SIr) and reliability (RSI) of service instances, respectively,

with the service instance internal failure rate λSI, by

SI t

SIr e

*SI SI VMR r R

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) 129IARIA, 2015. ISBN: 978-1-61208-388-9

 (a) (b) (c)

C. Service Reliability

A service fails when all of its instances fail or at least one
service that it depends on fails. Heisenbugs are usually
caused by the complicated runtime environment, so, the
inner reliability of all instances of a service is the same.
Therefore, the inner reliability of a service is determined not
only by the number of instances but also by the diversity of
its VMs (i.e., deep dependencies).

Considering a service with three instances (Figure 2)
deployed on three VMs, we will discuss the method to assess
the inner reliability of the service (rs) in different scenarios.

Figure 2. Scenarios of deploying a service with three instances.

a) If all three VMs are deployed on three different
physical servers, as Figure 2(a) shows, then according to the
assumption, the service will fail only when all the VMs fail
(possibly caused by failures of all the physical servers), so,
the service inner reliability is estimated with

3

1

*[1 (1)]
is SI VM

i

r r R

where
iVMR is the reliability of the ith VM.

b) If two of three VMs (e.g., VM1 and VM2) are
deployed on the same physical server, because they run or
fail simultaneously, it equals the scenario that the service
has only two VMs deployed on two different physical
servers and the service inner reliability is estimated with

2 3

*[1 (1)(1)].s SI VM VMr r R R

c) If all three service instances are deployed on the same

physical server, which means that any failures of a service

instance, a VM or a physical server will make the service

fail. It equals the scenario that only one service instance is

running on this physical server. The service’s inner

reliability can be estimated with

*s SI VMr r R

We can draw the conclusion from case b) and c) that if
we want to improve the reliability of a service by increasing
the amount of the service instance, the redundant services
must be on different physical servers (regardless of
performance issues).

Finally, the service reliability (Rs) is the multiplication of
its inner reliability and the reliability of all services it
depends on

 1

*
i

n

s s s

i

R r R

where
isR is the reliability of the ith dependent service and n

is the number of dependent services.

D. Application Reliability

The application reliability is equal to the reliability of the
service (e.g., S1), which directly interacts with users and no
other services are dependent on it, and is calculated with

 1
.app sR R

(13)

With the method of calculating the reliability of different
kinds of cloud objects and the structure of the application,
we can assess the reliability of cloud applications.

V. FRAMEWORK

In this section, we present a framework containing three
components: a monitor, a dependency analyzer and a
reliability analyzer, as Figure 3 shows.

Figure 3. The reliability assessment framework.

A. Monitor

The responsibility of the monitor is twofold. The first
task is to monitor and log the status, especially the failures,
of all objects included in the LDG. The second task is to
inform the dependency analyzer when any object fails,
recovers from failures or joins the system. For instance,
when a new service instance is started, the monitor transfers
the name of the service to the dependency analyzer. The
dependency analyzer will firstly query the information of the
new service instance, the corresponding VM and physical
server from the cloud manager, and secondly update and
return the new LDG to the monitor.

B. Dependency Analyzer

The dependency analyzer is designed to create and
update the LDG of the application. When deploying an
application to the cloud, users need to input the initial

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) 130IARIA, 2015. ISBN: 978-1-61208-388-9

function dependencies between services to the dependency
analyzer. When the application is deployed, the dependency
analyzer gets deployment dependencies from the cloud
manager to build the LDG.

C. Reliability Analyzer

The reliability analyzer is responsible for assessing the
reliability of the application and each object in the LDG by
field failure data of all objects obtained from the monitor and
the dependencies obtained from the dependency analyzer.

VI. PRELIMINARY CASE STUDY

To evaluate the framework, we implement a prototype
with Java based on a Cloudify [12] PaaS cloud which is built
on top of a private OpenStack [13] IaaS cloud.

 The dependency analyzer collects the dependency
information from Cloudify and OpenStack to create LDGs.
Cloudify is employed to monitor service instances and VMs,
and Ganglia [14] is used to monitor physical servers.

Figure 4. The created layered dependency graph.

We deploy a website using the Apache HTTP server [15]
as the load balancer, Apache Tomcat [16] as the application
server and MongoDB [17] (including three kinds of services,
Mongos, MongoConfig and MongoD) as the database. The
load balancer interacts directly with users and depends on
Tomcat to fulfill functions. Tomcat is dependent on MongoS
which depends on MongoConfig and MongoD. The LDG
created by the dependency analyzer is shown in Figure 4.

We monitored the website and the cloud system for three
days and obtained usage information of 71 visitors with 905
hits. From the monitoring logs, the internal failure rates of
Apache HTTP server and the website deployed on Tomcat
are 11/72 per hour and 4/72 per hour respectively. Based on
the proposed reliability assessment method, the inner
reliability of Apache HTTP server and the website is 0.8583
and 0.9460 respectively. So, the reliability of Apache HTTP
server in one hour is

0.8583*0.9460 0.8120apacheR .

No VM failures or physical server failures are observed
during the three days, so, according to the proposed
reliability assessment method, the application reliability is
also 0.8120 in one hour.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework for assessing the
reliability of cloud applications based on LDGs. As the
preliminary case study shows, the framework can assess the
reliability of cloud objects and applications. However, the
preliminary experiment shows no VM or physical server
failures. We are going to integrate a fault injector into our
framework in the future. By setting the failure mode of cloud
objects, our framework will be validated with more usage
information and on more complex structures.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic, “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th
utility,” Future Generation Computer Systems, vol. 25, no. 6,
Jun. 2009, pp. 599–616.

[2] G. DeCandia et al., “Dynamo: Amazon’s Highly Available
Key-value Store,” ACM SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, Oct. 2007, p. 205–220.

[3] W. Zhao, P. M. Melliar-Smith, and L. E. Moser, “Fault
Tolerance Middleware for Cloud Computing,” Proc. of IEEE
3rd International Conference on Cloud Computing, Jul. 2010,
pp. 67–74.

[4] M. Almorsy, J. Grundy, I. Müller, “An analysis of the cloud
computing security problem,” Proc. of APSEC 2010 Cloud
Workshop, Sydney, Australia, Nov. 2010, pp. 109–114.

[5] Z. Zheng, T. C. Zhou, M. Lyu, and I. King, “Component
Ranking for Fault-Tolerant Cloud Applications,” IEEE
Transaction on Service Computing, vol. 5, no. 4, Jul. 2011,
pp. 540–550.

[6] Y. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud Service
Reliability : Modeling and Analysis,” Proc. of the 15th IEEE
Pacific Rim International Symposium on Dependable
Computing, 2009.

[7] T. Thanakornworakij, R. F. Nassar, and C. Leangsuksun, “A
Reliability Model for Cloud Computing for High Performance
Computing Applications,” Proc. of the 18th International
Conference on Parallel Processing Workshops, Aug. 2012,
pp. 474–483.

[8] Y. Tamura, M. Kawakami, and S. Yamada, “Reliability
modeling and analysis for open source cloud computing,”
Proc. of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability, vol. 227, no. 2, Apr. 2013, pp.
179–186.

[9] IEEE, “IEEE Standard Glossary of Software Engineering
Terminology,” IEEE Std. 610.12-1990, IEEE, 1990, pp. 1–84.

[10] V. Cortellessa and V. Grassi, “Reliability Modeling and
Analysis of Service-Oriented Architectures,” Test and
Analysis of Web Services, pp. 339–362, 2007.

[11] M. R. Lyu, Handbook of Software Reliability Engineering,
IEEE Computer Society Press and McGraw- Hill, pp. 574,
1996

[12] http://www.getcloudify.org/, [retrieved: Nov. 2014]

[13] http://www.openstack.org/, [retrieved: Nov. 2014]

[14] http://www.ganglia.info, [retrieved: Nov. 2014]

[15] http://httpd.apache.org/, [retrieved: Nov. 2014]

[16] http://tomcat.apache.org/, [retrieved: Nov. 2014]

[17] http://www.mongodb.org/, [retrieved: Nov. 2014]

