
Profiling and Predicting Task Execution Time Variation of
Consolidated Virtual Machines

Maruf Ahmed, Albert Y. Zomaya
School of Information Technologies, The University of Sydney, Australia

Email: mahm1846@uni.sydney.edu.au, albert.zomaya@sydney.edu.au

Abstract—The task execution time variation (TETV) due to
consolidation of virtual machines (vm), is an important issue
for data centers. This work, critically examines the nature
and impact of performance variation from a new angle. It
introduces a simple and feasibly implementable method of using
micro and syntactic benchmarks to profile vms. It is called,
the Incremental Consolidation Benchmarking Method (ICBM). In
this method, server resources are systematically incremented,
in order to quantitatively profile the effects of consolidation.
Resource contention due to basic resources, like CPU, memory
and I/O, have been examined separately. Extended experiments
have been done on the combinations of those basic resources,too.
All experiments have been done and data are collected from real
virtualized systems, without using any simulator. Theleast square
regression (LSR) is used on the profiled data, in order to predict
the TETV of vms. To profile the TETV data, the server has been
consolidated with different types and levels of resource loads. The
prediction process, introduced here is straightforward and has
low overhead, making it suitable to be applied on a wide variety
of systems. The experimental results show that, the LSR models
can reasonably well predict TETV of vms under different levels of
consolidation. Theroot mean square error (RMSE) of prediction
for combination of resources, like CPU-Memory, CPU-I/O and
Memory-I/O, are within 2.19, 2.47 and 3.08, respectively.

Keywords–virtualization; consolidation; performance; variation;
prediction.

I. I NTRODUCTION

The virtualization is an essential part of modern data
centers. It is required for running many day-to-day operations,
like deploying a fault tolerance scheme, or providingCloud
services. A virtual machine (vm) is a self-contained unit
of execution, usually created with the help of a hypervisor
running on top of a physicalhost. The vms are immensely
important for data centers, as they help to implement the pay-
as-you-go model for the Cloud. Usually, a number of vms
are run on a host to reduce the operational cost. All the
simultaneously running vms of a physical host are collectively
known, as theco-located vms. The Cloud users can rent vms
and have complete control over the rented vms. However, they
do not have access to the underlaying physical hardware.

Theconsolidation of vms, is generally done to increase the
resource utilization of virtualized servers. However, it imposes
a performance penalty, which manifest itself through the
task execution time variation (TETV) of co-located vms [1]–
[3]. This performance variation happens because of resource
contention among the vms. It is an obstacle to efficiently
scheduling parallel applications on virtualized systems,for
several reasons: (i) The variation depends on the server load
and resource contention among the vms. The result is that, the
same task may take different amount of time to be completed
on different vms. At present there is no well accepted method
to predict this variation; (ii)To schedule a task of any parallel

application, the execution finish time of all the parents tasks
must be known. It becomes difficult due to the TETV. Thus,
it is an important issue to address, if parallel applications are
to be scheduled on virtualized clusters, efficiently.

Most of the previous works on this area fall into two main
categories. The first one, is to explore the cost-performance
models of parallel applications on public Clouds [4]–[13].
The other one, is virtualized server consolidation benchmark-
ing [14]–[19]. Nonetheless, one can easily identify several
weaknesses of those works: (i) They do not explore the
resource contention and performance variation of co-located
vms explicitly; (ii) Experiments have been done, mainly with
parallel applications. Those have complex internal structure of
their own, usually represented by a task graph. The virtual-
ization involves so many layers of abstraction and hardware
indirection. The complex internal structures of an application
can make it difficult to accurately capture the relationship
among the co-located vms; (iii) They do not provide the
option to control usages of different computing resources,
either individually or granularly during experiments. In this
case such an ability is very desirable; (iv) Consolidation
benchmarks are designed to provide an overall average pointof
some combination of tests, not details about different levels of
consolidation; (v) The consolidation benchmarks are hugely
dependent on vendors and their applicability for comparing
different virtualization technologies are not well defined. For
example, theVMmark benchmark is designed for VMware
ESX servers; (vi) Most works use complex mathematical
optimization tools, which have high overhead. The perfor-
mance modeling greatly depends on system configuration, and
changes to system configuration may require model retraining,
which in turn becomes hugely time consuming process due
to high overhead; (vii) Many works deal with theoretically
derived model of the Cloud and simulation is used for verifi-
cation. Those simulations often do not take virtualizationinto
consideration, hence does not always portray the reality.

It is clear that, a new design for the consolidation bench-
mark is required, to address above limitations. TheIncremen-
tal Consolidation Benchmarking Method (ICBM) overcomes
above issues, using micro and syntactic benchmarks. Some of
the design features of the ICBM are discussed next, in order
to explain how does it overcome above issues:

1) Micro and syntactic benchmarks suites have been used
instead of parallel applications. This gives the ability to
manipulate basic resources, like CPU, memory and I/O, both
individually and granularly during experiments. This makes it
possible to analyze the effect of consolidation on each resource
type more discretely than the previous works;

2) The ICBM, at its core is agnostic to both virtualization
technology and system configuration. First and foremost, itis

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

a methodology that can be applied to any system in general,
making it suitable to compare a wide range of systems;

3) The TETV prediction models for combinations of re-
sources have been built from profiled vm data. Separately
collected TETV data due to basic resources, like CPU, memory
and I/O, have been used to predict TETV for combination of
resources, like CPU-Memory, CPU-I/O and Memory-I/O. The
prediction results have a good level of accuracy, demonstrating
that profiling for every combination of resource load is not
necessary. It can potentially save a huge amount of time while
profiling a large data center;

5) All experiments have been done on actual virtualized
servers rather than using simulators. All results presented here
are real system data. The results show that, the ICBM can
predict TETV of real virtualized systems quite accurately;

4) Prediction models have been built using theLeast Square
Regression (LSR), which has very low overhead. Use of LSR
instead of a complex mathematical tool, makes the training
and prediction process much faster. Often, changes in system
configuration may require retraining of models, in such cases
a low overhead process can save a lot of time;

5) Analysis of profiled data reveals some interesting pat-
terns. For example, it shows that certain types of resource
combinations can cause the task execution time of consolidated
vms to degrade more rapidly than the others. This indicates
that resource contention is one of the main factors, behind the
average utilization of virtualized servers being so low.

The micro and syntactic benchmarks suites play an impor-
tant part in the design of the ICBM. They are important tools
for server performance analysis, and a lot of studies have been
done on their design. These benchmarks are the result of long
time analysis of commercially successful applications. They
are inspired by an interesting phenomenon that, the applica-
tions spend both 80% of their time and resources, executing
just 20% of the code [20]. The micro and syntactic benchmark
suites are carefully crafted to mimic such important parts rather
than running the entire application. Each benchmark suite
consists of several individual applications. These applications
are grouped together in a well-thought-out pattern.

The benchmarks suites are used here, to get a finer control
on the individual server resource types. Without using these
benchmark suites, such controlling of resources is not possible.
Experimental results show that, the benchmark suites can cause
significant amount of resource contention and TETV on vms.
Thus, the benchmark suites can be a set of powerful tools for
studying the performance variation of virtualized servers. The
experiments that are done here, are very comprehensive and
provide some interesting results.

Rest of the paper is structured as follows. The main
objectives of experiments are discussed in the Section II,
followed by the methodology described in the Section III. Sec-
tions III-B and III-A briefly discuss the benchmarks used in the
experiments and experiential setup, respectively. Detailresults
of experiments and prediction are given in the Section IV.
Finally, Section V concludes the paper, with an overview of
the future work.

II. PROBLEM DESCRIPTION

This section describes the objectives of the experiments.
The first objective, is to quantitatively measure the effectof

consolidation on the task execution time of vms. The logical
view of a virtualized server is shown in the Figure 1a. Here,
a typical situation has been considered. Usually, a physical
server hosts vms of the same configuration, however number of
simultaneously running vms may change over time. Different
vms may also have different types of resource requirements.
Some of them may be CPU or memory intensive, while others
may be multiple resources intensive. As the number of vms
increase or decrease on a physical host, it is important to know
the TETV of individual vms. The objective here, is to offer a
systematic way to record the TETV due to different numbers
of vms, and find a way to predict the TETV.

The second objective, is to establish a relationship between
TETV due to basic types of resource contention and that of
combination of resources. Figure 1b depicts the situation of a
server from resource usages point of view. In each graph, the
x-axis represents the number of vms simultaneously running
on the host. The y-axis represent the task execution time of
a vm. As the number of co-located vms increase, the task
execution time starts to vary.

The actual amount of variation depends on types and
amount of resource loads. For three basic resources types,
namely CPU, memory and I/O (Figure 1b(i-iii)), the amount
of TETV are excepted to be different. Again for combination
of resources, like CPU-memory, CPU-I/O and memory-I/O
(Figure 1b(iv-vi)), the TETV would be different, too. Profiling
a virtualized system is difficult for many reasons. A server may
be running different number of vms, with different amount
of loads at different points. That makes it impractical, to
profile all vms, for all combination of resources. Establishing a
relation, among the TETV due to basic resource types and that
of combination of resources, would save a lot of time while
profiling a large data center. Next, the procedure used in the
ICBM is discusses in details.

III. M ETHODOLOGY

This section introduces the terminologies and methodology
that have been used for rest of the paper. One of the vms
of host, is designated as the target vm (vt), while rest are
designated as co-located (vco) vms. Thevt has been used to
run different tasks to record their TETV. On the other hand,
vco have been used to collectively create resource contention.

In Cloud, the data is generally stored on dedicated nodes
over the network. However, before processing, all data is
retrieved into the local node. For example, a MapReduce
worker node performs all the mapping and reducing steps on
local data. In fact, MapReduce nodes rely more on local data,
and try to consume as little bandwidth as possible [21]. That
way, local I/O contention has much more impact compared
to that of network I/O. What is more, in order to address the
overall I/O contention issue, it is necessary to address thelocal
I/O contention first [22]. This work provides a quantitativeway
to measure the I/O contention of vms of a node. The network
I/O system consists of several such nodes. Taking this work as
a basis, the issue of network I/O contention can be addressed
through extended experiments.

A parallel application can have many different data flow
paths. As mentioned in the introduction, such an application
can be decomposed into a set of tasks. Then, those tasks need
to be scheduled on different vms individually. This work lays
ground, for understanding the effect of consolidation at vm

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Stage 7

Vco Vco Vco Vco Vco
Vco VcoVco Vco Vco Vco VcoVt

1 4 5 10 11 122 3 6 7 8 9
Hypervisor

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

(a) Stages of the ICBM.

(iv) Combined resources: CPU & Mem (v) Combined resources: CPU & I/O (vi) Combined resources: Mem & I/O

cococo

t

E
xe

ct
u

io
n

 T
im

e
 o

f
V

E
xe

ct
u

io
n

 T
im

e
 o

f
V

E
xe

ct
u

io
n

 T
im

e
 o

f
V

E
xe

ct
u

io
n

 T
im

e
 o

f
V

E
xe

ct
u

io
n

 T
im

e
 o

f
V

 Basic resource on VM : I/O Basic resource on VM : Mem Basic resource on VM : CPU

E
xe

ct
u

io
n

 T
im

e
 o

f
V

ttt

tt

(iii)(i) (ii)

(b) Task time variation from resource point of view.

Figure 1. Experimental setup and objective of ICBM.

level. Without this understanding, it is not possible to formulate
the effect on consolidation at a higher level.

The micro and syntactic benchmarks used here, are actually
application suites. They are combinations of several appli-
cations, patterned together to execute such a way that they
put maximum pressure on a particular system resource. For
example, the Filebench includes several different categories of
tests, including a file-server test [23]. Similarly, the Unixbench
consists of many tests, including the System Call Overhead,
Pipe-based Context Switching and Execl Throughput test [24].
The Nbench includes, a task allocation algorithm, Huffman
compression, IDEA encryption, Neural Net and LU Decom-
position test [25]. There are many more test components on
those suites, and all of them are designed to mimic the steps of
commercial applications. Thus, together they can put the vms
under stress like a real application. Also the experimentalre-
sults from real systems show that, these benchmarks cause the
task execution time to vary significantly. Thus, they are well
capable of creating resource contention like a real application.

Initially, vt run one task alone on the host (stage 1 in
Figure 1a) and execution finish time is recorded. In successive
stages, co-located vms are added in a particular pattern to
create resource contention. Manipulating each co-locatedvm,
independently at each step, makes it possible to increase a
particular type of resource load at a desired quantity. In the
experimental setup, twovco are added at each stage until the
server reaches the saturation point. Depending on the configu-
ration, a host can simultaneously run only a certain number of
vms, without becoming unresponsive. That is considered to be
the saturation point. As co-located vms with different resource
types are added at each stage the TETV of all vms are profiled.

Figure 2 provides the pseudo code of ICBM for basic
resource types. The ICBM repeats the same steps for each
resource type, on co-located vms. Therefore, it is not necessary
to explain the steps, for each resource type. Next, these steps
are explained for one type of resource load, the CPU load.

Let t be a task whose TETV due to CPU intensive co-
located vms is going to be investigated. First, thet is run
alone on a single vm (vt) of the host (stage 1 of Figure 1a),
in order to obtain the execution finished time, without any
interference from co-located vms. Next, (stage 2) thet is run
again, this time along with two simultaneously running co-

T ← A set of tasks.
Bcpu ← A set of CPU intensive benchmarks.
Bmem ← A set of memory intensive benchmarks.
Bi/o ← A set of I/O intensive benchmarks.
vt ← A target vm.
vco ← A set of co-located vms.
for Each taskt ∈ T do

Add vt to the host.
Run t on vt alone and record the execution finish time.
for Each benchmark type B← Bcpu, Bmem, Bi/o do

while All the vms of host are respondingdo
Add two extravco with benchmark of type B to host.
Run vt simultaneously with the addedvco, and
record the execution finish time of each.

end while
Remove allvco and free related system resources.

end for
end for

Figure 2. Basic steps of ICBM.

located vms (v1co and v
2
co). Both the new vms, run oneBcpu

type benchmark each, thus only increasing CPU intensive load
on the system. This gives the execution time oft on vt, which
is now consolidated with two co-located CPU intensive vms.
Afterwards, two more CPU intensivevco are added (stage 3),
increasing the number of CPU intensive co-located vms to
four. The execution finish time ofvt is profiled again for this
setting. This way, two newvco are added at each stage, until
the co-located vms stop responding.

The maximum number of vms, that can be simultaneously
run on a host without making it non-responsive, is dependent
on the system configuration. In the experiments, the host had
oneIntel i7-3770 processor, with four cores and eight hardware
threads. Assigning, a logical CPU to each vm, the system could
run maximum of fourteen such vms, simultaneously. Adding
anymore vm, would made the whole system non-responsive.
With one vm designated asvt, and two more newvco added
at each stage, the final stage (stage 7) of the experiment
had thirteen simultaneously running vms (onevt along with
twelve vco). The vms are created with least possible subset of
CPU resources, so that CPU load can be increased with fine
granularity. However, vms with larger number of logical CPU

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

can be also created, if such is required.
The same steps are repeated for memory intensivevco, too.

However, in this case memory intensive benchmarks are run
on co-located vms instead of CPU intensive benchmarks. All
vms are configured to have 1 GB of RAM. The experiment
starts (stage 1) with a single vm (vt) running the task, whose
TETV due to memory intensive co-located vms is going to
be investigated. Next, (stage 2)vt is run again, along with
two new co-located vms (v1co and v

2
co), each running one

memory intensive benchmark. Similarly, two more vms (v
i
co

and v
i+1
co) are added at each stage until the system reaches

a predetermined point of memory load. In this case, adding
a newvco makes the host memory load to be increased by 1
GB. It was done so that, the host memory load can be changed
granularly. The host has 16 GB of RAM. By restricting the
number of vms to thirteen at the final stage, maximum of 13
GB RAM is allocated to the co-located vms, leaving rest for
the hypervisor. As with the CPU load, this predetermined load
is also not a fixed number. Afterwards, for I/O load the same
steps are repeated by adding two I/O intensive benchmarks on
two vco, at each stage. Thus, the TETV for three basic resource
types (CPU, memory and I/O) are collected.

Next, the procedure is repeated forresource combinations.
The combinations are made by choosing two resource types
at a time, from previously mentioned basic three. Those are
CPU-Memory, Memory-I/O and I/O-CPU. Experiments for
combination of loads are done exactly the same way. That is,
start with one vm (vt), and at each stage add two co-located
vms (vico and v

i+1
co) to increase the load. Difference is that,

now two new vms run two different types of benchmarks. Both
of them, together create the effect of load combinations. For
example, to increase CPU-Memory load, twovco are added at
each stage. One (vico) runs a CPU intensive benchmark, while
the other one (vi+1

co) runs a memory intensive benchmark.
Above experiments demonstrate, how the execution time of

vt is varied due to co-located vms (v
i
co). However, there is an-

other angle to this problem, that is how thevco are collectively
effect the execution times of each other. To examine this, the
execution finish times of all thevico, are also recorded at each
stage. Finally, the whole procedure is repeated without thevt

altogether. That is, all the experimental steps are repeated, by
adding only load (onvico) at each stage.

Advantage of the ICBM is that, the server load can be
changed granularly, for each basic resource type or their com-
binations. Furthermore, there is no need to know the internal
structure of a complex application, which is running on the vm.
Establishing a relationship between task execution time and
the server load would be helpful for a virtualized data-center
in many ways, including designing heuristic algorithms for
scheduling, consolidation and live-migration of vms [26][27].

A. Experimental setup
A Dell XPS-8500 system has been used in the experiments.

It has one Intel i7-3770 processor and 16GB of RAM. The i7-
3770, has four cores and eight hardware threads, each clocked
at 3.4 GHz. The host is deployed with Xen 4.2 over Fedora 17
core. Fourteen vms have been setup, one to acts asvt, while the
rest arevico. Each vm run Fedora 16, have one logical CPU, 1
GB of RAM and 30 GB virtual disk. The vms are not pinned to
the logical cores. Total of 13 GB RAM is allocated to the vms,
rest are available for the hypervisor. All the benchmarks are

installed on vms beforehand, and a concurrent java application
manages all benchmarks and vms from a remote node.

B. Benchmarks used

This section gives an overview of the benchmark suites,
used in the experiments. A data center may be running
thousands of servers. While designing an algorithm for consol-
idation or live migration scheme, the internal structures of all
the parallel applications may not be known. It is more realistic
to characterize the servers by their loads. Micro and syntactic
benchmark suites are well suited for such purposes.

Three different categories of benchmarks have been used
for three categories of resources, namely CPU, memory and
I/O. The Nbench [25] and Unixbench [24], are the two CPU
intensive benchmark suites used here. Two memory benchmark
suites used here, are theCachebench [28] andStream [29][30].
Finally, three I/O benchmark suites have been used, they are
the Dbench [31], Filebench [23] and Iozone [32]. For each
benchmark, several different parameters are need to be set.
Owing to the space limitation, it is not possible to list all the
parameters here. A fuller discussion about the benchmarks,is
out of scope for this paper. Interested readers are encouraged to
refer to the citations of respective benchmark suites for details.

IV. RESULTS

The results for prediction are given in the Section IV-C.
However, to interpret the prediction results, it is necessary to
discuss some observations of the experimental results. It will
also help to clarify the training and testing data format, which
has been used during the training and prediction phrases.

A. Execution time variations of the target vm (vt)

Three graphs of Figure 3, show the TETV ofvt due to
three basic types of resource loads. They are being, CPU
(Figure 3a), memory (Figure 3b) and I/O (Figure 3c). In each
graph, the x-axis shows the total number of vms running on
the system, while y-axis presents the task completion time on
vt. First point of the graph, shows the execution time ofvt,
when it is run alone on the server. At this stagevt is free
from any interference from co-located vms. As explained in the
Section III, two co-located vms (vco) are added to the server
at successive stages. In the final stage, there were twelvevco,
simultaneously running besides thevt. In other words, from
left to right along the x-axis, the interference from co-located
vms increases. The first point of each graph, gives execution
time of the task without any interference from co-located vms.
On the other hand, the last point gives the execution time with
maximum interference from co-located vms. Results clearly
show that different types and number ofvco, make the task
execution time to vary at a different rate.

Figure 3a shows that, the TETV ofvt with the increase
of CPU intensivevico, is the minimum among all types of
workloads. On the other hand, for memory intensivevco
(Figure 3b), two CPU intensive tasks (Nbench and Unixbench)
on vt show less variation compared two memory intensive
tasks (Cachebench and Stream) under the same situation. As an
example, in isolation the Nbench takes 10.1 minute to execute
on vt. With other 12 memory intensive co-located vms (vco)
it extends to 12.83 minutes, which is only 27.02% longer. In
contrast, the Cachebench under the exact same setup takes
587.58% longer to execute (execution time goes from 11.76

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

min to 80.68 min). Figure 3c shows the TETV due to I/O
intensivevco. Here, CPU intensive tasks do not show much
performance degradation, while both the memory and I/O
intensive tasks do. For example, the Cachebench (a memory
intensive task) have 1057.311% increase in execution time,
while Iozone (an I/O intensive task) have 1482.93%.

Next, Figure 4 shows the TETV onvt, when combination
of loads have been used onvco. The combinations are being
CPU-Memory (Figure 4a), CPU-I/O (Figure 4b) and Memory-
I/O (Figure 4c). Figure 4a shows the TETV onvt due to a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with CPU load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(a) Basic resource type: CPU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with Memory load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(b) Basic resource type: Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with I/O load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(c) Basic resource type: I/O.

Figure 3. The TETV ofvt due to various basic types of resource load on
vco.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with both CPU and Mem load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(a) Combination of resources: CPU-Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with both Mem and I/O load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(b) Combination of resources: Memory-I/O.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm with both CPU and I/O load

Nbench
Unixbench

Cachebench
Stream

Dbench
Filebench

Iozone
Mean of all vm

(c) Combination of resources: CPU-I/O.

Figure 4. The TETV ofvt due to different combinations of resource load on
vco.

mix of CPU and memory intensivevco. Here, CPU intensive
tasks onvt show least amount of degradation just as observed
previously. Among the memory intensive benchmarks, the
Cachebench shows highest rate of performance degradation
(542.74%). However, for I/O intensive tasks the effect of CPU-
Memoryvco combination, is less adverse compared to memory
intensive tasks. Figures 4c and 4b, show the performance
degradation ofvt, when I/O intensivevco is coupled with CPU
and memory intensivevco, respectively.

In both cases, memory and I/O intensive tasks onvt

show comparatively more performance degradation. In the case

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

of CPU-I/O load (Figure 4c), the Cachebench and Iozone
show increase of execution time by 1907.21% and 1991.67%,
respectively. Again for Memory-I/O load (Figure 4b), the
same two benchmarks show worse performance degradation
(1100.09% and 1502.56%, respectively). Table I shows the
standard deviation (SD) of execution times of all seven tasks
on vt through stage 1 to 7.

TABLE I. STANDARD DEVIATION OF TASK EXECUTION TIMES (MIN).

Task
type

CPU intensive Mem. intensive I/O intensive

L
oa

d
ty

pe

N
be

nc
h

U
ni

xb
e

nc
h

C
a

ch
e

be
nc

h

S
tr

e
a

m

D
be

nc
h

F
ile

be
nc

h

Io
zo

ne

CPU 3.66 0.05 0.99 2.42 0.00 0.41 1.51

B
a

si
c Memory 2.58 0.05 25.28 16.89 0.01 2.97 14.18

I/O 0.01 0.15 46.59 0.12 0.02 15.16 54.70

CPU-
Memory

4.12 0.05 23.51 1.43 0.00 3.06 9.89

C
om

bi
ne

d

CPU-I/O 0.88 0.08 83.85 0.35 0.01 17.33 71.62

Memory-
I/O

3.82 0.06 49.40 0.82 0.01 13.17 56.62

The results of this section show, how the degradation of
task execution time for each resource can be presented in
a quantitative way. At present, there is no standard way to
compare the effect of consolidation, for different types of
resources or different classes of servers. The straightforward
method presented here, can be used to compare the effect of
consolidation on wide varieties of systems.

B. Execution time variations of the co-located vms (vico)

Execution finish time of all the co-located vms, at each
stage are also profiled. This data is used for predicting the
TETV of vt. Figures 5 and 6 show the arithmetic mean of
execution times of allvico, at each stage, separately. During
experiments, it was observed that, the arithmetic mean of
execution time of all thevico follow a pattern, for each resource
type. Even though, individualvico execution time might not
have such characteristic. This, clearly indicates that overall
resource usages of all vms, is what ultimately shapes the
performance degradation curve during consolidation.

Both in Figures 5 and 6, the first point of each graph is
always zero, as there is novico running on the host at stage
1 (see Figure 1a). At stage 2, twovico are running, therefore
second point is the arithmetic mean of task execution times
of two vms (v1co, v2co). Similarly, third point is the arithmetic
mean of values of four vms (v1co, v2co, v3co andv4co) and so on.

Using above procedure, each subgraph has seven arithmetic
mean variation plotting ofvco, for seven different tasks running
on vt. Furthermore, arithmetic mean of those seven values are
also shown (in black). Increase of different types of workloads
causes the arithmetic mean of execution times to change
differently. It can be seen that, the variation is the minimum
for CPU intensive load (Figure 5a), among all three basic types
of resources. Among the three combination of resources, the
CPU-Memory (Figure 6a) intensivevco combination shows
least amount of performance degradation. On the other hand,
the combination of Memory-I/O intensivevco (Figure 6b) have

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with CPU load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(a) Basic resource type: CPU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with Memory load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(b) Basic resource type: Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with I/O load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(c) Basic resource type: I/O.

Figure 5. Arithmetic mean of TETV ofvco with respect to three basic
resource types load changes.

debilitating effect on the system as the arithmetic mean of
execution time rises rather quickly, compared to other cases.

In order to obtain above execution time values, each
experiment has been repeated at least three times. The order
of adding vms has been shuffled, in order to observe their
effect. However, no significant difference between the results
have been observed. Two vms are added at each stage, only to
conduct the experiments in a uniform way. In our observation,
the order of adding vms do not change the results ultimately,
rather it depends on the cumulative resource usages of vms.

108Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with both CPU and Mem load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(a) Combination of resources: CPU-Memory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with both Mem and I/O load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(b) Combination of resources: Memory-I/O.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

A
vg

. e
xe

cu
tio

n
tim

e
of

 v
co

 (m
in

)

No of vm with both CPU and I/O load

Nbench
Unixbench

Cachebench
Stream
Dbench

Filebench
Iozone

Mean of all vm
Mean of load only

(c) Combination of resources: CPU-I/O.

Figure 6. Arithmetic mean of TETV ofvco with respect to three
combinations of resource load changes.

C. Task execution time variation prediction
Four benchmarks have been used as tasks for training. They

are the Nbench, Unixbench, Cachebench and Stream. Three
other benchmarks have been used for testing. They are the
Dbench, Filebench and Iozone. All of the test benchmarks have
different levels of performance degradation. Therefore, they
can help to evaluate the prediction process better. Training and
testing have been done on different sets of data. No training
data have been used for testing, and vice versa.

The nine subgraphs of Figure 8, separately show prediction
results for three resources of three test tasks onvt. Each

subgraph, contains two sets of predictions, obtained from
two separate data sets, which are described next. First set of
predictions, are shown in blue on Figure 8. In this case, the
TETV data ofvt for basic resource types, has been used to
predict TETV of vt for combination of resources. First, the
TETV data ofvt for CPU (Figure 3a), Memory (Figure 3b) and
I/O (Figure 3c) intensivevco are recorded, separately. Those
are used as inputs. Then, three resource combinations have
been used as three separate targets, which are CPU-Memory
(Figure 4a), CPU-I/O (Figure 4c) and Memory-I/O (Figure 4b).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

C
ac

he
be

nc
h

ex
ec

ut
io

n
tim

e
on

 v
t (

m
in

)
No of co-located vm

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(a) Vt training data: Cachebench.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

Fi
le

be
nc

h
ex

ec
ut

io
n

tim
e

on
 v

t (
m

in
)

No of co-located vm

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(b) Vt & Vco testing data: Filebench.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

vt
(stage 1)

vt + 2 vco
(stage 2)

vt + 4 vco
(stage 3)

vt + 6 vco
(stage 4)

vt + 8 vco
(stage 5)

vt + 10 vco
(stage 6)

vt + 12 vco
(stage 7)

C
ac

he
be

nc
h:

 A
vg

. e
xe

cu
tio

n
tim

e
of

 a
ll

v c
o

(m
in

)

No of co-located vm

CPU load
Mem load

I/O load

CPU-Mem load
Mem-I/O load
CPU-I/O load

(c) Vco training data: Cachebench.

Figure 7. Examples of input and target data used for both training and
testing.

109Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench CPU-Mem

(a) Prediction for Dbench: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench CPU-Mem

(b) Prediction for Filebench: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone CPU-Mem

(c) Prediction for Iozone: CPU-Mem load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench Mem-I/O

(d) Prediction for Dbench: Mem-I/O load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench Mem-I/O

(e) Prediction for Filebench: Mem-I/O load.

 0

 25

 50

 75

 100

 125

 150

 175

 200

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone Mem-I/O

(f) Prediction for Iozone: Mem-I/O load.

 0

 25

 50

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Dbench CPU-I/O

(g) Prediction for Dbench: CPU-I/O load.

 0

 10

 20

 30

 40

 50

 60

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Filebench CPU-I/O

(h) Prediction for Filebench: CPU-I/O load.

 0

 25

 50

 75

 100

 125

 150

 175

 200

vt vt + 2 vco vt + 4 vco vt + 6 vco vt + 8 vco vt + 10 vco vt + 12 vco

E
xe

cu
tio

n
tim

e
of

 v
t (

m
in

)

No of vm

Prediction using vt data
Prediction using vco data

Iozone CPU-I/O

(i) Prediction for Iozone: CPU-I/O load.

Figure 8. Task execution time prediction fromvt andvco data.

Input & target data example. In above Figures 3 and 4,
data is grouped according to resource loads. It is done to
demonstrate that, different types of resources influence the task
execution time differently. Thus, it is important to study the
effect of each resource type separately. However, for training
and prediction, input data needs to be grouped benchmark
wise. It is required, because during training, the TETV data
due to basic resources of a task, needs to be linked to the
TETV data due to combination of resources of the same task.
Otherwise, training would not be done with a consistent data.

Figure 7a shows an example, of this rearranged input
and target data set that is used for training. It combines the
TETV data of the Cachebench onvt, for three basic and three
combined types ofvco loads from Figures 3 and 4, respectively.
All benchmarks data are rearranged similarly. During training,
three basic resources data (CPU, Memory and I/O) are used as
inputs and three combination of resources data (CPU-Memory,
CPU-I/O and Memory-I/O) as targets. From the training data
set, three sperate models have been generated, for three sets
of target data (CPU-Memory, CPU-I/O and Memory-I/O). All
three targets use the same three basic resources data as inputs.

An example of test data set is shown in Figure 7b. It
combines six TETV data of the Filebench, from Figures 3
and 4. Prediction results for three resources (CPU, Memory
and I/O) of three test benchmarks (Dbench, Filebench and
Iozone) are shown in Figure 8. Theroot mean square error
(RMSE) for this set of predictions are shown in Table II.

Training with cco data. The second set of predictions
(shown in red on Figure 8), are obtained by training the
models only withvco data. This demonstrates an interesting
phenomenon, that models generated through use of co-located
vm (vco) data only, can predict the execution time variations
of target vm (vt), too. During training the CPU (Figure 5a),
memory (Figure 5b) and I/O (Figure 5c) data ofvco are used
as inputs, while CPU-Mem (Figure 6a), Mem-I/O (Figure 6b)
and CPU-I/O (Figure 6c) data ofvco used as targets. On the
other hand, during testing thevt data are used as both input
and target. All testing have been done with the same three
benchmarks (Dbench, Filebench and Iozone), that have been
used in the previous section for testing. That is, in this case
models are generated using only co-located vms data, while
testing is done with target vm data.

110Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

T t

cpu−mem,i = −20.415 + 4.795 ∗ (T t

cpu,i)
0.7 + 0.752 ∗ (T t

mem,i)
0.9 + 0.579 ∗ (T t

io,i)

−0.119 ∗ (T t

cpu,i)
0.7

∗ (T t

mem,i)
0.9

− 0.035 ∗ (T t

cpu,i)
0.7

∗ (T t

io,i) + 0.002 ∗ (T t

mem,i)
0.9

∗ (T t

io,i)
(1)

T t

cpu−io,i = −16.393527 + 0.802 ∗ (T t

cpu,i) + 0.282 ∗ (T t

mem,i) + 1.769 ∗ (T t

io,i)

−0.020 ∗ (T t

cpu,i) ∗ (T t

mem,i) − 0.023 ∗ (T t

cpu,i) ∗ (T t

io,i) + 0.003 ∗ (T t

mem,i) ∗ (T t

io,i)
(2)

T t

mem−io,i = −16.549 + 2.104 ∗ (T t

cpu,i) + 7.920 ∗ (T t

mem,i)
0.2

− 0.169 ∗ (T t

io,i)
0.96

−0.957 ∗ (T t

cpu,i) ∗ (T t

mem,i)
0.2 + 0.031 ∗ (T t

cpu,i) ∗ (T t

io,i)
0.96 + 0.455 ∗ (T t

mem,i)
0.2

∗ (T t

io,i)
0.96

(3)

Figure 9.TETV models for resource combinations (CPU-Memory, CPU-I/O & Memory-I/O) built from vt data.

T t

cpu−mem,i = −0.009 + 0.190 ∗ (T co

cpu,i)
1.2 + 0.220 ∗ (T co

mem,i)
1.2 + 0.250 ∗ (T co

io,i) (4)

T t

cpu−io,i = −0.102 + 4.217 ∗ (T co

cpu,i)
3.25

− 0.034 ∗ (T co

mem,i) + 1.383 ∗ (T co

io,i)
0.7

+0.544 ∗ (T co

cpu,i)
3.25

∗ (T co

mem,i) − 5.394 ∗ (T co

cpu,i)
3.25

∗ (T co

io,i)
0.7 + 0.163 ∗ (T co

mem,i) ∗ IO0.7
(5)

T
t

mem−io,i = 3.720 ∗ (T
co

cpu,i)
0.325

+ 2.376 ∗ (T
co

mem,i) − 0.020 ∗ (T
co

io,i)
0.05

+1.079 ∗ (T co

cpu,i)
0.325

∗ (T co

mem,i) − 4.394 ∗ (T co

cpu,i)
0.325

∗ (T co

io,i)
0.05

− 3.144 ∗ (T co

mem,i) ∗ (T co

io,i)
0.05

(6)

Figure 10.TETV models for resource combinations (CPU-Memory, CPU-I/O & Memory-I/O) built from vco data.

An example of the training data, used here is shown on
Figure 7c. It is a collection of six differentvco workload TETV
data of the Cachebench, from six graphs of Figures 5 and 6.
During training, the variation of arithmetic mean ofvco TETV
due to CPU, memory and I/O are used as inputs. The CPU-
Memory, Memory-I/O and CPU-I/O data are used as targets.
Three models have been generated in this way, with threevco

target data set. However, testing is done withvt test data like,
the example shown in the Figure 7b. Recall that, it was also
used for testing in the previous section. Table III shows the
RMSE for this set of prediction. It shows that, the prediction
results have a good level of accuracy.

Root mean square error (RMSE) for prediction. The
RMSE of predictions for above two sets of data, are shown
separately on Table II and Table III. To the best knowledge of
the authors, there exist no approximation algorithm to estimate
the TETV of co-located vms. Therefore, there is no acceptable
theoretical bound for the RMSE values [33]. Generally, a lower
value of RMSE means better prediction accuracy.

In each case, the prediction is better, when all three basic
resources have been used to generate the model rather than
two. For example, while predicting the TETV of CPU-Memory
load combination, the model build using CPU, memory and I/O
(all 3 basic resources) data produces better results, than that
generated by using only CPU and memory (2 resources) data.

Parametric model. Lastly, the Figures 9 and 10 show
model parameters and coefficients, as they are trained from
profiled vt and vco data, respectively. They demonstrate the
relation between input and prediction data formats. Three
equations of the Figure 9, are for three resource combina-
tion targets. The terms are self-explanatory. For example,
T

t
cpu−mem,i denotes predicted task execution time of a task

on vt, when it is consolidated with total ofi number of CPU
and memory intensive co-located vms. Similarly,T

t
cpu−io,i

and T
t
mem−io,i represent the predicted task execution time

for CPU-I/O and Memory-I/O load combinations, respectively.

The same input parameters have been used for all equations.
T

t
cpu,i represents the task execution time onvt when server

is consolidated withi number of CPU intensive co-located
vms. Similarly,T t

mem,i andT t
io,i represent the task execution

time when the server is consolidated with the same number of
memory and I/O intensive co-located vms, respectively.

The equations of Figure 10 have the same targets, however
inputs are different. Here, arithmetic mean of execution times
of co-located vms have been used as inputs. For example,
T

co
cpu,i represents the arithmetic mean of execution times of

i number of CPU intensive co-located vms. In this case,
arithmetic mean of execution times of co-located vms have
been used to predict the TETV of target vm.

TABLE II. ROOT MEAN SQUARE ERROR(RMSE)FOR PREDICTION
USING TARGET VM (vt) DATA .

CPU-Memory CPU-I/O Mem-I/O
Prediction Prediction Prediction

Ben
ch

m
ar

ks With all 3 Only 2 With all 3 Only 2 With all 3 Only 2
resources:resources: resources:resources: resources:resources:
CPU, CPU, CPU, CPU, CPU, Mem,
Mem, I/O Mem Mem, I/O I/O Mem, I/O I/O

Dbench 0.036 2.516 0.146 0.506 0.011 0.468
Filebench 0.771 2.628 2.131 11.933 2.605 3.022
Iozone 2.193 10.505 2.475 21.566 3.083 3.588

TABLE III. ROOT MEAN SQUARE ERROR(RMSE)FOR
PREDICTION USING CO-LOCATED VM (vco) DATA .

CPU-Memory CPU-I/O Mem-I/O
Prediction Prediction Prediction

Ben
ch

m
ar

ks With all 3 Only 2 With all 3 Only 2 With all 3 Only 2
resources:resources: resources:resources: resources:resources:
CPU, CPU, CPU, CPU, CPU, Mem,
Mem, I/O Mem Mem, I/O I/O Mem, I/O I/O

Dbench 0.006 0.317 0.020 17.621 0.014 20.182
Filebench 0.657 4.515 1.841 10.607 1.475 47.797
Iozone 2.083 43.546 4.572 87.725 3.898 59.863

111Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Changes in basic configuration of vms, may require some
modification of model parameters. The public Cloud offers
vms for renting in certain number of predefined configurations.
Therefore, number of such models required in reality, are
limited. What is more, since LSR has low overhead, building
or rebuilding of a limited number of such models would not
be time consuming.

V. CONCLUSION AND FUTURE WORK

This work addresses an important issue of virtualization,
the performance variations due to consolidation. A straight-
forward methodology has been introduced here, that is prac-
tically feasible to implement. It is different from most of the
complementary works on virtualization, that employ complex
mathematical tools and rely on simulation. In contrast, this
work introduces a low overhead prediction process, and results
are collected from real virtualized systems.

Micro and syntactic benchmark suites have been used
here in a step by step process, to manipulate various vm
resources individually. The methodology introduced here is
unique, and results prove the effectiveness of this method.
Experimental results from real virtualized systems show that,
in this way it is possible to predict the TETV of vms quite
accurately. It provides a new and quantitative way to explore
the mutual performance interference of co-located vms. The
results also provide some valuable inside into the nature of
resource contention due to consolidation of vms.

The experimental results encourages one to continue work-
ing along this direction. For future work, experiments would
need to be extended to a wider range of virtualization tech-
niques and server configurations, to derive a more generalized
model. More questions related to this method, can be addressed
in details in future works.

REFERENCES

[1] T. Janpan, V. Visoottiviseth, and R. Takano, “A virtual machine con-
solidation framework for CloudStack platforms,” in ICOIN,2014, pp.
28–33.

[2] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila,and H. Tenhunen,
“Utilization Prediction Aware VM Consolidation Approach for Green
Cloud Computing,” in CLOUD, 2015, pp. 381–388.

[3] A. Tchana, N. D. Palma, I. Safieddine, D. Hagimont, B. Diot, and
N. Vuillerme, “Software Consolidation as an Efficient Energy and Cost
Saving Solution for a SaaS/PaaS Cloud Model,” in Euro-Par, 2015, pp.
305–316.

[4] M. Dobber, R. D. van der Mei, and G. Koole, “Effective Prediction of
Job Processing Times in a Large-Scale Grid Environment,” inHPDC,
2006, pp. 359–360.

[5] V. E. Taylor, X. Wu, J. Geisler, and R. L. Stevens, “Using Kernel
Couplings to Predict Parallel Application Performance.” in HPDC,
2002, pp. 125–134.

[6] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu, “On Exploiting Dynamic
Execution Patterns for Workload Offloading in Mobile Cloud Applica-
tions,” in ICNP, 2014, pp. 1–12.

[7] A. Gupta, L. V. Kalé, F. Gioachin, V. March, C. H. Suen, B.Lee,
P. Faraboschi, R. Kaufmann, and D. S. Milojicic, “The who, what, why,
and how of high performance computing in the cloud,” in CloudCom,
Volume 1, 2013, pp. 306–314.

[8] J. Simão and L. Veiga, “Flexible SLAs in the Cloud with a Partial
Utility-Driven Scheduling Architecture,” in CloudCom, Volume 1, 2013,
pp. 274–281.

[9] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. D. Gill, O. Sokolsky, and I. Lee,
“Real-time multi-core virtual machine scheduling in Xen,”in EMSOFT,
2014, pp. 27:1–27:10.

[10] J. Zhao, J. Tao, L. Wang, and A. Wirooks, “A Toolchain ForProfiling
Virtual Machines,” in ECMS, 2013, pp. 497–503.

[11] A. Iosup, “IaaS Cloud Benchmarking: Approaches, Challenges, and
Experience,” in HotTopiCS, 2013, pp. 1–2.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in SoCC, 2010,
pp. 143–154.

[13] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and B. B.Zhou,
“Profiling Applications for Virtual Machine Placement in Clouds,” in
CLOUD, 2011, pp. 660–667.

[14] R. McDougall and J. Anderson, “Virtualization performance: Perspec-
tives and challenges ahead,” SIGOPS Oper. Syst. Rev., vol. 44, no. 4,
Dec. 2010, pp. 40–56.

[15] V. Makhija, B. Herndon, P. Smith, E. Zamost, and J. Anderson,
“VMmark: A Scalable Benchmark for Virtualized Systems,” VMware,
Tech. Rep. TR-2006-002, 2006.

[16] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A.Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” in Xen summit.
Berkeley, CA, USA: USENIX association, Jun. 2008.

[17] P. Apparao, R. Iyer, and D. Newell, “Towards Modeling & Analysis of
Consolidated CMP Servers,” SIGARCH Comput. Archit. News, vol. 36,
no. 2, May 2008, pp. 38–45.

[18] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling Virtual
Machine Performance: Challenges and Approaches,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 3, Jan. 2010, pp. 55–60.

[19] H. Jin, W. Cao, P. Yuan, and X. Xie, “VSCBenchmark: Benchmark for
Dynamic Server Performance of Virtualization Technology,” in IFMT
’08, 2008, pp. 5:1–5:8.

[20] G. G. Shulmeyer and T. J. McCabe, “Handbook of Software Quality
Assurance (3rd Ed.),” G. G. Schulmeyer and J. I. McManus, Eds.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999, ch. ThePareto
Principle Applied to Software Quality Assurance, pp. 291–328.

[21] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, 2008, pp. 107–113.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[22] S. Ma, X.-H. Sun, and I. Raicu, “I/O throttling and coordination for
MapReduce,” Illinois Institute of Technology, Tech. Rep.,2012.

[23] OpenSolaris Project, “Filebench,” URL:
http://filebench.sourceforge.net/wiki/index.php/
Main_Page, Retrieved: February, 2016.

[24] “Unixbench: BYTE UNIX benchmark suite,” URL:
http://github.com/kdlucas/byte-unixbench, Retrieved:
February, 2016.

[25] C. C. Eglantine, NBench. TypPRESS, 2012, iSBN: 9786136257211.

[26] W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, R. Bull,
and J. N. Matthews, “A Quantitative Study of Virtual MachineLive
Migration,” in CAC, 2013, pp. 11:1–11:10.

[27] S. Nathan, P. Kulkarni, and U. Bellur, “Resource Availability Based
Performance Benchmarking of Virtual Machine Migrations,”in ICPE,
2013, pp. 387–398.

[28] P. J. Mucci, K. London, and P. J. Mucci, “The CacheBench Report,”
URL: www.earth.lsa.umich.edu/ keken/benchmarks/
cachebench.pdf, Retrieved: February, 2016.

[29] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” IEEE CS TCCA Newsletter, Dec.1995,
pp. 19–25.

[30] ——, “STREAM: Sustainable Memory Bandwidth in High Perfor-
mance Computers,” University of Virginia, Charlottesville, Virginia,
Tech. Rep., 2007.

[31] A. Tridgell, “The dbench benchmark,” URL:http://samba.org
/ftp/tridge/dbench/README, 2007, Retrieved: February, 2016.

[32] W. Norcott and D. Capps, “IOzone Filesystem Benchmark,” URL:
www.iozone.org, Retrieved: February, 2016.

[33] Z. A. Mann, “Allocation of Virtual Machines in Cloud Data Cen-
ters&Mdash;A Survey of Problem Models and Optimization Algo-
rithms,” ACM Comput. Surv., vol. 48, no. 1, Aug. 2015, pp. 11:1–11:34.

112Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

