CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Profiling and Predicting Task Execution Time Variation of
Consolidated Virtual Machines

Maruf Ahmed, Albert Y. Zomaya
School of Information Technologies, The University of SggnAustralia
Email: mahm1846@uni.sydney.edu.au, albert.zomaya@syehu.au

Abstract—The task execution time variation (TETV) due to
consolidation of virtual machines (vm), is an important issue
for data centers. This work, critically examines the nature
and impact of performance variation from a new angle. It
introduces a simple and feasibly implementable method of tisg
micro and syntactic benchmarks to profile vms. It is called,
the Incremental Consolidation Benchmarking Method (ICBM). In
this method, server resources are systematically increméed,
in order to quantitatively profile the effects of consolidaion.
Resource contention due to basic resources, like CPU, memor
and /0O, have been examined separately. Extended experimen
have been done on the combinations of those basic resources.
All experiments have been done and data are collected from &
virtualized systems, without using any simulator. Theleast square
regression (LSR) is used on the profiled data, in order to predict
the TETV of vms. To profile the TETV data, the server has been
consolidated with different types and levels of resource kds. The
prediction process, introduced here is straightforward armd has
low overhead, making it suitable to be applied on a wide varigy
of systems. The experimental results show that, the LSR mote
can reasonably well predict TETV of vms under different levds of
consolidation. Theroot mean square error (RMSE) of prediction
for combination of resources, like CPU-Memory, CPU-1/O and
Memory-1/O, are within 2.19, 2.47 and 3.08, respectively.

Keywords-virtualization; consolidation; performance; variation;
prediction.

I. INTRODUCTION

application, the execution finish time of all the parentksas
must be known. It becomes difficult due to the TETV. Thus,
it is an important issue to address, if parallel applicatiane

to be scheduled on virtualized clusters, efficiently.

Most of the previous works on this area fall into two main
categories. The first one, is to explore the cost-performanc
models of parallel applications on public Clouds [4]-[13].
The other one, is virtualized server consolidation benckma
ing [14]-[19]. Nonetheless, one can easily identify selvera
weaknesses of those works: (i) They do not explore the
resource contention and performance variation of co-txtat
vms explicitly; (i) Experiments have been done, mainlyhwit
parallel applications. Those have complex internal stmgcof
their own, usually represented by a task graph. The virtual-
ization involves so many layers of abstraction and hardware
indirection. The complex internal structures of an appia
can make it difficult to accurately capture the relationship
among the co-located vms; (iii) They do not provide the
option to control usages of different computing resources,
either individually or granularly during experiments. Inig
case such an ability is very desirable; (iv) Consolidation
benchmarks are designed to provide an overall average goint
some combination of tests, not details about differentlteaé
consolidation; (v) The consolidation benchmarks are hugel
dependent on vendors and their applicability for comparing
different virtualization technologies are not well defin&wr

The virtualization is an essential part of modern data examp|e, theVMmark benchmark is designed for VMware

centers. It is required for running many day-to-day operesj
like deploying a fault tolerance scheme, or providiGbpud

ESX servers; (vi) Most works use complex mathematical
optimization tools, which have high overhead. The perfor-

services. Avirtual machine (vm) is a self-contained unit mance modeling greatly depends on system configuration, and
of execution, usually created with the help of a hypervisorchanges to system configuration may require model retmginin
running on top of a physicdtost. The vms are immensely \hich in turn becomes hugely time consuming process due
important for data centers, as they help to implement the payo high overhead; (vi) Many works deal with theoretically
as-you-go model for the Cloud. Usually, a number of vmsderived model of the Cloud and simulation is used for verifi-
are run on a host to reduce the operational cost. All theation. Those simulations often do not take virtualizatioto
simultaneously running vms of a physical host are colletyiv consideration, hence does not always portray the reality.

known, as theco-located vms. The Cloud users can rent vms
and have complete control over the rented vms. However, the

do not have access to the underlaying physical hardware.

It is clear that, a new design for the consolidation bench-
ark is required, to address above limitations. Th&emen-
tal Consolidation Benchmarking Method (ICBM) overcomes

The consolidation of vms, is generally done to increase the gpoye issues, using micro and syntactic benchmarks. Some of

resource utilization of virtualized servers. Howevernitposes

the design features of the ICBM are discussed next, in order

a performance penalty, which manifest itself through the explain how does it overcome above issues:

task execution time variation (TETV) of co-located vms [1]-
[3]. This performance variation happens because of resourc

1) Micro and syntactic benchmarks suites have been used

contention among the vms. It is an obstacle to efficientlynStéad of parallel applications. This gives the ability to

scheduling parallel applications on virtualized systelfas,

manipulate basic resources, like CPU, memory and 1/O, both

several reasons: (i) The variation depends on the server lod"dividually and granularly during experiments. This make
and resource contention among the vms. The result is tret, tPOSSible to analyze the effect of consolidation on eachureso

same task may take different amount of time to be completefyP& more discretely than the previous works;
on different vms. At present there is no well accepted method 2) The ICBM, at its core is agnostic to both virtualization

to predict this variation; (ii))To schedule a task of any flata

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

technology and system configuration. First and foremoss, it

103

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

a methodology that can be applied to any system in generatonsolidation on the task execution time of vms. The logical
making it suitable to compare a wide range of systems; view of a virtualized server is shown in the Figure la. Here,
3) The TETV prediction models for combinations of re- @ typical situation has been considered. Usually, a physica
sources have been built from profiled vm data. Separatel§€rver hosts vms of the same configuration, however number of
collected TETV data due to basic resources, like CPU, memoryimultaneously running vins may change over time. Different
and 1/0, have been used to predict TETV for combination o¥Ms may also have different types of resource requirements.
resources, like CPU-Memory, CPU-I/O and Memory-1/O. TheSome of them may be CPU or memory intensive, while others
prediction results have a good level of accuracy, dematirsya May be multiple resources intensive. As the number of vms
that profiling for every combination of resource load is notincrease or decrease on a physical host, it is importantaakn

necessary. It can potentially save a huge amount of timeewhilthe TETV of individual vms. The objective here, is to offer a
profiling a large data center; systematic way to record the TETV due to different numbers

5) All experiments have been done on actual virtualizeaDf vms, and find a_way to. predict th? TETV.)]
servers rather than using simulators. All results presenéze The second objective, is to establish a relationship betwee
are real system data. The results show that, the ICBM cahETV due to basic types of resource contention and that of
predict TETV of real virtualized systems quite accurately; ~combination of resources. Figure 1b depicts the situatiom o

4) Prediction models have been built using tieast Square server from resource usages point of view. In each graph, the

- . x-axis represents the number of vms simultaneously running
Regression (LSR), which has very_low overhead. Use of LSR on the host. The y-axis represent the task execution time of
instead of a complex mathematical tool, makes the trainin

and prediction process much faster. Often, changes inm ste%1 vm. As the number of co-located vms increase, the task
P P) ' 9 YS€execution time starts to vary.

configuration may require retraining of models, in such sase L
The actual amount of variation depends on types and

a low overhead process can save a lot of time; !
5) Analvsis of profiled dat | int " tamount of resource loads. For three basic resources types,
) Analysis of profiled data reveals some interesting paty,smely CPU, memory and I/O (Figure 1b(i-iii)), the amount
terns. For example, it shows that certain types of resourc

binati the task tion i t consetid &6t TETV are excepted to be different. Again for combination
compinations can cause € task execution ime of consedda ¢ yagqrces, like CPU-memory, CPU-I/O and memory-1/O

vms to degrade more ra_pldly than the o_thers. This mdmatea:igure 1b(iv-vi)), the TETV would be different, too. Prafig
that resource contention is one of the maln.factors, beftiad t a virtualized system is difficult for many reasons. A servaym
average utilization of virtualized servers being so low. be running different number of vms, with different amount
The micro and syntactic benchmarks suites play an imporof loads at different points. That makes it impractical, to
tant part in the design of the ICBM. They are important toolsprofile all vms, for all combination of resources. Estatitigha
for server performance analysis, and a lot of studies haea be relation, among the TETV due to basic resource types and that
done on their design. These benchmarks are the result of longf combination of resources, would save a lot of time while
time analysis of commercially successful applicationseyrh profiling a large data center. Next, the procedure used in the
are inspired by an interesting phenomenon that, the applicacBM is discusses in details.
tions spend both 80% of their time and resources, executing
just 20% of the code [20]. The micro and syntactic benchmark I1l. M ETHODOLOGY
suites are carefully crafted to mimic such important paatser This section introduces the terminologies and methodology
than running the entire application. Each benchmark suitghat have been used for rest of the paper. One of the vms
consists of several individual applications. These apgbns of host, is designated as the target vm)(while rest are
are grouped together in a well-thought-out pattern. designated as co-located.{) vms. Thewv, has been used to
The benchmarks suites are used here, to get a finer contrain different tasks to record their TETV. On the other hand,
on the individual server resource types. Without using éhesv., have been used to collectively create resource contention.
benchmark suites, such controlling of resources is notipless In Cloud, the data is generally stored on dedicated nodes
Experimental results show that, the benchmark suites azseca over the network. However, before processing, all data is
significant amount of resource contention and TETV on vmsretrieved into the local node. For example, a MapReduce
Thus, the benchmark suites can be a set of powerful tools fagorker node performs all the mapping and reducing steps on
studying the performance variation of virtualized servéit®e |ocal data. In fact, MapReduce nodes rely more on local data,
experiments that are done here, are very comprehensive agfd try to consume as little bandwidth as possible [21]. That
provide some interesting results. way, local I/O contention has much more impact compared
Rest of the paper is structured as follows. The mairto that of network I/O. What is more, in order to address the
objectives of experiments are discussed in the Section lipverall I/O contention issue, it is necessary to addrestotta
followed by the methodology described in the Section llic-Se /O contention first [22]. This work provides a quantitativay
tions 11I-B and I11-A briefly discuss the benchmarks usedhiat to measure the I/O contention of vms of a node. The network
experiments and experiential setup, respectively. Degaillts /O system consists of several such nodes. Taking this werk a
of experiments and prediction are given in the Section IV.a basis, the issue of network 1/O contention can be addressed
Finally, Section V concludes the paper, with an overview ofthrough extended experiments.
the future work. A parallel application can have many different data flow
paths. As mentioned in the introduction, such an applicatio
Il. PROBLEM DESCRIPTION can be decomposed into a set of tasks. Then, those tasks need
This section describes the objectives of the experimentso be scheduled on different vms individually. This workday
The first objective, is to quantitatively measure the effeict ground, for understanding the effect of consolidation at vm

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 104

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

D Stage 1
[e
a1

Stage 4) .
D Basic resource on Vi, : CPU Basic resource on Viy :Mem (i) Basic resource on Vi, : 1/O
[N BE e 0.
S BN BN 0D BE
(IS B0 DO OO B0 Bl -~
(NN

co

Exectuion Time of \{{
Exectuion Time of {
Exectuion Time of ¥

Exectuion Time of (¥
Exectuion Time of ¥
Exectuion Time of \{

Y Hypervisor

Vi

=

) Combined resources: CPU & Mem (v) Combined resources: CPU & I/O (vi) Combined resources: Mem & I/

(a) Stages of the ICBM. (b) Task time variation from resource point of view.

Figure 1. Experimental setup and objective of ICBM.

; ; P ; T + A set of tasks.
level. Without this understanding, it is not possible tarioitate . .
the effect on consolidation at a higher level. Bepu < A set of CPU intensive benchmarks.

)) Bem < A set of memory intensive benchmarks.
The micro and syntactic benchmarks used here, are actually Bi, + A set of I/O intensive benchmarks.

application suites. They are combinations of several appli ,, "« A target vm.

cations, patterned together to execute such a way that they,, . A set of co-located vms.

put maximum pressure on a particular system resource. For for Each taskt € T do

example, the Filebench includes several different categaf Add v; to the host.

tests, including a file-server test [23]. Similarly, the kiménch Runt on v; alone and record the execution finish time.
consists of many tests, including the System Call Overhead, for Each benchmark type B- Bepus Bmem, Bijo do
Pipe-based Context Switching and Execl Throughput tegt [24 while All the vms of host are respondirdp

The Nbench includes, a task allocation algorithm, Huffman Add two extrav., with benchmark of type B to host.
compression, IDEA encryption, Neural Net and LU Decom- Run v; simultaneously with the added.,, and
position test [25]. There are many more test components on record the execution finish time of each.

those suites, and all of them are designed to mimic the steps o end while

commercial applications. Thus, together they can put the vm Remove allv,, and free related system resources.

under stress like a real application. Also the experimenatal end for

sults from real systems show that, these benchmarks ca@se th o for

task execution time to vary significantly. Thus, they arelwel) _

capable of creating resource contention like a real apjica Figure 2. Basic steps of ICBM.

Initially, v, run one task alone on the host (stage 1 in
Figure 1a) and execution finish time is recorded. In suceessi |ocated vms !, and v2,). Both the new vms, run ong,,,

stages, co-located vms are added in a particular pattern {gpe benchmark each, thus only increasing CPU intensiv loa
create resource contention. Manipulating each co-located on the system. This gives the execution time oh v, which
independently at each step, makes it possible to increaseig now consolidated with two co-located CPU intensive vms.
particular type of resource load at a desired quantity. B th Afterwards, two more CPU intensive,, are added (stage 3),
experimental setup, two., are added at each stage until the jncreasing the number of CPU intensive co-located vms to
server reaches the saturation point. Depending on the eenfigfour. The execution finish time af; is profiled again for this

ration, a host can simultaneously run only a certain number Osetting. This way, two new,, are added at each stage, until
vms, without becoming unresponsive. That is considere@to bthe co-located vms stop responding.

the saturation point. As co-located vms with different rese

types are added at each stage the TETV of all vms are profiled. The maximum number of vms, that can be simultaneously
._run on a host without making it non-responsive, is dependent

Figure 2 provides the pseudo code of ICBM for basicy, the system configuration. In the experiments, the host had
resource types. The ICBM repeats the same steps for eagye|ntel i7-3770 processor, with four cores and eight hardware
resource type, on co-located vms. Therefore, it is N0t 80¥S 1 reads. Assigning, a logical CPU to each vm, the systentcoul
to explain the steps, for each resource type. Next, thess stern maximum of fourteen such vms, simultaneously. Adding
are explained for one type of resource load, the CPU load. anymore vm, would made the whole system non-responsive.

Let ¢+ be a task whose TETV due to CPU intensive co-With one vm designated as, and two more new,, added
located vms is going to be investigated. First, thés run at each stage, the final stage (stage 7) of the experiment
alone on a single vmug) of the host (stage 1 of Figure 1a), had thirteen simultaneously running vms (omealong with
in order to obtain the execution finished time, without anytwelvev.,). The vms are created with least possible subset of
interference from co-located vms. Next, (stage 2)#herun CPU resources, so that CPU load can be increased with fine
again, this time along with two simultaneously running co-granularity. However, vms with larger number of logical CPU

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 105

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

can be also created, if such is required. installed on vms beforehand, and a concurrent java apgictat

The same steps are repeated for memory intensjygoo. ~ Mmanages all benchmarks and vms from a remote node.
However, in this case memory intensive benchmarks are ru
on co-located vms instead of CPU intensive benchmarks. AIB' Benchmarks used
vms are configured to have 1 GB of RAM. The experiment This section gives an overview of the benchmark suites,
starts (stage 1) with a single vma,J running the task, whose used in the experiments. A data center may be running
TETV due to memory intensive co-located vms is going tothousands of servers. While designing an algorithm for abns
be investigated. Next, (stage 2) is run again, along with idation or live migration scheme, the internal structuréslb
two new co-located vmsuf, and v2)), each running one the parallel applications may not be known. It is more réialis
memory intensive benchmark. Similarly, two more vms,(to characterize the servers by their loads. Micro and syiotac
and vit1) are added at each stage until the system reachdnchmark suites are well suited for such purposes.

a predetermined point of memory load. In this case, adding Three different categories of benchmarks have been used

a newwv., makes the host memory load to be increased by ¥or three categories of resources, namely CPU, memory and

GB. It was done so that, the host memory load can be_ changefD. The Nbench [25] and Unixbench [24], are the two CPU

granularly. The host has 16 GB of RAM. By restricting the jntensive benchmark suites used here. Two memory benchmark

number of vms to thirteen at the final stage, maximum of 13%yjtes used here, are tBachebench [28] andStream [29][30].

GB RAM is allocated to the co-located vms, leaving rest forFinally, three 1/0 benchmark suites have been used, they are

the hypervisor. As with the CPU load, this predeterminediloa the Dbench [31], Filebench [23] and lozone [32]. For each

is also not a fixed number. Afterwards, for I/O load the samepenchmark, several different parameters are need to be set.

steps are repeated by adding two 1/O intensive benchmarks adwing to the space limitation, it is not possible to list 4kt

two v.,, at each stage. Thus, the TETV for three basic resourcgarameters here. A fuller discussion about the benchmisrks,

types (CPU, memory and 1/O) are collected. out of scope for this paper. Interested readers are enceditag
Next, the procedure is repeated fesource combinations refer to the citations of respective benchmark suites feaitte

The combinations are made by choosing two resource types

at a time, from previously mentioned basic three. Those are IV. REsULTS

CPU-Memory, Memory-I/O and 1/0-CPU. Experiments for The results for prediction are given in the Section IV-C.

combination of loads are done exactly the same way. That isdowever, to interpret the prediction results, it is necessa

start with one vm ¢;), and at each stage add two co-locateddiscuss some observations of the experimental resultsilllt w

vms (%, and v’;!) to increase the load. Difference is that, also help to clarify the training and testing data formatjaith

now two new vms run two different types of benchmarks. Bothhas been used during the training and prediction phrases.

of them, together create the effect of load combinations. Fo

example, to increase CPU-Memory load, twg are added at A. Execution time variations of the target vm (v;)

each stage. Oney(,) runs a CPU int(_ensive. benchmark, while Three graphs of Figure 3, show the TETV of due to
the other one«(]") runs a memory intensive benchmark. {hree basic types of resource loads. They are being, CPU
Above experiments demonstrate, how the execution time ofFigure 3a), memory (Figure 3b) and I/O (Figure 3c). In each
v, is varied due to co-located vms:(). However, there is an- graph, the x-axis shows the total number of vms running on
other angle to this problem, that is how thg are collectively the system, while y-axis presents the task completion time o
effect the execution times of each other. To examine this, thv,. First point of the graph, shows the execution timevgf
execution finish times of all the! , are also recorded at each when it is run alone on the server. At this stageis free
stage. Finally, the whole procedure is repeated withoutsthe from any interference from co-located vms. As explainedhin t
altogether. That is, all the experimental steps are redelie Section Ill, two co-located vmsu{,) are added to the server
adding only load (on,) at each stage. at successive stages. In the final stage, there were tweglye

Advantage of the ICBM is that, the server load can beSimultaneously running besides the In other words, from
changed granularly, for each basic resource type or theirco left to right along the x-axis, the interference from codted
binations. Furthermore, there is no need to know the interna/ms increases. The first point of each graph, gives execution
structure of a complex application, which is running on the v time of the task without any interference from co-locatecsvm
Establishing a relationship between task execution tim¢ anOn the other hand, the last point gives the execution timk wit
the server load would be helpful for a virtualized data-eent Maximum interference from co-located vms. Results clearly
in many ways, including designing heuristic algorithms forshow that different types and number @f,, make the task
scheduling, consolidation and live-migration of vms [26]]. ~ €Xecution time to vary at a different rate.

) Figure 3a shows that, the TETV ef with the increase
A. Experimental setup of CPU intensiveuv/,, is the minimum among all types of

A Dell XPS-8500 system has been used in the experimentsvorkloads. On the other hand, for memory intensivg
It has one Intel i7-3770 processor and 16GB of RAM. The i7-(Figure 3b), two CPU intensive tasks (Nbench and Unixbench)
3770, has four cores and eight hardware threads, each docken v; show less variation compared two memory intensive
at 3.4 GHz. The host is deployed with Xen 4.2 over Fedora 17asks (Cachebench and Stream) under the same situation. As a
core. Fourteen vms have been setup, one to aats adiile the example, in isolation the Nbench takes 10.1 minute to execut
rest arev’,. Each vm run Fedora 16, have one logical CPU, lon v;. With other 12 memory intensive co-located vms,}

GB of RAM and 30 GB virtual disk. The vms are not pinned to it extends to 12.83 minutes, which is only 27.02% longer. In
the logical cores. Total of 13 GB RAM is allocated to the vms,contrast, the Cachebench under the exact same setup takes
rest are available for the hypervisor. All the benchmarles ar 587.58% longer to execute (execution time goes from 11.76

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 106

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

min to 80.68 min). Figure 3c shows the TETV due to I/O
Here, CPU intensive tasks do not show much
performance degradation, while both the memory and /O 0|
intensive tasks do. For example, the Cachebench (a memoeyiso | .
intensive task) have 1057.311% increase in execution time§_160» A

intensivev,,.

while lozone (an 1/O intensive task) have 1482.93%.

Next, Figure 4 shows the TETV or, when combination

of loads have been used ep,. The combinations are being
CPU-Memory (Figure 4a), CPU-I/O (Figure 4b) and Memory-

I/O (Figure 4c). Figure 4a shows the TETV aen due to a

240 Nbench «-s-sser " Dbench e ‘ B
Unixbench «««ee Filebench -«
220 Cachebench lozone b
Stream ===~ - Mean of all vm 4
S 140 4
E120} J
=
8100 F 4
3
2 80 B
]
60 R
40 E
20
o | | | L
Vi Vi+ 2 Vg, +4 v, Vi+ 6 v, Vi+ 8V, Vv +1O Voo Vet 12V,
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)
No of vm with both CPU and Mem load
(@) Combination of resources: CPU-Memory.
240 Nbench -s-eser " Dbench - ‘ B
Unixbench «««eee Filebench -«
220 Cachebench lozone b
200 Stream ===~ - Mean of all vm
‘=180 B
2160 i
S 140 4
o
E120} J
=
8100 4
3
< 80
w
60
40
20
o | | | I
Vi Vit 2V, Vit4dvg, Vi+ 6 v, Vi + 8V, v+10v0 Vi + 12 v,
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)

No of vm with both Mem and 1/O load
(b) Combination of resources: Memory- I/O

240 Nbench «-s-sser " Dbench e ‘ B
Unixbench -« Filebench -«
220 Cachebench lozone b
200 Stream ===~ - Mean of all vm 4
‘=180 B
2160 i
S 140 4
o
E120 1
=
8100 4
3
2 80 B
]
60 R
40 B
20F e
o | . | L
Vi Vi+ 2V, +4 v, Vi + 6 v, Vi + 8 Vg, v+10v Vi + 12 v,
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)
No of vm with CPU load
(a) Basic resource type: CPU.
240 Nbench -s--ser " Dbench ---ee ‘ B
Unixbench «««eeee Filebench -« -
220 Cachebench lozone b
200 Stream ==== - Mean of all vm 4
=180 R
£
2160 i
=
G140 4
[}
E120f E
=
2100 g
3
2 80
u
60 J—
e e B
20F e E P —]
ov! Vi+2Ve, Vi+4Ve, Vi +6vey, i+ 8ve, Vi+10v, Vi +12v
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)

No of vm with Memory load

(b) Basic resource type: Memory.

240 Nbench «-s--er " Dbench ---ee ‘ B
Unixbench «««eeee Filebench -« -
220 Cachebench lozone b
200 Stream ==== - Mean of all vm 4
=180 | R
5
<160
=
G140 4
Q
E120f E
=
£100 R
3
e 80 g
w
60
40
20
)
Vi Vi+2Ve, Vi+4Ve, Vi +6vey, Vi+8ve, Vi+10v, V+12v
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)

No of vm with 1/O load
(c) Basic resource type: I/O.

Figure 3. The TETV ofv; due to various basic types of resource load on

Copyright (c) IARIA, 2016.

Veo-

ISBN: 978-1-61208-460-2

240 Nbench -s--er Dbench =i=ee B
Unixbench «««eeee Filebench -« -
220 Cachebench lozone b
200 Stream ==== - Mean of all vm -
180]
5
<160 <
=
G140 .
Q
E120f E
=
£100 R
3
e 80 R
w
60 =
40 | E
20 e e e
0
Vi Vi+2Ve, Vi+4Ve, Vi +6vey, i+ 8ve, Vi+10v, Vi +12v
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)

No of vm with both CPU and I/O load
(c) Combination of resources: CPU-I/O.

Figure 4. The TETV ofv; due to different combinations of resource load on

Veo-

mix of CPU and memory intensive,,. Here, CPU intensive
tasks onv; show least amount of degradation just as observed
previously. Among the memory intensive benchmarks, the
Cachebench shows highest rate of performance degradation
(542.74%). However, for 1/O intensive tasks the effect otCP
Memorywv,., combination, is less adverse compared to memory
intensive tasks. Figures 4c and 4b, show the performance
degradation of;;, when I/O intensive., is coupled with CPU

and memory intensive,,, respectively.

In both cases, memory and I/O intensive tasks gn
show comparatively more performance degradation. In tke ca

107

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

of CPU-I/O load (Figure 4c), the Cachebench and lozone ,,[LT — T Fiebench oo]
show increase of execution time by 1907.21% and 1991.67%, x| comixbench vean of 220 A
respectively. Again for Memory-l/O load (Figure 4b), the _zo0} Stream ---== Mean of load only i

Dbench «-seee

same two benchmarks show worse performance degradatic®uso
(1100.09% and 1502.56%, respectively). Table | shows the°1eo
standard deviation (SD) of execution times of all seven tasks © 140
on v, through stage 1 to 7. S120f .

T
!

T
!

T
!

100 | q
80 q

TABLE |. STANDARD DEVIATION OF TASK EXECUTION TIMES (MIN). 60

Avg. execution tim

Task CPU intensive|| Mem. intensive I/O intensive 40 - 4
type < 20 b) " _ J
> S 5 2 I S c o Vi Vit 2V, +A4ve, Vt6Ve, Vi+8v, v+10v0 Vi + 12 Ve,
Ee] % g 5 g g 8 g (stage 1) (stage 2) (stage 3) (slage 4) (stage 5) (stage 6) (stage 7)
g _§ g 8 % 8 % N No of vm with CPU load
— = . .
CPU | 366 |005 |[009 |242 |[0.00 | 041 [L51 () Basic resource type: CPU.
240 ' Nbench — ' Fileben'ch P B
z Memory | 258 | 0.05 || 25.28 | 16.89 || 0.01 | 297 | 14.18 oo | Unixbench - lozone |
Cacheb h M f all
@ (7o 00T [015 [[4650 012 [[002 | 1516 | 54.70 ol B enn —ome Mean of load only |
E Dbench «w=eee
CPU- [4.12 |0.05 |[2351] 1.43]| 0.00 | 3.06 |9.89 =180 - 1
< | Memory >"160 - 1
@ [CPUO [0.88 | 0.08 |[8385|035 | 001 |17.33|71.62 S 140l e
= £
Q =1
E [Memory-| 382 | 0.06 || 49.40| 0.82 || 0.01 | 13.17 | 56.62 gl2or 1
O | llo ‘g 100 4
(5}
3 80F 4
The results of this section show, how the degradation of2 eo
task execution time for each resource can be presented in 4of
a quantitative way. At present, there is no standard way to 20} e :
compare the effect of consolidation, for d|fferent. types of o VBV viTAve viTeve viTBve viiove virizv
resources or different classes of servers. The straigidfiar (stage 1) (stage s (stage S (stage 4] (stage 5§ (stage) (stage 7)

No of vm with Memory load

method presented here, can be used to compare the effect of .
(b) Basic resource type: Memory.

consolidation on wide varieties of systems.

T T T T
240 Nbench ======== Filebench B

220 Unixbench ««eoeeee lozone
. . .. ; [Cachebench M f all b
B. Execution time variations of the co-located vms (v}, ool o Steam -~ Mean of load only |
=

Dbench ==i=ieie

T
!

Execution finish time of all the co-located vms, at each &80
stage are also profiled. This data is used for predicting the 16
TETV of v;. Figures 5 and 6 show the arithmetic mean of°’14°
execution times of alb?,, at each stage, separately. During s £ 120
experiments, it was observed that, the arithmetic mean OE 100
execution time of all the’ follow a pattern, for each resource @ ©°
type. Even though, individuabi, execution time might not 6o
have such characteristic. This, clearly indicates thatraive aor

resource usages of all vms, is what ultimately shapes the

T T T
! ! !

T
!

Avg

20 ; ‘ q

performance degradation curve during consolidation. e Vv avy witAvg Vit6ve, VitBvgp v+10ve, vri2v,
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)
Both in Figures 5 and 6, the first point of each graph is No of vm with I/0 load
always zero, as there is ng, running on the host at stage (c) Basic resource type: I/O.
1 (See Figure 1a)' At stage 2, tW@o are running, therefore Figure 5. Arithmetic mean of TETV of., with respect to three basic

second point is the arithmetic mean of task execution times resource types load changes.
of two vms @7, v2,). Similarly, third point is the arithmetic
mean of values of four vmaf , v2, v3 andwv?)) and so on.

Using above procedure, each subgraph has seven arithmeﬂ@b'l'tat'”g effect on the system as the arithmetic mean of
mean variation plotting of., for seven different tasks running execution time rises rather quickly, compared to other case
on v;. Furthermore, arithmetic mean of those seven values are
also shown (in black). Increase of different types of woskle In order to obtain above execution time values, each
causes the arithmetic mean of execution times to changexperiment has been repeated at least three times. The order
differently. It can be seen that, the variation is the minimu of adding vms has been shuffled, in order to observe their
for CPU intensive load (Figure 5a), among all three basiesyp effect. However, no significant difference between the Itesu
of resources. Among the three combination of resources, thieave been observed. Two vms are added at each stage, only to
CPU-Memory (Figure 6a) intensive., combination shows conduct the experiments in a uniform way. In our observation
least amount of performance degradation. On the other hanthe order of adding vms do not change the results ultimately,
the combination of Memory-1/O intensiue,, (Figure 6b) have rather it depends on the cumulative resource usages of vms.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 108

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

2a0 [™ Nbench e T Fieberch s] subgraph, contains two sets of predict_ions, obtain_ed from
220 | omixench lozone s two separate data sets, which are described next. Firstfset o
achebench Mean of all vm
200} Stream ----- Mean of load only s predictions, are shown in blue on Figure 8. In this case, the
Eigol Dbench = s TETV data ofv; for basic resource types, has been used to
Fieo} A predict TETV of v, for combination of resources. First, the
§14o - . TETV data ofv, for CPU (Figure 3a), Memory (Figure 3b) and
Z120p . I/O (Figure 3c) intensivey., are recorded, separately. Those
5100 | : are used as inputs. Then, three resource combinations have
Q .
s 80 : been used as three separate targets, which are CPU-Memory
Zeof : (Figure 4a), CPU-I/O (Figure 4c) and Memory-1/O (Figure 4b)
40 + ;
20r i — T 1 CPU load " CPU-Mem load ‘ ‘
Ovtﬂ«(ﬁ«::::;wvco Vet ‘4 Ve é Veo Lt é Veo Wit 10 Veo Vit 12V, .l Mem toad Mem-1/0 load |
(stage 1) (stage 2) (stage 3) (slage 4) (stage 5) (stage 6) (stage 7) £200 - /0 load CPU-I/O load 7
No of vm with both CPU and Mem load ‘E:180 L 4
>
(a) Combination of resources: CPU-Memory. S 160 |]
240 [T ‘ Filebench « v« 1 Eiaol g
Unixbench ««oeeee lozone S
220 - Cachebench Mean of all vm 1 =120 - . . b
200 F Stream ===~ - Mean of load only §100 [e |
£ | Dbench s 5}
Eisof 5 8ot .
Z1eor 2 oo}
@140 | S
£ & 40 F
Z120} °
5 20 F S
3100 - e ‘) ‘ ‘
% 80 Vi Vi+2Ve, Vi+4Ve, Vi +6vey, i+ 8ve, Vi+10v, V+ 12V
5 (stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)
z 6or No of co-located vm
40 (a) V4 training data: Cachebench.
20 | 100 T T T T T
CPU load ========+ CPU-Mem load ===~ -
0 L L L 90 | Mem load e Mem-1/O load - 4
+2 +4 +6 +8 + 10 +12
(sta\gte 1) \(lstagev%)) \(lstagevfc%‘)j \(’slagevﬁ‘)j \(lstagevgg V(stage \(Ii)o V(lstage\;c)o = /0 load CPU-I/O load =+
No of vm with both Mem and I/O load £ 80 - b
(b) Combination of resources: Memory-I/O. 270t B
o
240 | " Nbench --eeeese- ‘ Filebench -« 1 2 60| 1
Unixbench «eeeee lozone =
220 - Cachebench Mean of all vim b ,§ 50
200 | Stream === - Mean of load only 4 3
£ Dbench «swseie: L 40
E180 g °
>160 | p g 30r
5 k)
guor g 2 20f
-5 120 b 10 P : -
S100} 1 ‘ t s w
% 80 Ovt Vi+2Ve, Vi+tdve, Vi+6ve, Vi+ 8y, v+10v0 Vi + 12 v,
S (stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7)
z 60 No of co-located vm
40 (b) Vi & Vg, testing data: Fllebench
20 ‘ a0 | CPU load «esremr " CPU-Mem load ---- - |
ov! + 2 Veo +4vy, Vi+6Ve, V+8V Vi+10v, Vi +12v, = Mle/rg :oag """"" '\éle;g :;8 :oag .)
(stage 1) (stage 2) (stage 3) (stage 4) (stage 5) (stage 6) (stage 7) 8200 [oa B oa =
No of vm with both CPU and I/O load % 180 F 4
(c) Combination of resources: CPU-I/O. S 160 |]
Figure 6. Arithmetic mean of TETV of., with respect to three 140 1
combinations of resource load changes. 5120 | 1

C. Task execution time variation prediction 60 1

Four benchmarks have been used as tasks for training. Th%/ 40
are the Nbench, Unixbench, Cachebench and Stream. Three 20F
other benchmarks have been used for testing. They are the ol - w s s

Vit 2V, Vit4dvg, Vi+ 6V, Vi + 8V, v+10v v+ 12 v,

DbenCh, Filebench and lozone. All of the test benchmarks hav (stage 1) (stage 2) (stage 3) (slage 4) (stage L?S (stage 6) (lstage 7)o

T

different levels of performance degradation. Therefoheyt No of co-located v

can help to evaluate the prediction process better. Trgiairt (€) Veo training data: Cachebench.

testing have been done on different sets of data. No training Figure 7. Examples of input and target data used for bothitrgiand
data have been used for testing, and vice versa. testing.

The nine subgraphs of Figure 8, separately show prediction
results for three resources of three test tasksvanEach

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 109

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

o
o

T T T T 60 T T T T 60 T T

Prediction using Vi data -eeeeeees Prediction using Vi data -eeeeeees Prediction using Vi data -eeeeeees

r Prediction using v, data - 9 Prediction using v, data - Prediction using Ve, data
Dbench CPU-Mem Filebench CPU-Mem lozone CPU-Mem

2 A o o

S & o a
o
=]
o
=]

b
S
b
S

w
a

N
o

)
(=]
)
(=]

Execution time of v (min)
8

Execution time of v, (min)
8

Execution time of v, (min)
) w
o o

i
o

10F

=
5]

[
5]

o «

. . . . | 0
4 Vit 2V Vit Ve, Vit 6V, Vit 8V, Vi+ 10V, v+ 12V, Vi Vit 2 Veo Vit 7 Veo Vit 6 Veo Vit 3 Voo Vit 10 Voo Vi + 12V, Vi Vit 2 Veo Vit 7 Veo Vit 6 Veo Vit 8 Voo Vit 10 Voo Vi + 12V,
No of vm No of vm No of vm

(a) Prediction for Dbench: CPU Mem load. (b) Prediction for Fllebench CPU Mem load. (c) Prediction for lozone: CPU Mem load.

60 T 60 T T
Prediction using Vi data --weeeee Prediction using Vi data --eeeeee 200 [Prediction using v, 'data ----eeer 1
Prediction using v, data - Prediction using Ve, data - Prediction using v, data 4
Dbench Mem-1/0 Filebench Mem-1/O 4 175 | lozone Mem-1/O

o
=]
o
=]

5
o
B
o
 (min,
5
o

fid
N}
o

~
a

)
(=]

Execution time of v, (min)
8

Execution time of v, (min)
) w
o o

Execution time of v,

=
5]
=
5]

Ov‘ Vit 2 Veo Vit 7 Veo Vit 6 Veo Vit 8 Voo Vit 10 Veo Vi + 12 Vg, Ov‘ Vit 2 Veo Vit 7 Veo Vit 6 Veo Vit 8 Voo Vit 10 Voo Vi + 12V, Ov(Vit 2 Veo Vit 7 Voo Vit 6 Veo Vit 8 Veo Vit 10 Veo Vi +12 Vg,
No of vm No of vm No of vm
(d) Prediction for Dbench Mem- I/O load. (e) Prediction for Fllebench Mem- |/O load. (f) Prediction for lozone: Mem- I/O load.
T 60 T T
Prediction using Vi data --eeeeee Prediction using Vi data --eeeeee 200 [Prediction using v, 'data ----eeer 1
Prediction using v, data - Prediction using v, data - Prediction using v, data -
Dbench CPU-1IO 1 L Filebench CPU-I/O 1 175 | lozone CPU-I/O

o
=]
o
=]

,>
o

v (min)

N o1

o o

N
o

=

N 9

a o

Execution time of v, (min)
)
o

Execution time of v, (min)
w
o

Execution time of v,

@
<]

[
5]

N

o

0 | 0 | 0 . . . , |
Vi Vit 2Veo Vit Ve, Vit 6V, Vit 8V, Vi+10Vy, v+ 12V, Vi Vit 2V Vit Ve, Vit 6V, Vit 8V, Vi+ 10V, v+ 12V, Vi Vit 2V, Vi+tdVe, Vi+6Ve, Vi+8Vy, Vit 10V, v+ 12V,
No of vm No of vm No of vm

(g) Prediction for Dbench: CPU-I/O load. (h) Prediction for Filebench: CPU-1/O load. (i) Prediction for lozone: CPU-1/O load.

Figure 8. Task execution time prediction from andv., data.

Input & target data example. In above Figures 3 and 4, An example of test data set is shown in Figure 7b. It
data is grouped according to resource loads. It is done toombines six TETV data of the Filebench, from Figures 3
demonstrate that, different types of resources influene¢etbk and 4. Prediction results for three resources (CPU, Memory
execution time differently. Thus, it is important to studyet and 1/O) of three test benchmarks (Dbench, Filebench and
effect of each resource type separately. However, foritrgin lozone) are shown in Figure 8. Theoot mean square error
and prediction, input data needs to be grouped benchmaRMSE) for this set of predictions are shown in Table IlI.
wise. It is required, because during training, the TETV data
due to basic resources of a task, needs to be linked to the Training with ¢, data. The second set of predictions
TETV data due to combination of resources of the same taskshown in red on Figure 8), are obtained by training the
Otherwise, training would not be done with a consistent.datamodels only withv., data. This demonstrates an interesting

phenomenon, that models generated through use of co-tbcate

Figure 7a shows an example, of this rearranged inputm (v.,) data only, can predict the execution time variations
and target data set that is used for training. It combines thef target vm {), too. During training the CPU (Figure 5a),
TETV data of the Cachebench op, for three basic and three memory (Figure 5b) and 1/0O (Figure 5c) data«f, are used
combined types of., loads from Figures 3 and 4, respectively. as inputs, while CPU-Mem (Figure 6a), Mem-I/O (Figure 6b)
All benchmarks data are rearranged similarly. During irmin and CPU-I/O (Figure 6c) data of., used as targets. On the
three basic resources data (CPU, Memory and I/O) are used ather hand, during testing thg data are used as both input
inputs and three combination of resources data (CPU-Memonrand target. All testing have been done with the same three
CPU-1/O and Memory-I/O) as targets. From the training datebenchmarks (Dbench, Filebench and lozone), that have been
set, three sperate models have been generated, for theee sesed in the previous section for testing. That is, in thisecas
of target data (CPU-Memory, CPU-1/0O and Memory-1/0). All models are generated using only co-located vms data, while
three targets use the same three basic resources data &s inptesting is done with target vm data.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 110

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

T mem.s = —20.415 + 4.795 % (T,)7 +0.752 % (T}, ..,)°° +0.579 = (T}, ;) L
t 0.7 t 0.9 t 0.7 t t 0.9 t ()
—0.119 = (Tcpu,i) * (Tmcm,i) — 0.035 (Tcpu,i) * (Tio,i) + 0.002 (T'm,cm,i) * (Tio,i)
T = —16.393527 + 0.802 % (T7) +0.282 % (T%) +1.769 * (T} .)
cpu—io,i cpu,i e, & ‘ o)))) @
—0.020 =* (Tcpu,i) * (Tmcm,i) —0.023 (Tcpu,i) * (Tio,i) + 0.003 = (Tmcm,i) * (Tio,i)
T} o —io; = —16.549 +2.104 % (T}, ;) + 7.920 * (T},)°2 — 0.169 = (T}, ;)% &
—0.957 (Tctpu,i) * (T'rtncm,i)o.2 +0.031 = (T(fpu,i) * (Tito,i)o'% + 0.455 (T'rtncm,i)OQ * (Tito,i)o'%
Figure 9. TETV models for resource combinations (CPU-Memory, CRO-& Memory-1/O) built from v, data.
T s —mem.i = —0.009 4 0.190 * (T57,)% +0.220 * (T30,)2 +0.250 + (T1,))
TYpu—ion = —0.102 + 4.217 % (TS0, > — 0.034 % (T, ;) + 1.383 % (T12)" ©
H0.544 % (T27, ¥ % (T10, o) = 5394 * (T2,)% = (T)™ +0.163 = (T57.,, ;) * 0™
T:ﬁemfi,o,i, = 3.720 * (ch;uﬂ)o.azs +2.376 % (Ty).,,,;) — 0.020 * (Tic;i)o.os ®)
+1.079 * (chpou,i)o.st * (Tﬁloem,i,) —4.394 % (Tg;m)o.azs * (Ticéo,i)o'os —3.144 % (T;ﬁoem,i) * (Tic;i)o.os

Figure 10.TETV models for resource combinations (CPU-Memory, CPO-& Memory-1/O) built from v., data.

An example of the training data, used here is shown onThe same input parameters have been used for all equations.
Figure 7c. It is a collection of six different,, workload TETV Tctpm represents the task execution time @nwhen server
data of the Cachebench, from six graphs of Figures 5 and 6s consolidated withi number of CPU intensive co-located
During training, the variation of arithmetic mean®of, TETV ~ vms. Similarly, T}, ., , and T} , represent the task execution
due to CPU, memory and /O are used as inputs. The CPUime when the server is consolidated with the same number of
Memory, Memory-I/O and CPU-I/O data are used as targetamemory and I/O intensive co-located vms, respectively.

Three models have been generated in this way, with thige The equations of Figure 10 have the same targets, however
target data set. However, testing is done witttest data like, inpyts are different. Here, arithmetic mean of executiomet

the example shown in the Figure 7b. Recall that, it was alsf co-located vms have been used as inputs. For example,
used for testing in the previous section. Table Ill shows thepco represents the arithmetic mean of execution times of

pu,?

RMSE for this set of prediction. It shows that, the predictio ; “hiimber of CPU intensive co-located vms. In this case,

results have a good level of accuracy. arithmetic mean of execution times of co-located vms have
Root mean square error (RMSE) for prediction. The been used to predict the TETV of target vm.

RMSE of predictions for above two sets of data, are shown

separately on Table Il and Table Ill. To the best knowledge of;ag| £ 11 RooT MEAN SQUARE ERRORRMSE)FOR PREDICTION

the authors, there exist no approximation algorithm tavest USING TARGET VM (uv;) DATA.

the TETV of co-located vms. Therefore, there is no acceptabl

theoretical bound for the RMSE values [33]. Generally, adow Connemory CPU-IO Mem-l/O
e rediction Prediction Prediction

value of RMSE means better prediction accuracy. [With all 3|Only 2 ||With all 3[Only 2 || With all 3[Only 2

&
P . . N resourceg:.resourcesy|resourceg:resourcesgjresources.resources:
In each case, the prediction is better, when all three basic | & |cpy ~ |cpu, ||cPu, |cPU. ||CPU, |Mem,

N
resources have been used to generate the model rather than®® Mem, /0| Mem Mem, 1/0|1/0 Mem, 1/0|1/0
two. For example, while predicting the TETV of CPU-Memory Ei?:;;:ch 8-332 gg;g (2)-1‘3“13 (1)-15823 g-g(l); g-ggg
load combination, the model build using CPU, memory and /O rigz5re 1216310505 [[2.475 21566 |[3.083 3,568
(all 3 basic resources) data produces better results, tien t
generated by using only CPU and memory (2 resources) data.

Parametric model. Lastly, the Figures 9 and 10 show TABLE Ill. ROOT MEAN SQUARE ERRORIRMSE)FOR
model parameters and coefficients, as they are trained from PREDICTION USING CGLOCATED VM (vco) DATA.
profl!ed vy and v, _data, respecnvely. They demonstrate the CPU-Memory U Ve
relation between input and prediction data formats. Three Prediction Prediction Prediction
equations of the Figure 9, are for three resource combina- @?"\@ With all 3[Only 2 || With all 3[Only 2 |{With all 3[Only 2
H resourcegresourcesy|resourcegresourcegjresourcegresources:
tlotn targets. The terms are self-explana‘gory._For example, é\é‘ cpu. |cpu. |lcpu, |cPu. llcPU. |Mem,
T, pu—mem,; denotes predicted task execution time of a task | Mem, /O|Mem __||Mem, l/0|1/O Mem, I/O|1/O
on v, when it is consolidated with total afnumber of CPU E_?egch - 8-223 ggg g-gi‘l) %gg% 2-%‘5‘- ig-%g;

H H S llebenc
and memory intensive co-located. vms. Slmllar]l%tpufmyi. ozone 1206543546257 187725 113895159863
and T}, ... ;,; represent the predicted task execution time

for CPU-I/O and Memory-1/O load combinations, respectivel

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2 111

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Changes in basic configuration of vms, may require somg10]
modification of model parameters. The public Cloud offers
vms for renting in certain number of predefined configuration [11]
Therefore, number of such models required in reality, are
limited. What is more, since LSR has low overhead, buildingl12]
or rebuilding of a limited number of such models would not

be time consuming. [13]

V. CONCLUSION AND FUTURE WORK

This work addresses an important issue of virtualization[14]
the performance variations due to consolidation. A striaigh
forward methodology has been introduced here, that is prac-
tically feasible to implement. It is different from most dfe [15)]
complementary works on virtualization, that employ comple
mathematical tools and rely on simulation. In contrasts thi
work introduces a low overhead prediction process, andteesu [16]
are collected from real virtualized systems.

Micro and syntactic benchmark suites have been useg,
here in a step by step process, to manipulate various vm
resources individually. The methodology introduced heye i
unique, and results prove the effectiveness of this methodisg]
Experimental results from real virtualized systems shoat,th
in this way it is possible to predict the TETV of vms quite
accurately. It provides a new and quantitative way to explor [1°]
the mutual performance interference of co-located vms. The
results also provide some valuable inside into the nature 0[50]
resource contention due to consolidation of vms.

The experimental results encourages one to continue work-
ing along this direction. For future work, experiments wbul
need to be extended to a wider range of virtualization techi21l
nigues and server configurations, to derive a more genedaliz
model. More questions related to this method, can be adsltess

. P 22
in details in future works. [22]
REFERENCES [23]
[1] T. Janpan, V. Visoottiviseth, and R. Takano, “A virtualaohine con-
solidation framework for CloudStack platforms,” in ICOIIR014, pp.
28-33. [24]
[2] F. Farahnakian, T. Pahikkala, P. Lilieberg, J. Plosiiagd H. Tenhunen,
“Utilization Prediction Aware VM Consolidation Approactorf Green
Cloud Computing,” in CLOUD, 2015, pp. 381-388. [25]
[8] A. Tchana, N. D. Palma, |. Safieddine, D. Hagimont, B. Diahd [26]
N. Vuillerme, “Software Consolidation as an Efficient Eneand Cost
Saving Solution for a SaaS/PaaS Cloud Model,” in Euro-Rait52 pp.
305-316. [27]
[4] M. Dobber, R. D. van der Mei, and G. Koole, “Effective Pie@n of
Job Processing Times in a Large-Scale Grid EnvironmentPIRDC,
2006, pp. 359-360. [28]
[5] V. E. Taylor, X. Wu, J. Geisler, and R. L. Stevens, “UsingrKel
Couplings to Predict Parallel Application Performancex’ HHPDC,
2002, pp. 125-134.
[29]
[6] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu, “On Exploiting Dymic
Execution Patterns for Workload Offloading in Mobile Clougglica-
tions,” in ICNP, 2014, pp. 1-12. [30]
[7]1 A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, Bee,
P. Faraboschi, R. Kaufmann, and D. S. Milojicic, “The whoatytwhy,
and how of high performance computing in the cloud,” in ClGod, 131]
Volume 1, 2013, pp. 306-314.
[8] J. Simdo and L. Veiga, “Flexible SLAs in the Cloud with arRal 132]
Utility-Driven Scheduling Architecture,” in CloudCom, Wome 1, 2013,
pp. 274-281.
[33]

[9] S.Xi, M. Xu, C. Lu, L. T. X. Phan, C. D. Gill, O. Sokolsky, dn. Lee,
“Real-time multi-core virtual machine scheduling in Xem"EMSOFT,
2014, pp. 27:1-27:10.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

J. Zhao, J. Tao, L. Wang, and A. Wirooks, “A Toolchain Fofiling
Virtual Machines,” in ECMS, 2013, pp. 497-503.

A. losup, “laaS Cloud Benchmarking: Approaches, Ghades, and
Experience,” in HotTopiCS, 2013, pp. 1-2.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnard R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in SoCC1@0
pp. 143-154.

A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and BZBou,
“Profiling Applications for Virtual Machine Placement in dids,” in
CLOUD, 2011, pp. 660-667.

R. McDougall and J. Anderson, “Virtualization perfaance: Perspec-
tives and challenges ahead,” SIGOPS Oper. Syst. Rev., 4olndl 4,
Dec. 2010, pp. 40-56.

V. Makhija, B. Herndon, P. Smith, E. Zamost, and J. Arster,
“YMmark: A Scalable Benchmark for Virtualized Systems,” Wdre,
Tech. Rep. TR-2006-002, 2006.

T. Deshane, Z. Shepherd, J. Matthews, M. Ben-YehudaSheh, and
B. Rao, “Quantitative comparison of Xen and KVM,” in Xen suiitm
Berkeley, CA, USA: USENIX association, Jun. 2008.

P. Apparao, R. lyer, and D. Newell, “Towards Modeling &alysis of
Consolidated CMP Servers,” SIGARCH Comput. Archit. Newd, 86,
no. 2, May 2008, pp. 38-45.

O. Tickoo, R. lyer, R. lllikkal, and D. Newell, “Modelm Virtual
Machine Performance: Challenges and Approaches,” SIGMESR
Perform. Eval. Rev., vol. 37, no. 3, Jan. 2010, pp. 55-60.

H. Jin, W. Cao, P. Yuan, and X. Xie, “WSCBenchmark: Bemetnk for
Dynamic Server Performance of Virtualization Technoldgg, IFMT

'08, 2008, pp. 5:1-5:8.

G. G. Shulmeyer and T. J. McCabe, “Handbook of Softwarely
Assurance (3rd Ed.),” G. G. Schulmeyer and J. I. McManus,. Eds
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999, ch. Faeto
Principle Applied to Software Quality Assurance, pp. 2983

J. Dean and S. Ghemawat, “MapReduce: simplified dat@zegssing
on large clusters,” Commun. ACM, vol. 51, no. 1, 2008, pp.-13.
[Online]. Available: http://doi.acm.org/10.1145/135241327492

S. Ma, X.-H. Sun, and I. Raicu, “l/O throttling and coardtion for
MapReduce,” lllinois Institute of Technology, Tech. Rep012.

OpenSolaris Project, “Filebench,” URL:
http://fil ebench. sourceforge. net/w ki/index. php/
Mai n_Page, Retrieved: February, 2016.

“Unixbench: BYTE UNIX benchmark suite,” URL:
http://github. com kdl ucas/ byt e- uni xbench, Retrieved:
February, 2016.

C. C. Eglantine, NBench. TypPRESS, 2012, iSBN: 978&@53@11.

W. Hu, A. Hicks, L. Zhang, E. M. Dow, V. Soni, H. Jiang, RuB
and J. N. Matthews, “A Quantitative Study of Virtual Machihé/e
Migration,” in CAC, 2013, pp. 11:1-11:10.

S. Nathan, P. Kulkarni, and U. Bellur, “Resource Avhilily Based

Performance Benchmarking of Virtual Machine Migrations,"|ICPE,
2013, pp. 387-398.

P. J. Mucci, K. London, and P. J. Mucci, “The CacheBendpdtt,”
URL: wwv. eart h. | sa. unmi ch. edu/ keken/benchmar ks/
cachebench. pdf , Retrieved: February, 2016.

J. D. McCalpin, “Memory Bandwidth and Machine BalanceGurrent
High Performance Computers,” IEEE CS TCCA Newsletter, 1685,
pp. 19-25.

——, “STREAM: Sustainable Memory Bandwidth in High Parf
mance Computers,” University of Virginia, Charlottessijll Virginia,
Tech. Rep., 2007.

A. Tridgell, “The dbench benchmark,” URLht t p: / / sanba. or g
/ftp/tridgel/ dbench/ READVE, 2007, Retrieved: February, 2016.
W. Norcott and D. Capps, “lOzone Filesystem BenchniatkRL:
WWw. i 0zone. or g, Retrieved: February, 2016.

Z. A. Mann, “Allocation of Virtual Machines in Cloud Dat Cen-
ters&Mdash;A Survey of Problem Models and Optimization @\lg
rithms,” ACM Comput. Surv., vol. 48, no. 1, Aug. 2015, pp.1-411:34.

112

