
Data Placement Based on Data Semantics
for NVDIMM/DRAM Hybrid Memory Architecture

Gaku Nakagawa, Shuichi Oikawa
Department of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

e-mail: {gnakagaw, shui}@cs.tsukuba.jp

Abstract— Non-Volatile Dual Inline Memory Module
(NVDIMM) makes it possible to expand the main memory with
non-volatile memory. However, constructing the main memory
only with NVDIMM is unrealistic because NAND Flash, the
most promising candidate as NVDIMM device, has several
shortcomings about write access. The hybrid memory
architectures with NVDIMM and Dynamic Random Access
Memory (DRAM) is a method to hide the shortcoming of
NAND Flash. In the architecture, we can offload write-hot data
to DRAM. In this paper, we utilize data semantics to
determine data placements on NVDIMM/DRAM hybrid
memory architecture. The architecture requires distributing
data between NVDIMM and DRAM. Data semantics (i.e.,
meaning of data) is useful for the decision for the data
placements. As a proof-of-concept, we executed a simulation
experiment to determine data allocation between NVDIMM
and DRAM based on the data semantics. As a result, we could
suppress write access to the NVDIMM area under only 0.2%
of the DRAM area.

Keywords-memory management; nvdimm; non-volatile memory.

I. INTRODUCTION

Non-Volatile Dual Inline Memory Module (NVDIMM)
[1] makes it possible to expand the main memory with non-
volatile memory. NVDIMM is an interface standard to
connect between solid state drive and Dual Inline Memory
Module (DIMM) slots [1]. Now, we can access SSDs (Solid
State Drives) only via an input/output bus, such as Serial
ATA (Serial Advanced Technology Attachment) and PCI-
Express (Peripheral Component Interconnect) [2]. With the
NVDIMM standard, we can access SSD via a memory bus.
It reduces the latency between Central Processing Unit
(CPU) and SSDs. Thus, NVDIMM makes it possible to use
SSD as part of the main memory.

Constructing the main memory only with NVDIMM is
unrealistic. It is required to combine NVDIMM and the
existing DRAM. NAND Flash, the most promising candidate
as NVDIMM device, has two shortcomings related to write
access. One is that the write access latency is much larger
than that of DRAM. The other is limited write endurance.
Thus, if we place data with many write access (write-hot
data) on NVDIMM, the system will lose its performance and
durability. The hybrid memory architectures with NVDIMM

and DRAM are methods to hide the shortcomings of NAND
Flash [3] – [5]. In the architectures, we can offload write-hot
data to DRAM.

NVDIMM/DRAM hybrid memory architecture requires
distributing data between NVDIMM and DRAM. It is ideal
that there are write-hot data on the DRAM area and write-
cold data on the NVDIMM area. A simple way is data
migration based on the number of write access. In the way,
all new data is placed on NVDIMM area. If the memory
manager detects write-hot data on NVDIMM area, it moves
the detected data to the Non-Volatile Memory (NVM) area.
However, the simple method has a problem. With this
method, the memory manager cannot detect write-hot data
before actual write access concentrations.

In this paper, we utilize data semantics to resolve this
problem. Data has its meaning in each program context (data
semantics). The semantics have their characteristics about
write access (i.e., write-hot or write-cold). With the
characteristics, we can determine the appropriate placement
area for each data.

As a proof-of-concept, we executed a simulation
experiment to determine data allocation between NVDIMM
and DRAM based on the data semantics. As a result, we
could suppress write access to the NVDIMM area under only
0.2% of the DRAM area.

The paper is organized as follows. Section II shows the
usefulness of data semantics for data placement on
NVDIMM/DRAM hybrid memory architecture. Section III
shows an evaluation experiment for a proof-of-concept.
Section IV shows the summary of this paper.

II. DATA PLACEMENT BASED ON DATA SEMANTICS

NVDIMM/DRAM hybrid memory architecture requires
determining data placement between NVDIMM and DRAM.
Data semantics is useful information for the decision. Each
program places its data in its memory area. The data have
semantics in each program context, such as numeric data,
string data, some data structures, and so on. Each data
semantic has its write access characteristics. For example, a
pointer that indicates the head of a linked list has the
possibility to be updated. In contrast, the string data that
contains command line arguments does not have the
possibility to be updated. We can predict whether data is
write-hot or write-cold based on the write access

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

characteristic of the data. With that prediction, we can
determine the appropriate placement area for each data.

Current operating systems do not know the data
semantics in user processes because they do not take care of
the data meaning. In this research project, we proposed a
method to determine the data placement at programming
language runtime level. In the method, a programming
language runtime manages data placement between the
allocated NVDIMM area and DRAM area based on the data
semantics. The proposed method focuses on class types in
the target program as the data semantics.

III. SIMURALATION EXPERIMENT

For a proof-of-concept, we executed a simulation
experiment for data placement based on data semantics. We
modify an existing Java language runtime to distribute data
between 2 separated areas: pseudo-NVDIMM area and
DIMM area. In the experiment, we did not use any
NVDIMM device. The NVDIMM area was standard
DRAM. Thus, the results did not take into account the
characteristics of NVDIMM. The simulation software is
implemented based on Jikes Research Virtual Machine (Jikes
RVM). The base version of Jikes was 10709.

In the simulation, the language runtime corrects the
characteristics of write access to each class type. The runtime
determines the write-hot classes based on the corrected
information. It determines data placement based on the list of
write-hot classes, i.e., it places the write-hot class instance on
DRAM area. The runtime often makes a miss decision. They
may place the write-hot data to NVDIMM. The runtime
detects the write-hot objects, as well as the write-hot class. If
it found a write-hot object on the pseudo-NVDIMM area, it
moves the object to the DRAM area. Also, it detects the
write-cold objects on DRAM area. When the runtime finds
them, it moves the detected object to the pseudo-NVDIMM
area. We executed a benchmark software on the simulation
software. We adopted the Jython benchmark from the
DaCapo benchmark suite [6], version 2006-10-MR2.

Fig. 1 describes the number of write accesses to each
memory area in chronological order. The blue and red lines
represent the number of write accesses to NVDIMM and
DRAM respectively. The green dotted line describes the sum
of the number of write accesses to the two areas. The data
shows that the number of write accesses to the pseudo-
NVDIMM was much lower than that of DRAM area. The
number of write accesses to the pseudo-NVDIMM area was
only 0.2.

Fig. 2 describes the data distribution between the DRAM
area and the pseudo-NVDIMM area. The data shows that
there was much data on the pseudo- NVDIMM area. The
maximum size of the DRAM area was 8.2 MiB. The average
size of the DRAM area was 6.1 MiB. The maximum size of
the pseudo-NVDIMM area was 29.9 MiB. The average size
of the pseudo- NVDIMM was 27.3 MiB.

The results show that we can reduce the number of write
access to the pseudo-NVDIMM area with data semantics.
The number of write accesses to the pseudo- NVM area was
much less than that to the DRAM area while the runtime
placed much data on the pseudo- NVDIMM area than on the
DRAM area.

IV. SUMMARY

In this paper, we propose a new approach for the data
placement decision on the hybrid memory architecture. The
proposed approach utilizes the data semantics to resolve the
problem. Data has data semantics in the program context.
The semantics have their characteristics about write access.
With the characteristics, we can determine the appropriate
placement area for each data. The results of a proof-of-
concept evaluation show that the proposed method has
significant merits for the data placement problem related to
the NVDIMM/DRAM hybrid memory architecture.

There are several future works. The important one is an
experiment on cycle-accurate computer architecture
simulators. In this paper, the accuracy of the experiment is
not sufficient because we did not use any real NVDIMM
devices. For a detailed discussion, we need a more accurate
evaluation. An experiment on the simulator that reproduces
memory access behavior (i.e., cycle-accurate simulator)
would be useful for that.

REFERENCES

[1] JEDEC Solid State Technology Association, “JEDEC Annou
nces Support for NVDIMM Hybrid Memory Modules”. [Onli
ne]. Available from: https://www.jedec.org/news/pressrelease
s/jedec-announces-support-nvdimm-hybrid-memory-modules,
2016.11.1.

[2] David A. Patterson and John L. Hennessy, “Computer
Organization and Design”, Fourth Edition. Morgan Kaufmann
Publishers Inc., 2008.

[3] G. Dhiman, R. Ayoub, R. Tajana, “PDRAM: A Hybrid
PRAM and DRAM Main Memory System,” in Proc. of the
46th Annual Design Automation Conference (DAC’ 09), pp.
664–669, 2009.

[4] P. Zhou, B. Zhao, J. Yang, Y. Zhang, “A durable and energy
efficient main memory using phase change memory
technology,” in 6th Annual International Symposium on
Computer Architecture (ISCA ’09), ACM, pp. 14–23, 2009.

[5] W. Zhang and T. Li, “Exploring Phase Change Memory and
3D Die-Stacking for Power/Thermal Friendly, Fast and
Durable Memory Architectures,” in Proc. of PACT’ 09, IEEE,
pp. 101–112, 2009.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. Khang, K.
Mckinley, R. Bentzur, et al., “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis,” in Proc. of the
21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, ACM,
pp. 169–190, 2006.

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. Change of memory allocation sizeFigure 1. Change of write access

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

