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Abstract—This work presents a lightweight framework for per-
forming automated experiments with the execution time and
performance variations of parallel workflows. The execution time
variation of tasks due to consolidation is a barrier to efficiently
scheduling them onVirtual Machines (VMs). In data centers, VMs
are usually consolidated to increase resource utilization. However,
this causes resource contention and performance degradation
among the VMs. To address this issue, it is necessary to perform
experiments with large numbers of tasks and schedules. There
exists no framework particularly designed for this type of
experiment. The proposed framework makes it easy to conduct
experiments with large numbers of task execution patterns.
Moreover, it is capable of profiling the execution time variation of
each task of a workflow. The design principles, implementation
issues and trade-offs of the framework are discussed in detail
here. The effectiveness of the framework is demonstrated with
a data-intensive scientific workflow, which processes theGalactic
Arecibo L-band Feed Array HI (GALFA-HI) survey data with
the Montage toolkit. With this framework, experiments have
been simultaneously run on three different hypervisors and
the execution time variation of each task retrieved. The three
hypervisors are the VMware ESXi 5.5, XenServer 6.5 and Xen
4.6. This framework will enable researchers to perform large
scale experiments with the execution time variations of parallel
tasks on multiple hypervisors and the Cloud.

Keywords–Cloud; virtualization; consolidation; performance;
scheduling framework.

I. I NTRODUCTION

Virtualization plays an important part for both the data
centers and Cloud. Among other advantages, it allows consol-
idation of Virtual Machines(VMs) in data centers. To put it
simply, consolidated means running multiple VMs simultane-
ously on the same server through virtualization. It is a common
technique to increase resource utilization, reducing operational
cost and energy consumption of data centers. However, the
main drawback of consolidation is performance variation, due
to resource contention and interferences among the VMs.

More and more applications and workflows are being
deployed on the Cloud. However, scheduling of scientific
applications and workflows on the Cloud is still problematic
because of the task execution time variation. On consolidated
servers, the task execution finish time may very unexpectedly,
thus it is difficult to determine which applications are suitable
to be consolidated for better performance. Recently, many
works have focused on this issue [1]–[5].

These works rely on experimental results with consolidated
applications, to estimate how they would react to resource
contention in general. Thus, they require the running of a
large number of experiments, involving scheduling various
applications and workflows on VMs. However, there exists no
standard framework to manage and run such large scale ex-
periments. This work proposes a framework to easily manage

and run large numbers of experiments with complex schedules
and resource usage patterns on the Cloud

There are many large scale Cloud management and main-
tenance software stacks available for modern data centers [6]–
[17]. Although they are well-equipped for performing complex
maintenance, fault tolerance, and data backup services, they are
not adequate for performing experiments with task scheduling
and resource usages patterns of VMs for several reasons:

i) These software stacks are mainly designed for providing
the Cloud services, not for performing sophisticated experi-
ments with workloads. For example, they have special features
for providing fault tolerance, VM replication, migration and
high availability of VMs to a data center. The software stacks
do not offer any built-in features for performing complex
experiments with application scheduling patterns on the Cloud;

ii) They have many modules, and they require a lot of
time and effort to master. System administrators require a lot
of experience to manage these systems efficiently. On the other
hand, most researchers are concerned with a quick and easy
setup of experiments. It takes a lot of time to modify a large
piece of software even though they do not provide friendly
interfaces to conduct scientific experiments easily;

iii) Experiments with scheduling of parallel workflow on
VMs often require modification the software stack of the
maintenance software. Making such changes to a massive
software stack with many modules is a cumbersome process.
The proposed framework is designed to bypass the interaction
with management software and run complex task scheduling
experiments easily on the Cloud.

Recently, the understanding interactions among the VMs
and improving the performance of tasks has received a signif-
icant amount of attention [1]–[5][18][19]. A simple construct
of a framework, which can execute the parallel workflow on
VMs residing on multiple servers can make such experimental
processes much easier. Some features of the framework and
contribution of this paper are briefly stated below:

i) A lightweight framework for profiling execution time
variations of parallel workflow on the Cloud has been intro-
duced. It provides a simple interface for conducting complex
experiments on VMs and scheduling parallel applications
across on multiple hypervisors. The primary objective is to
provide an accessible platform to carry out complex experi-
ments on the Cloud.

It can be used independent of any data center management
software, thus making the general experimental process easier.
There are many open source management software options.
However, they have too many components and modules.

ii) They are difficult to setup for complex experiments. This
framework is lightweight and easy to handle, making it easier
to perform experiments with complex workload patterns.
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iii) The framework allows researchers to specify an exact
sequence of execution of workload pattern on VMs. A human
readableworkload descriptorfile stores all the task patterns.
The exact sequence of tasks that is to be executed on VMs
is defined in this file. Cloud management software has many
layers and hides many complexities from the users. It can be
convenient for system administrators, who are only concerned
with the outcome. On the other hand, during experiments
measuring the impact of execution of each task may be
necessary. Extensive experiments will help to understand the
VM’s behavior under consolidation and identify any anomaly
of the schedule more quickly;

iv) Another feature of the framework is thecommand
descriptorfile. Parallel applications usually consist of several
smaller tasks, and various command sets are required to run
them. The command descriptor file contains the actual com-
mands, and one mnemonic is issued against each set of com-
mands. Thus, the workload descriptor file remains small and
workload patterns are easy to create or modify. The command
descriptor file also allows for running complex applications
like web servers or database servers. The framework scans
the workload file twice. During the first scan, all mnemonics
are replaced, and in the second scan actual commands are
executed. Thus, adding or modifying real command sets is
much easier as they are stored only in one place, in the
command descriptor file;

v) The framework can run experimental schedules and re-
source usage patterns on multiple hypervisors simultaneously.
It uses theSecure Shell(SSH) to connect to virtualized servers,
instead of the API set. The use of SSH ensures flexibility, and
any hypervisors can be connected. On the other hand, using
multiple API for various hypervisors is a cumbersome process.
The SSH gives the ability to connect to any Cloud;

vi) The framework is implemented entirely in Java and
can be run on anyoperating system(OS). It can be used as a
stand-alone application or plugged-in with any other Java task
scheduling program. It is lightweight, completely portable and
requires no installation on the system.

To the best of our knowledge, there is no other lightweight
framework written in any language, specifically to do experi-
ments with execution time variation of parallel workflows on
VMs. This framework is independent of and complementary to
Cloud management software. While the management software
can be used for providing Cloud services, this framework can
be used to run experiments with workload patterns on the
Cloud.

The effectiveness of the framework is demonstrated with
a real data-intensive workflow, which processes theGalactic
Arecibo L-band Feed Array HI(GALFA-HI) [20] survey data
with the Montage toolkit [21]. TheIncremental Consolidation
Benchmarking Method(ICBM) [22] has been used to analyze
the tasks of the workflow. Originally, the ICBM was introduced
to analyze the execution time variations of individual tasks
on VMs. In this work, it is extended to analyze the tasks of
scientific workflow which has not been done previously.

The rest of the paper is organized as follows. Section II
describes the problem with an example. Design goals are
discussed in Section III, followed by the framework design in
Section IV. Section V discusses the workflow and benchmarks
used, along with experimental setup. Section VI gives the
results of experiments with task execution patterns on three

hypervisors. Section VII provides a brief overview and short-
comings of complementary works. A discussion about future
work and conclusion are in Section VIII.

II. PROBLEM DESCRIPTION

The task execution time variation due to VM consolidation
is one of the major problems for the Cloud. It can be even more
problematic for parallel applications and scientific workflows,
because of having task dependencies. Fig. 1 shows an example
of workflow, which processes theGALFA-HI surveydata [20]
using theMontagetoolkit [21]. It is a data-intensive workflow
that creates a mosaic image of a part of the Milky Way galaxy
from some data cubes. The data cubes are released at regular
intervals, as a part of an ongoing survey. Therefore, this isa
widely used workflow in the field of astronomy. It has 16 tasks
(t1 to t16) on 8 levels (l1 to l8). Fig. 2 shows one possible
schedule of these tasks on a set of co-located VMs.
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Figure 1. A workflow: GALFA-HI data processing with the Montage toolkit.

In Fig. 2, the tasks of the GALFA-HI workflow (Fig. 1)
are scheduled on the VMs of a single server. Here, the server
has eight simultaneously running VMs. As the tasks of the
workflow have internal dependencies, they need to be sched-
uled hierarchically. The tasks that can be run simultaneously
are grouped together in one level. The tasks of the level below
are dependent on tasks of the immediate upper level.

Fig. 2 depicts that the tasks are being executed level by
level on the VMs of a single server. There are VMs of three
colors on the server. Light blue VMs are where the tasks of
GALFA-HI are being executed. In a consolidated server, tasks
from other applications are also being executed they are shown
in red. Finally, white VMs represent empty VMs, where no
tasks are being run at present. The tasks on additional VMs
(shown in red) are responsible for resource contention and
performance degradation of tasks of GALFA-HI workflow.
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Figure 2. Scheduling GALFA-HI workflow on VMs.

In this case, performance deterioration of a task can have a
cascading effect on the other tasks of the workflow, because of
the task dependencies. Furthermore, the performance of tasks
of the critical path would directly affect the makespan.

To efficiently schedule workflows on the Cloud it is
necessary to take the execution time variations into account.
Presently, there is no theoretical solution for this issue.There-
fore, most recent works rely on various heuristics [1]–[5].
To design such heuristic solutions, a significant amount of
experimental data may be required. This framework makes it
easier to carry out large-scale experiments with VM schedules
and retrieves data. The obtained data can help to design better
heuristics algorithms for the system. One method to obtain
such critical task execution time variation data is presented
in [22], called the ICBM. This work further shows that the
ICBM can be extended to scientific workflows on the Cloud.

A. ICBM for workflow
Originally, the ICBM was introduced to retrieve the exe-

cution time variations of VMs on consolidated servers [22].
However, the ICBM has not been used with workflows before.
This work shows that the concept of ICBM can be applied
to parallel workflows, too. The concept of ICBM involves
increasing resource usage of a virtualized server, To system-
atically cause execution time variations on VMs. This means
that for a parallel application the same resource usage pattern
has to be applied to each task. It is described next.

Fig. 3 shows the steps of ICBM for applying a CPU-
intensive resource usages pattern on the GALFA-HI workflow.
Initially, only tasks of the workflow are being run on the server.
It is shown on Fig. 3a, at this stage tasks from no other appli-
cation are run on the server. Thus, the execution finish timesof
tasks of the workflow are obtained, without interferences from
VMs belonging to other tasks. Afterward, the workflow is run
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Figure 3. Applying CPU-intensive resource usages pattern on GALFA-HI
workflow.

again. However, in this stage, two additional CPU-intensive
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tasks are executed at each level of execution. This is referred
to as stage 2 and shown in Fig. 3b.

At stage 3, four additional CPU-intensive VMs are being
run along with the workflow (Fig. 3c). Thus, the workflow is
repeatedly run and CPU-intensive VMs are increased system-
atically. This process is repeated until all VMs of the server are
utilized, and that is the final stage of the experiment. Fig. 3d
shows the final stage for this particular server configuration.
This server can accommodate a maximum of 13 VMs, and all
of them have been used. Tasks of the workflow are occupying
five VMs, while the remaining eight are CPU-intensive VMs.
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Figure 4. Various resource usages pattern applied on GALFA-HI workflow.

The ICBM divides experiments into stages so that the tasks
of a workflow suffer the least amount of interference at stage
1 (Fig. 3a) while they face the most CPU-intensive resource
usage contention at the final stage (Fig. 3d). Then, the entire
procedure is repeated for another resource intensive VMs, like

memory (Fig. 4a) and I/O (Fig. 4b). Afterward, the steps are
repeated for combinations of resources, too. One example of
combination of resources is shown in Fig. 4c, it is for CPU-
Memory. Here, the process is repeated as described above.
However, one CPU-intensive and one memory-intensive VM
have been added at each stage, instead of two CPU-intensive
ones. Other combinational resource contentions, like CPU-I/O
and Memory-I/O, are created in the same process.

From the above discussion, it is clear that experimental
procedures like the ICBM require handling large numbers of
task schedules. Furthermore, the exact sequence of task exe-
cutions on VMs and their mutual performance inferences due
to consolidation, have to be known precisely. Although, many
tasks and resource scheduling software exist, none of them are
designed to do experiments with task execution time variations
on VMs. They use high-level interfaces and hide almost all
scheduling complexities from the user. That may be convenient
for average Cloud users, however it is not too beneficial for
researchers conducting experiments with resource contention
and consolidation. The primary objective of this work is to
present a low-level, lightweight framework for experimenting
with complex workload patterns automatically. This framework
needs to act as both a scheduler and profiler of task execution
times and be able to connect to any Cloud. In this work, the
design goals, implantation issues and experimental results of
the framework are discussed in detail.

III. M OTIVATION AND DESIGN GOALS

This section discusses the primary goals and trade-offs
considered while designing and implementing the framework.

Easy to perform experiments with workflow: The first
priority is to provide an easy interface to perform complex
experiments with the workflows on virtualized servers. There
exist many complex Cloud management systems and program-
ming paradigms. However, they are not designed for carrying
out experiments with VM consolidation. The new framework
should be able to perform complex experiments on the Cloud,
independent of any management software. This work aims to
provide an easy interface to design and carry out experiments
with workflows on virtualized servers so that, the performance
variation of each task can be profiled independently. The main
application of the framework would be to discover the rela-
tionship among the execution time variations of consolidated
VMs and resource utilization of the server.

Resource usages patterns:Experiments with consolida-
tion are sensitive to VM placements on the server. To capture
the effect of consolidation on VMs, it is necessary to create
complex workload patterns and execute the tasks accordingly
on VMs. Therefore, the proposed framework should provide
an easy way to run the tasks according to resource usages
patterns, described previously. A human readable file should
contain all the workload patterns so that they are easy to create
and modify. Researchers would create those files, exactly
the way they want the tasks to be executed on the system.
Thus, the reaction of the system to resource contentions and
consolidation can be examined carefully.

Easy to check the workload patterns:Executing a task of
the workflow usually requires several command sets. Managing
a lot of commands in one workload pattern file is often
problematic. There should be an easy way to rectify any
potential error in the workload pattern. One way to achieve
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Figure 5. Modules of the framework.

this is not to inscribe full commands in the workload file,
rather they are stored in a particular file, separately. Then, the
workload file is created only with a short set of mnemonics
During runtime, the mnemonics are mapped to actual larger
command sets. The process is described in more detail in the
implementation section (Section IV).

Connection to any Cloud technology:Modern data cen-
ters have a countless number of servers, and various hypervi-
sors are deployed on them. It is necessary for the framework
to be able to connect to a large number of VMs running
on multiple hypervisors. Therefore, the framework needs a
method with small connection overhead, and the ability to run
tasks on any Cloud. The implementation section describes how
this is achieved.

Easy to deploy:The framework should be easily deploy-
able on a wide variety of systems. There are many operating
systems today; therefore the framework should be as universal
as possible. It should not be dependent on any Cloud man-
agement system or OS, thus, making it possible to initiate
experiments from any machine, regardless of the underlying
OS. Use of a common framework to perform experiments
would give researchers the opportunity to share and collaborate
with experimental results more widely.

In this section, motivations and design goals of the frame-
work are described. The next section describes, how those
goals are achieved during implementation.

IV. I MPLEMENTATION OF THE FRAMEWORK

This section describes the implementation process of the
framework to achieve the design goals of the previous section.
The framework is divided into seven modules, and each
module performs a particular job. All modules are shown in
Fig. 5 and described below. Solid lines represent data transfer
paths, while dashed lines represent command transfer paths.

The command mapping module:A workflow consists
of many tasks, and each task requires a set of commands
to execute properly. Inscribing all commands to a workload
file is counter-productive for several reasons. It makes the
workload file large, and it becomes difficult to inspect the
workload patterns. Furthermore, if an error is found in one
of the commands, it has to be corrected in all occurrences of

the workload file. This pitfall can be avoided by storing all the
actual commands in a separatecommand descriptorfile.

This file stores a mnemonic against a full set of real com-
mands, then the workload pattern files are created only with
these mnemonics. During runtime, first the command mapping
module loads all the actual commands to memory, then all
mnemonics are replaced with their actual command sets in
the workload file. This design choice makes the workload file
manageable in size and easier to verify.

The workload loader module: All the experimental re-
source usage patterns are stored in aworkload descriptorfile,
which is a human readable file containing only mnemonics.
This file describes, line by line, the dependencies and exact
execution sequence of the tasks. Tasks that would be running
simultaneously are stored in one line while, the tasks depen-
dent on them are written in the line below. The workload loader
module scans the tasks line by line so that they can be executed
on the VMs exactly in the order intended on the workload file.
This makes it easier to identify how a virtualized system reacts
to a particular pattern of resource usages.

The hardware configuration loader module: To exe-
cute the sequence of workload patterns correctly, some basic
hardware information is required. The necessary hardware
configuration of all the VMs and physical host are stored in
the hardware configurationfile. The arrangements of VMs on
physical hosts along with their MAC addresses are stored in
this file. Thehardware configuration loadermodule fetches
this data from the file, so that the framework can utilize it to
connect and execute workloads on the VMs.

The scheduler module: The scheduler modulecollects
information from the above three data loading modules, and
allows the tasks to be executed on VMs. At first, memory
mapped commands and hardware configuration file are used,
to check the consistency of the workload descriptor file. In the
case of any inconsistency, the process has to be terminated.
After consistency checking, the scheduler issues the necessary
commands to VMs through the connecting module, which is
described next. It is designed as a separate module, so that
it can be modified to implement any custom task scheduling
algorithm for VMs if it is required.

The connecting module:Another design goal is to make
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the framework as universally usable as possible. The frame-
work makes all connections through an SSH implementation in
Java, called the JSch [23]. Thus, the entire framework is written
in Java and can be run on any OS. It is completely portable and
requires no installation. The SSH is chosen over API, to keep
the framework lightweight. It allows the framework to connect
to multiple hypervisors simultaneously, without having towrite
codes for multiple API. Furthermore, support for any new
hypervisor can be easily added, without code modification.

The data formatting module: Raw data is sent back
through the SSH channels; these data need to be formatted
to use them with other applications. This module formats and
stores the experimental results in output files. The data is
analyzed later to discover the relation among resource usages
patterns and task execution time variations.

The profile manager module:This is responsible for co-
ordination among all the modules so that they can work seam-
lessly. The profiler is modular in design so that a module can
be customized easily if required. Also, adding new modules
for future functionality is much easier in this way.

The next section describes the algorithm for the framework,
to demonstrate how those modules work together.

A. Algorithm for the framework
Fig. 6 shows the algorithm for the framework. First, all

commands are loaded on theCOMM-LIST from the command
descriptor file. The command loader module does this, by
mapping all commands to their corresponding mnemonics in
memory (lines 1-2). Then, the workload loader module parse
the workload descriptor file, and loads workload pattern on
the WL-LIST (lines 3-4). The WL-LIST contains a detailed
execution plan, for both the parallel application and resource
contention patterns. Examples of such patterns are shown in
Figs. 3 and 4. Afterward, the hardware configuration data is
loaded from the file toVM-LIST (lines 5-6). The VM-LIST
contains all the data required for connecting to VMs during
experiments.

Next, a for loop (lines 7-21) processes the WL-LIST, line
by line. Recall that the tasks that are to be run simultaneously
are written in a single line. Then, an innerfor loop (lines
8-17) removes one task at a time from the line and checks
for consistency against hardware data and commands. The
consistent tasks are then stored in a linked list, called theRUN-
LIST. On the other hand, if a task is not compatible then the
application exits. Once all the tasks of a line are processed,
the inner for loop exits. Then, all the mnemonics of RUN-
LIST are replaced with the actual command set, with the help
of COMM-LIST (line 15). Once this is done, commands are
simultaneously sent to execute all tasks of the RUN-LIST (line
16). The framework then waits for the tasks to finish, and
collect the execution time data (line 17). Afterward, the same
process is repeated for the next line of WL-LIST, on next
iteration of the outerfor loop. The outerfor loop exit when all
the lines of WL-LIST (entire pattern) have been processed. To
experiment with another resource usage pattern, the procedure
needs to be restarted from the beginning.

V. WORKLOADS USED

Two types of workload have been used in the experiments.
The first type is a data-intensive scientific workflow, which is
used to observe the execution time variations of tasks under

1: Load all commands and mnemonics, from the Command Descriptor file
to COMM − LIST .

2: Load workloads from the Workload Descriptor file toWL− LIST .
3: Load the VMs configuration from file toVM − LIST .
4: for Each lineLi ∈ WL− LIST do
5: for Each task,tj ∈ Li do
6: Let, commj ∈ COMM − LIST be the command fortj .
7: Let, vmj ∈ VM − LIST be the VM, where to runtj .
8: Check the consistency oftj againstcommj on vmj .
9: if tj is consistentthen

10: Puttj , commj andvmj on RUN − LIST .
11: else
12: Exit.
13: end if
14: end for
15: Replace all mnemonics ofRUN − LIST with actual commands.
16: Simultaneously send commands to allvmj of RUN − LIST .
17: Wait for their execution to finish and collect execution time data.
18: end for

Figure 6. Algorithm for the framework.

consolidation. The second type is a set of benchmarks suites,
used to create resource contention patterns on servers.

A. Scientific workflow: GALFA-HI

The GALFA-HI survey continuously scans the sky for
naturally occurring hydrogen atoms [20], and several data
cubes have been released so far. Five of those cubes have been
processed with the Montage toolkit [21], to create a mosaic
image of a part of the Milky Way galaxy. The workflow is
shown in Fig. 1 it has 16 tasks and eight levels. It is a data-
intensive workflow, which processes about 2 GB of raw data
cubes. Experiments measure the execution time variation of
tasks in this workflow due to consolidation.

B. Set of benchmark suites

Three sets of benchmark suites have been used to create
resource contention patterns on the tasks of the above work-
flow. They are the sets of CPU, memory and I/O-intensive
benchmark suites. Each benchmark suite, in turn, consists of
several similar types of tests. Due to space limitation, it is not
possible to describe each benchmark suite separately. Next,
each set is described in brief.

CPU-intensive benchmarks:Three CPU-intensive bench-
marks have been used, they are theSysbench CPUtest,Nbench
andUnixbench. The Sysbench CPU test has been widely used
with multi-core server [24] and VM workload consolidation
experiments [25]. The Nbench is a CPU-intensive bench-
mark suite, having ten different CPU-intensive tests [26].The
Unixbench is another CPU-intensive benchmark suite, which
is used for experiments on Amazon EC2 [27].

Memory-intensive benchmarks:Three memory-intensive
benchmarks have been used for creating resource contention
patterns. The first is theCachebench, which consists of eight
different memory tests [28]. The second is theStream, a syn-
tactic benchmark program for measuring sustainable memory
bandwidth [29]. The final one is theSysbench memorytest.

I/O-intensive benchmarks: Five I/O-intensive tests have
been used to create resource contention patterns. TheFilebench
is an important I/O benchmark suite [30], which can be
configured to perform various I/O-intensive tests. Five of them
are used, they are thefile-server, web-server, web-proxy, video-
serverandonline transaction processing(OLTP) test.
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(d) TETV of mShrinkCube due to the Unixbench.
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(f) TETV of mShrinkCube due to the Sysbench CPU.
Figure 7. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the CPU-intensive workload patterns on VMs.

C. Experimental setup
Three Dell XPS-8500 servers of identical hardware config-

uration had been set up for the experiments. Each server has
one Intel i7-3770 processor and 32 GB memory. The i7-3770
has four cores and eight hardware threads, each is clocked
at 3.4 GHz. Three different hypervisors are installed on three
servers; they are,VMware ESXi5.5,Citrix XenServer6.5 and
Xen4.6 onCentos7.

Each hypervisor has 14 VMs of identical configuration.
Each VM has one processor, 2 GB of Ram and 50 GB
virtual disk. During experiments, the framework connects to
all 42 (14×3) VMs on three hypervisors and execute workload
patterns simultaneously. The framework itself runs on a remote
Dell OptiPlex 9010 machine and connects to hypervisors
through the LAN. The results of experiments are given next.

VI. RESULTS

Recall that the GALFA-HI workflow (Fig. 1) has 16
tasks, comprised of seven functions. Average execution times
of those seven functions without interferences are shown in
Table I. In this case, the tasks are scheduled exactly like
that of Fig. 3a. Due to space constraints, it is not possible
to discuss execution time variations of all seven functions.
Results are shown for only two functions, themProjectCube
and mShrinkCube. The rest of the functions also show varia-
tions similar that of these functions. The results are grouped
according to the resources loads for convenience of discussion,
for all three hypervisors.

Variations due to CPU-intensive workload: The graphs
in Fig. 7 show execution time variations of both the mPro-
jectCube and mShrinkCube functions for CPU-intensive work-
loads, on three hypervisors. In each graph, the Y-axis rep-
resents the execution time variation. The X-axis represents

TABLE I. MEAN EXECUTION TIMES OF TASKS OF GALFA-HI
WORKFLOW ON VMS WITHOUT INTERFERENCES (AS SHOWN IN

FIG. 3a).

Level Task Time (m)
1 mShrinkCube 3.878

2 & 5 mImgtbl 0.02
3 mMakeHdr 0.02
4 mProjectCube 39.774
6 mAddCube 12.32
7 mGetHdr 0.02
8 mViewer 0.04

how many CPU-intensive VMs were running on the server,
besides the workflow. The first point of the X-axis is zero,
meaning no other VMs were running when the execution
time of the function was measured. This execution schedule
is shown in Fig. 3a. The next point on X-axis is 2; here
two additional CPU-intensive VMs were running at every step
of the workflow execution (schedule shown in Fig. 3b). In
this way, the workflow is repeatedly executed with increasing
number of CPU-intensive VMs. The final point is 8, indicating
eight additional CPU-intensive VMs were used, at each step
of workflow execution as shown in Fig. 3d.

In Fig. 7, from left to right on the X-axis the inter-
ference from the number of CPU-intensive VMs increases.
The leftmost point is the execution time of a task without
any interference from other VMs. The rightmost point is the
execution time of the same task with maximum interference.
Fig. 7 shows that both the mProjectCube and mShrinkCube
tasks show relatively less execution time variation because of
CPU-intensive VMs. It applies to all three hypervisors. On
ESXi hypervisor, the execution time of mProjectCube function
goes from 38.52 minute (the leftmost point on the graph)
to 48.13 minute (rightmost point) due to the addition of 8
VMs, each running a Unixbench benchmark suite (Fig. 7c).
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(f) TETV of mShrinkCube due to the Stream.
Figure 8. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the Memory-intensive workload patterns on VMs.

Therefore, consolidation with eight additional CPU-intensive
VMs (in this case the Unixbench) causes 24.94% increase in
execution time of the mProjectCube function. It is the highest
among three hypervisors. For other hypervisors, the effectof
CPU-intensive VMs is minimal. For XenServer, the maximum
execution time variation among the tasks is suffered by the
mProjectCube function again. It is 13.49% and caused when
consolidated with eight VMs running Sysbench CPU tests
(Fig. 7b). For Xen, the mProjectCube function also shows
the maximum variation among the tasks; it is 6.15%. In this
case, eight VMs with Unixbench were consolidated with the
function (Fig. 7c).

Variations due to memory-intensive workload: Fig. 8
shows the execution time variations of two previous functions,
due to the memory-intensive workload on VMs. For all three
hypervisors, the maximum execution time variations are shown
by the mProjectCube function. In all three cases, it is consol-
idated with VMs running the Stream benchmark (Fig. 8b).
The execution time increase of ESXi, XenServer, and Xen
hypervisors are 24.24%, 11.02%, and 11.56%, respectively.

Variations due to I/O-intensive workload: During VM
consolidation experiments, the I/O-intensive tasks tend to show
a greater degree of resource contention. That is why more
I/O-intensive benchmarks have been used in the experiments,
compared to other types. Fig. 9 shows the execution time vari-
ations of the mProjectCube and mShrinkCube functions, due
to consolidation with five different I/O-intensive benchmarks.

The VMs with video servers cause huge execution time
variation for both functions, on all three hypervisors (Fig. 9b).
Consolidation with eight VMs with video servers, increases
the execution times of mProjectCube function for ESXi,
XenServer, and Xen by 683.30%, 705.83%, and 588.96%,
respectively. The video servers also have similar effects on

the mShrinkCube function, on all three hypervisors (Fig. 9e).
The execution time increase of the mShrinkCube function
for ESXi, XenServer, and Xen are 901.92%, 774.10%, and
595.34%, respectively. For other I/O-intensive benchmarks,
similar results can be obtained, too. For example, Fig. 9a shows
the execution time variation of the mProjectCube function
due to file-servers on all three hypervisors. Here, execution
time increases for ESXi, XenServer, and Xen are 154.39%,
114.78%, and 92.95%, respectively. The file-servers similarly
cause execution time variation for the mShrinkCube function,
too. Execution time increases for ESXi, XenServer, and Xen
are 411.13%, 347.96%, and 343.15%, respectively.

From the presented execution time variation data, it is clear
that combination of benchmarks can be used to create resource
contention patterns for tasks on VMs. The significance of the
above findings is discussed next.

Discussion:The experimental results show that resources
like CPU, memory, and I/O, all have dissimilar effects on the
task execution time. It is observed for all three hypervisors.
From the results, it is clear that execution time variation
directly depends on the cumulative resource requirement of
the VM of a server. It has been shown previously that,
by profiling the execution times of co-located VMs, it is
possible to predict the task execution time variations [22].
The resource requirement of the VMs, play a huge part on
execution time variations. For example, both the mProjectCube
and mShrinkCube functions are I/O-intensive tasks, and they
have the maximum variation for I/O-intensive benchmarks.
The objective of experiments is to show that the proposed
framework can profile the tasks of a scientific workflow for
any workload and hypervisor. Thus, it can help to design and
carry out experiments, with VM placement and consolidation
for scientific workflows.
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(c) TETV of mProjectCube due to Webproxy server.
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Figure 9. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the I/O-intensive workload patterns on VMs.

VII. R ELATED WORK

Related works can be divided into two broad categories.
The first category of works deals with application performance
efficiency on the Cloud and VM consolidation [1]–[5]. How-
ever, the works do not provide any general framework to do
experiments with tasks of parallel applications. In contrast, this
work provides a simple and effective framework that can be
used for such purposes on the Cloud.

The second category of works are the Cloud management,
maintenance and scheduling software [6]–[17]. They can pro-
vide many high-level functionalities for the Cloud, like running
selected jobs periodically. Many complex operations can be
performed with a few commands. However, they hide a lot of
operational complexity from the users, and do not allow low-
level control over the task execution process. On the other
hand, this framework offers an easy interface for executing
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tasks according to the requirement of the experiment.
Although the works outlined above provide some high-level

support for running tasks on the Cloud, none of them combines
all the low-level functionality to carry out experiments with
VM consolidation. To the best knowledge of the authors, no
other previous work has proposed any such framework to
perform experiments with workloads on the Cloud.

VIII. F UTURE WORK AND CONCLUSION

There are a lot of issues related to the Cloud that depend on
consolidation, like application performance, energy efficiency,
and resource utilization. There are no theoretical solutions
available for these problems. Further experiments are required
to obtain practical solutions. In future, the framework would be
used to setup larger scale of experiments with various scientific
workflows and diverse sets of resource usage patterns.

This work presents the design and implementation of a
framework for performing experiments with execution time
variation of scientific workflows on the Cloud. Profiling of
task execution time is required for better understanding ofVM
consolidation. The framework can apply any resource usage
patterns to the tasks of a workflow. It does not compile the
input files, rather it behaves like an interpreter. There is no
well-accepted theocratical model for task execution variation
due to consolidation. Therefore such a framework would help
to set up large-scale experiments for achieving a practical
solution.

To show the capability of the framework to perform experi-
ments a real life data-intensive workflow and three hypervisors
have been used. Resource contention patterns for VMs have
been created by combining various types of benchmarks. The
framework is lightweight and implemented in Java. It can be
run on any OS and can connect to any hypervisor or the
Cloud. An extensive set of experiments has been done on three
well-known hypervisors, and results are successfully retried,
demonstrating that the framework is capable of executing any
workflow schedule and resource usage pattern on multiple
hypervisors. This framework can be a powerful tool for ex-
perimenting with VM consolidation and task execution time
variation of workflows.
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