Copyright (c) IARIA, 2017.

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Software License Optimization and Cloud Computing

Anne-Lucie Vion - Noélle Baillon
Orange SA
Paris, France
email: annelucie.cosse@orange.com
email: noelle.baillon@orange.com

Abstract- In this article, we propose a review of Software
Asset Management (SAM) state of the art and existing tools
oriented in the Cloud perspective; it seems that Software
identification, through its complete virtualized lifecycle, is a
major lock in efficient control. In this context, we propose a
model and process architecture to cope with this complexity.
We underline innovative graph modeling benefits in this
contribution. We use a simple, but vivid example to prove
the validity of our model.

Keywords-Software Asset Management; SAM; License
optimization; Software uses.

I. INTRODUCTION

Software Asset Management (SAM) enables tracking software
uses with the finest possible granularity. The aim is to constantly
reconcile the real uses with the usage rights acquired from
software providers in order to optimize and control the risks of
non-compliance (i.e., counterfeiting). The current economic
climate underlines this particularly burning issue, as each non-
compliance situation is heavily penalized in financial aspects.

In this paper, we consider SAM processes in the context of
emerging technologies, namely virtualization and Cloud
environments. This change from traditional architectures to cloud
environments, virtualized to the extreme, is still a virgin territory.
Cloud environments add many degrees of complexity. Among
others, tracking software becomes more challenging because the
installation is disconnected from true physical infrastructure.
Altogether, the complexity of software lifecycle management, the
multiplication of actors in this cycle and the lack of efficient
tools, lead to an understandable disconnection between software
usages, associated hardware and the related licensing model.
Also, because cloud environments tend to automate software
lifecycle management, SAM processes are expected to be
automated as well. On the contrary, automation is currently
circumscribed to asset management in traditional architecture.

Going further, in cloud environments (Fig. 1), SAM is not
only assets management, but also service management, which
must be done in real time taking into account the fast rhythm of
changes: services are provisioned, configured, reconfigured and
decommissioned in a matter of minutes. Compliance risks are
increased by the ease and speed of provisioning, which can
bypass traditional centralized processes. In such conditions, SAM
controls are difficult to implement.

Yesterday Tomorrow
Sc():f;vcvla::re Long cycle Real time
Total costs Calculable Hidden and additional costs
Provisioning Centralized Built to be decentralized
Expenditure Organized Lower financial visibility
Licensing Complex rules Complex rules combination
Usage Understandable i.e., BYOD, multiplexing
Assets nature Software Cloud Services
Virtualization 1 software-1 Multiplie layers: hardware
hardware disconnection

Figure 1. Complexity factors brought about by cloud architecture.

ISBN: 978-1-61208-529-6

Fabienne Boyer - Noé€l De Palma
Univ. Grenoble Alpes, LIG, CNRS
Saint-Martin-d'Héres, France
email: fabienne.boyer@imag.fr
email: noel.depalma@imag.

The idea that will be developed in this paper is that turning to
the Cloud is not changing the object of SAM, but altering how
SAM processes should be designed. The contributions are the
following. We propose (i) an architecture for SAM in the cloud,
(i) the related SAM management workflow, (iii) some major
implementation choices and (iv) a preliminary evaluation.

The remaining of this paper is organized as follows. Section 2
presents a synthesis of the state of the art and our related SAM
maturity scale, Section 3 describes our global architecture for
managing software, a model for managing installations and
usages on PaaS (Platform as a Service) layer and discusses the
choice of graph database to support our SAM model. Section 4
presents our first evaluation result, and we conclude in Section 5.

II. STATE OF THE ART

This section discusses the state of the art regarding SAM
solutions. We firstly recall the theoretical SAM models and then
describe the existing SAM tools. We end this section with a short
discussion on the “cloud-ready” dimension of SAM processes.

A. Theoretical SAM Models

One of the first studies leading to SAM considerations, in
1999, was proposed by Holsing and Yen [1] through a software
asset probation model and identification of five problem areas,
which actuate the need for software management: ethical, legal,
technical, managerial and economic.

In 2004, Ben-Menachem and Marliss [2] introduced the
“paradigm of change” based on methods, tools and procedures for
accurate overall Information Technology (IT) inventory
management. Thereby, they underline that investments in the
creation and maintenance of a dedicated software inventory is a
sine qua non prerequisite to proper long-term SAM.

In 2011, McCarthy and Herger [3] proposed a solution in four
points to combine IT, processes and business in SAM
perspectives: Discover software assets, mainly consisting in
achieving a scan of installed licenses; Reconcile purchased assets,
enables performing a procurement inventory; implementing
contract management; producing business intelligence reporting
“audit readiness” and compliance.

SAM tools are widely used in a lot of computing
environments. In 2014, for Gocek, Kania and Malecki [4], these
tools refer to software programs that discover and collect
information about software instances deployed in monitored
environments. As software owners continue to shift toward
complex software licensing schemes, SAM tools will continue to
play increasingly major roles.

B. SAM Tools

Several studies [5][6][7] show that people around the world,
all face the same difficulties to compare existing SAM tools. This
is mainly due to the exuberant marketing made by publishers
about features that appear similar between existing tools and the
lack of a model to classify them. The scope is absolutely not
defined between traditional architecture and the cloud
environment, as if the way to manage software assets in both
environments was similar. We can add that multiplication of tools

115

Copyright (c) IARIA, 2017.

is also due to multiplication of actions to manage: i.e.,
management tools often perform discovery activities and
inventory. However, they rarely gather sufficient details on
software inventory to allow making informed decisions about
their elimination or even just to compare to usage rights acquired
by contracts.

We have developed the following SAM maturity scale,
illustrated in Fig. 2, to compare the existing SAM tools
regarding the features they provide. In Fig.2, four levels are
defined on a vertical axis about SAM maturity.

Figure 2. SAM processes maturity scale

(1) VISIBILITY: this level precisely identifies resources. In other
words, SAM tools providing this level of feature allow (i)
recognizing each device with its physical features, (ii)
identifying the virtual machines and the resources allocated
to them, and (iii) discovering any software installed on any
physical or virtual devices.

(2) IDENTIFICATION: this level consists in translating any
resource in its associated assets. In other words, it translates
software installation in terms of related licenses and
products user rights. It can be identifying a product as a
trial version or circumscribed to a particular scope;
diagnose that it belongs to a software suite or that it is an
option whose use is conditioned by the use of the basic
product.

(3) The third level, RISK MANAGEMENT consists in
reconciling data provided by the two previous levels:
VISIBILITY and IDENTIFICATION. In other words, the
goal is to compare product usage rights with real uses.
Mainly, the aim is to prevent two different risks: the first
one is a legal one, counterfeiting: using software without
license or with wrong way of licensing (nowadays, more
often due to the complexity of licensing models). The
second is a financial risk, over-deployment: not using
licensed software, or the license covers more usage rights
than needed.

(4) OPTIMIZATION: through the accurate view of installations,
usages and assets provided by the previous levels, it
becomes possible to identify ways to improve license
spends, and in fine to automate this optimization process in
a real time manner.

Fig. 3 illustrates the current state regarding existing SAM
tools. We can notice that the four levels previously introduced
do not have the same maturity. A lot of tools are really efficient
at the VISIBILITY level, in terms of discovery of resources on
equipped resources. Among others, we can cite BladeLogic [8],
Open Computer Software Inventory New Generation [9] (OCS),
System Center Configuration Manager [10] (SCCM).

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Main functionalities and limitations of most popular SAM
tools

More problematic is the second level, especially because
matching between information from contracts, usages and
technical view from first level is, at least, not easy. At this
IDENTIFICATION level, we find tools like GLPI (Gestion
Libre Parc Informatique) [11] that manage resources discovered
in the first step, but are not able to truly identify product usage
rights. Contrary, tools proposed by Aspera [12], Snow [13] or
editors’ own solutions are able to manage product user rights
(PUR) and, for some of them, able to identify some risks of
over/under deployments (Snow, Spider [14], Aspera). However,
these tools are expensive, especially database updates, and do
not offer complete lifecycle tracking.

It is important to mention that software identification mainly
relies on tags (i.e., SoftWare Identification Tag (SWID tag) [15])
that record unique information about an installed software
application, including its name, edition, version, whether it’s
part of a bundle and more. The structure of SWID tags is
specified in the international standard ISO/IEC 19770-2:2015
[16], which defines an XML (eXtensible Markup Language)
data structure aiming to the precise identification of software,
regardless of the platform and the device on which it is installed.

Finally, regarding the last level, in the current situation,
despite the numerous risk management tools, the treatments are
still approximate and optimization difficult to automate.

C. Synthesis

One of the business benefits of cloud computing is its agility
and speed-to-market. Services are provisioned, configured,
released in a matter of minutes. Thus, while traditional SAM
processes assume long lifecycles (usually, we can consider 5 — 8
years for a software, it leads to long cycles of contract,
discovery, inventory and reconciliation), cloud accelerates these
processes up to real-time requirements.

A second issue to consider is the different levels of services
and multiplication of hidden costs in cloud environments. These
hidden costs may include cost of migration, integration with IT
systems, premium support services, new storage requirements,
data extraction cost, service renewal costs, etc.

Moreover, we underline that if SaaS (Software as a Service)
seems to reduce or even delete infringement risks (supposed to
be indexed on real usage), this use is in fact restricted in many
cases and is not often negotiable. In such cases, SAM should
have appropriate controls to ensure compliance with all
requirements and limitations (geographical scope, Restriction on
shared accounts, on non-employees/providers, partners, etc.,
time, transactions volume). It leads to multiplications of
complex rules, not only based on hardware metrics, but directly
on usages, sometimes more difficult to identify.

As said in Business Software Alliance (BSA), 2014 [17]
cloud services are often considered as operational expenses and
not as capital expenditures. It leads to several problems: (1) less
involvement in the contracting phase, (2) loss of control of
operational dependencies, (3) loss of known limits to final costs,
(4) lack of financial visibility, and (5) increased license
compliance risks.

116

Copyright (c) IARIA, 2017.

II. PROPOSITION OF A SAM MODEL FOR THE
CLOUD

A. SAM Control Loop

Our SAM proposal takes into account the complete software
lifecycle, considering that each step feeds a SoftWare DataBase
(SWDB) and that every step is accompanied by one or more
SAM control (or SAM check-points). All possible information
related with the use of software should be captured and stored in
order to implement all the required usage controls.

Through the check-points, the SAM processes analyze the
current situation in real-time and confront the use of services
with the license stock. SAM processes also take potential
optimization decisions, creating a control loop.

Figure 4. SAM retroaction loop

In its basic form, the software lifecycle that we consider is
composed of 5 + 1 steps as shown in Fig. 4 and Fig. 5 — Fig.9;
some steps can be played several times:

1) Need'’s Expression: the consumer justifies his need and choice
of software.

2) Purchasing: this step encompasses sourcing processes,
negotiation, contract, billing etc. At this stage, we get a Stock
Keeping Unit (SKU) identifying the purchased software and its
own [product] usage rights (PUR) created by the manufacturer
and acquired during purchasing processes.

Figure 5. SW lifecycle and SAM controls - Purchasing

3) Delivery: this step corresponds to the software receipt via
downloading platforms, preparation for installation on user
platform, entry into a software catalogue. Through this step, we
get a SWIG Tag containing the software’s SKU created by the
manufacturer and extendable with client-specific information.
SWID tag will be the default software identifier.

Figure 6. SW lifecycle and SAM controls — Delivery

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

4) Instantiation: The software is installed in an environment (for
instance, a given Cloud), in other words, the software is able to
be used.

Figure 7. SW lifecycle and SAM controls - Instantiation

5) Usage: a user consumes a service/software. Here, we have to
identify the cases where multiple users consume the same
service simultaneously and translate this in terms of use
(multiplexing, multidevice , etc.)

Figure 8. SW lifecycle and SAM controls - Usage

6) Optimization: this corresponds to confronting the
need/contract/installation/use with the license stock according to
a measure of consumption previously defined (metric). Here, we
can create a model of costs for any measure of use and identify
the most suitable scenario of consumption or of customer billing.

Figure 9. SW lifecycle and SAM controls - Optimization

117

Copyright (c) IARIA, 2017.

B. Instance and usage capture

1) Focus on Instantiation

To implement SAM check-points over the instantiation step,
we need to make assumptions on the targeted cloud
environments, especially in terms of the PaaS layer that will be
used to deploy services. In a first design, we consider clouds
managed through the well-known and commonly used Cloud
Foundry [18] PaaS. We consider that it will be possible to apply
our model to a variety of PaaS, as long as they allow
instantiation/usage’s capture. In further works, we will extend to
Infrastructure as a Service (IaaS) layers.

Deploying an application through the Cloud Foundry (CF)
PaaS layer is done by running a push command from a
Command Line Interface (CLI), either as part of the CF build
packs or through a service broker:

Build pack. User pushes app bits (i.e. artefact: jar, .war, tgz,
etc.) from desktop/CLI selecting one of the supported stack (i.e.,
Ubuntu)

Service broker pushes a docker image reference (public or
private registry), or a container specification reference

In both cases, a droplet is produced, taking into account
dependencies configuration. As a result, app instances are started
and run the image within quotas (Random Access Memory
(RAM), Computer Process Unit (CPU), etc.). Among others,
between push and application’s availability, CF uploads and
stores the application files, and examines and stores the
application’s metadata (for SAM purposes the SWID Tag
enriched by all relevant contractual information during delivery
step)

Before one can retrieve any application or service
information, one must retrieve the Cloud Controller (using the
Service Broker Application Programming Interface (API)). The
brain of this controller knows services and applications as well
as their instances and settings. The Cloud Controller exposes a
Rest (Representational State Transfer) API for all this
information through which the SAM processes can get the
necessary knowledge to perform their tasks.

2) Focus on usage
To implement SAM check-points over the USAGE step, we
need to get the knowledge of which applications are used. We
decided to achieve this first through the application rights
verification. In more detail (Fig. 10), we summarize the steps
performed when a user wants to use an application in our
context:
1. The user wants to access the cloud application via the user
portal
2. The user is identified and authenticated via a User
Identification and Information System Access libraries
3. The system checks permission of the authenticated user to
access the applications via the Application rights library
and if yes, return a certificate. This step allows collecting
usage information, especially the moment when a
certificate for using the application is issued or withdrawn.
The lifecycle of this certificate allows determining the time
of using the application and all its software components.
4. Embedding cookies and certificates, the user can start to
consume application

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 10. Use case of cloud app access

An application may embed several software services, so it is
necessary to cross the information on usage with internal
software cartography to be able to determine and affect usage
directly to software.

Application’s usages cannot be summarized only by a
number of access or minutes spent. We consider that it also
covers consumed resources (i.e., CPU, RAM, bandwidth, event
p/s, flow p/s, etc.).

Open-source tool Abacus [19] provides usage metering and
aggregation for Cloud Foundry services. This is implemented as
a set of REST micro-services that collect usage data, apply
metering formulas, and aggregate usage at several levels within
a Cloud Foundry organization. Runtime provider (CF Bridge)
submits application usage events (other runtime providers
submit other runtime usage events); external services providers
submit service usage events that are received and stored by
Abacus, metered, accumulated, aggregated to provide usage
reports and summaries.

We should recall that SAM’s purpose is to confront
contractual provision (PUR) with observed usages. Since we
assume usage capture, we should focus on this aim to direct our
implementation choices. Indeed, how we store the collected
information (instantiation + usage) influences comparison and
optimization operation’s efficiency and relevance.

C. Feeding the database

Each step previously described feeds a software database
(SWDB). Following software lifecycle, we can represent every
data injection summarized in Fig. 11:

Figure 11. Asynchrone feeding of SAM database

118

Copyright (c) IARIA, 2017.

To implement this database, we adopted a graph-oriented
database. The lack of flexibity is the biggest weakness of
relational databases when the data structure may vary like for
SAM topic. Their scheme cannot support the dynamic real time,
and uncertain nature of data, new technologies and platforms.
Graph data models are centered on relationships. Just by
connecting nodes and relationships, it can generate sophisticated
models that fit closer to our problem (cohesive picture between
contracts, usages and installations) when relational databases
require us to infer connections between entities using special
properties such as foreign keys, or out-of-band processing like
map-reduce disconnecting the evolving schema and the actual
data model.

Each node in the graph database model contains a list of
relationship-records. These relationship records are organized by
type and direction and may hold additional attributes (Fig. 12).
Whenever one runs the equivalent of a JOIN operation, the
database just uses this list and has direct access to the connected
nodes, eliminating the need for expensive search / match
computation.

Figure 12. Graph modelization of SAM in Cloud

Graph representation makes the comparison between all
software dimensions easier: looking at this model, software is
logically linked to contracts, instances and user. The global
picture seems to be cohesive and we can identify Software
lifecycle, likewise tag’s cycle. It can be read like: “Entity signs
(a) Contract, which defines Software run by (a/n*) Instance(s)
etc.”

IV. EVALUATION

In our preliminary evaluation, we focused on the purchase-
delivery-instantiation-usage phases of our SAM model, omitting
the optimization phase that remains a future work. Our objective
was to validate the fact that our graph model can be managed
through a capture of PaaS usages (Cloud Foundry/Abacus in our
experience). To achieve this experience, we considered a well-
known software: an Oracle database.

We choose the Oracle Database Enterprise Edition (Oracle
DB EE) example for several reasons: (1) It is a vivid example for
the SAM community; one of the most often mentioned for the
complexity of its license management. (2) Oracle DB licenses can
be defined by several types of metrics, oriented on material (i.e.,
CPU) or user (i.e., Named User Plus). (3) It will allow us to
increase complexity of our use cases such as: integrating controls
between product’s link (options — standard product) and
constraints of uses.

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

In this theoretical evaluation, we will follow the Software
lifecycle proposed in Fig.4 and Fig.5-Fig.9 and refer to the Fig.2
SAM processes maturity scale: visibility, identification, risk
management and optimization.

1) Purchasing

For the purpose of our example, we will skip the first phase
of need/choice/approval, and directly start with purchasing
processes.

Figure 13. Example of Oracle's offer

Fig. 13 can be an extracted from “License Store’s” catalogue
proposing the product we need and are planning to buy.

Few elements (above) are necessary to identify precisely this
offer and determine the level of grants (PUR) given by this way
of licensing. These elements have to be collected in the purchase
order and reconciliated with data from the delivery order. In the
graph: The first step is to create our product, with a label
‘Software’ and several attributes found in the purchase order. In
the same way, we create a label ‘Retailer’ and ‘Editor’ to identify
anode ‘License Store’ and ‘Oracle’:

CREATE (m:Software { name : 'Oracle Database', version : '11g Release 2
(11.2)', sku:'E47877-06', category: 'Database'})

CREATE (z:Supplier {name : 'License Store'})
CREATE (n:Editor { name : 'Oracle' })

Then, we create several nodes with label ‘PUR’, which
represents scope of usage, metrics, environments, etc. The idea is
to create nodes, independent from products (not node properties)
to allow further comparison between product, version, etc. or
identify similar metrics.

CREATE (0:PUR {metric: 'processor, term : 'perpetual'})
CREATE (p:PUR {name: 'requirement’, maximumCPU : 'no limit', RAM :
'OS max', DatabaseSize : 'no limit'})

CREATE (q:PUR {name: 'OperatingSystem', windows : 'yes', unix : 'yes',
linux : 'yes'})

Then, we create relations between nodes:

(1) Between an editor and product (EDITS): ‘Oracle’ edits
‘Oracle Database’.

(2) Between a product and PUR (DEFINES): ‘Oracle DB’ is
licensed wunder processor metric/ or can run on
windows/Unix/Linux/etc.

(3) Between a supplier and a product (DISTRIBUTES): ‘License
Store’ distributes ‘Oracle DB’. This relation is important
because contains all information about the contract:
financials, number, maintenance, etc. This link may be
multiple (unique relations), as many as the number of
contract.

This process and collect are essential to fulfill the Identification
requirements: PUR are translated in the SKU, this SKU enriches

119

Copyright (c) IARIA, 2017.

the SWIDTag delivered during provisioning processes; it
guarantees the link between a contract and Software/ Software
and Instance.

2) Provisionning

After Global sourcing processes, our Oracle Database is
right now under exploitation teams’ responsibility. The software
can be packaged/enriched (i.e., tag) according to company’s
rules or considered like included in an Application before being
instantiated.

In our case, let us create a label Application and a node
‘HumanRessources’ which we’ll include in our Database.

The relations ‘CONTAINS’ is enriched by properties like a
project’s id or application’s project manager:

CREATE (n:Application {name :'HumanRessources', responsible :'Tom'})
MATCH (a:Software),(b:Application)

WHERE a.name = 'Oracle Database' AND b.name ='HumanRessources'
CREATE (b)-[:CONTAINS {id_project : '1234R"}]->(a)

3) Instantiation

To fulfill the step 1 (visibility) of the maturity scale, we
need to have an exhaustive view of infrastructure resources and
instantiation. The PaaS handles infrastructure resources (Virtual
Machine (VM), networking, storage), database instantiation,
Subscription to shared services, application deployment,
installation, configuration, application monitoring, application
log collection and interaction with app-ops (inventory/CMDB,
monitoring/alerting)

CF allows identifying allocated resources. Our experience is
here restricted to PaaS layer, it would be necessary to reach
underlying infrastructure (i.e., VMware, OpenStack etc.) to
obtain IaaS resources. All this chain allows to keep and know
information about the allocated ressources in each stage.

In our example, the application, which contains our database
has been deployed on the cloud via a “push” command and ran
as an instance. We stress that this instance contains metadata like
SWIDTag enclosed during the provisioning. A key part is now
to create links between instance and product which we bought.
Everything is based on the use of SKU number. The instance
knows and updates all SWIDtags of its components (i.e., Fig
14). This allows to create the link between the product in
catalogue and the installed product.

Balise Description
entitlemet_required_indicator true if activated/serialized

false if evaluation/not licensed

product_fitle Oracle Database EE
product_version
name = chaine version
numeric = numeric

software creator

name Oracle

regid regid.1977.oracle
software licensor

name Oracle

regid regid. 1977 _oracle
software_id E47877-06
tag_creator
= name Oracle

regid regid. 1977 _oracle

license_linkage evaluation/serialisez/actived/abonnement/no
activation_status license

Figure 14. SWID Tag example for Oracle DB EE
MATCH (i:Instance),(a:Software)

WHERE i.software_id= a.sku
CREATE (i)-[c:INSTANCES]->(a)

4) Uses

The Oracle DB is expected to be accessed by both humans
and software (automated applications encompassing the

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

optimization phase of the SAM model as described previously in
the paper). Different queries can be performed on the different
links of the database.

The link ACCESS/AUTHACCESS has properties that
characterize the use (scope, duration, consumed resources, etc.)
captured by CF and accumulated/aggregated by Abacus. The
capture fulfills the step 2 of the SAM processes maturity scale.

MATCH (s:Software {name:'Oracle Database'})<-[:INSTANCES]-
(i:Instance)
RETURN s, i

“Show me all INSTANCES’ relation(s) to ‘Oracle Database’”
will provide all instances related to Software. As we can identify
the Product Usage Rights (via the SWIDTag/SKU) by a direct
link between Software/PUR and Software/Instances, we can
fulfill first part of the step 3 (SAM processes maturity scale): the
risk management (here: counterfeit risk).

MATCH (i:Instance {name:'HumanRessources'})<-[:ACCESS]-(user)
RETURN i, user

“Show me all ‘“ACCESS’ relation(s) to ‘HumanRessources” will
provide all access/authaccess related to Software. As we can
identify the Product Usage Rights (via the SWIDTag/SKU) by a
direct link between Software/PUR and Software/Access, we can
fulfill second part of the step 3 (here: over-deployment risk).

5) Basic control of inventory’s consistency

Obviously, a lot of queries would be necessary to implement
true SAM analysis. For the purpose of our example, let us study
quickly three of the most basic, but also the most important:

- What I bought ?

MATCH (e:Entity)-[g:SIGNS]-(c:Contract)-[r:DEFINES]->(s:Software)
MATCH (p:PUR)-[h:DEFINES]->(s) WHERE p.name='Metric'
RETURN e.name AS Entity, s.name AS Software, s.SKU AS SKU,
sum(r.quantity) AS Quantity, p.metric AS Metric,

c.date AS Date ORDER BY e.name, s.name, c.date

This query returns a table: the number of bought licenses order
by software and metric with a list of contract per software

- What I instanciated ?

This query returns a table: the number of instances per
software ordered by metric with collection of application
containing this software.

MATCH (v:VM)-[t:RUNS]->(i:Instance)-[r:RUNS]->(a:Application)-
[c:COMPOSEd_BY]->(s:Software)

RETURN s.category AS Category,s.name AS Software, s.SKU AS SKU,
count(t) AS InstanceNumber, collect(distinct(a.name)) AS Application

- Am I compliant ?

This last query consists in a verification of the ‘Processor’
metric (typical for Oracle). Basically, we have to multiply the
number of cores per processor of the physical machine hosting
the DB by the number of processors and by a coefficient given
by Oracle for each processor. It returns a table of licenses
ordered by the software, and he number of bought/instanciated
(according to Oracle licensing rules).

MATCH
MATCH
MATCH
WITH s,(
nbL, m,r
RETURN s.name as Software,s.SKU as SKU,
SUM(nbL) AS ProcessorLicenses

s:Software) WITH s
m:Machine)-[*]->(a:Application)-[co:COMPOSEd_BY]->(s)
r:Resources)<-[h:HAS]-(m:Machine)
toFloat(r.core))*(toFloat(r.corefactor))*(toFloat(h.quantity))) AS

120

Copyright (c) IARIA, 2017.

6) SAM Optimization

Optimization consists, first, in automating the rise of alerts.
When a countfeiting situation is detected (piracy, but mainly
editor’s metric misunderstanding) or when the use reaches or
exceeds a fixed threshold or the level of inventories, then,
purchasing/activating new licenses could be automated to adjust
the license stock, in real time.

When the visibility and identification steps are mastered,
optimization —might consist of operating simulations:
usage/instantiation captures, may reveal some possibility to
renegociate a contract in a more favorable (financial) way: i.e.,
to change the Oracle DB negociated metric
(currentlypProcessor) into another metric (i.e., Access), more
appropriated to observed uses, or to project a future
software/license uses based on current observed situation. This
will be developped in further works.

V. CONCLUSION

Software is not like other IT assets that can be considered as
just software installation or in its intangible dimension provided
by the license that defines the scope of use. Both dimensions of
the software should always be considered in managing this asset.
Virtualization and Cloud technologies add a new degree of
complexity in the first dimension (material) when installation is
disconnected from true physical infrastructure. Altogether, the
complexity of software lifecycle management, the multiplication
of actors in this cycle and the lack of efficient tools, lead to a
disconnection between the software material and intangible
dimensions.

We point out in the article the problem of software
identification through its complete lifecycle and proposed a
reference model or architecture for SAM to cope this complexity.
This reference model also help getting a clear understanding on
how SAM can be applied in the cloud computing domain. Using
the Oracle DB example, we assess that our model works on
simple, but vivid SAM cases, and that choice of a graph model is
relevant.

Next steps will be (1) to increase complexity of the model, by
implementing more complex licensing rules (2) to show more
complex interface and queries allowing realistic SAM controls
and optimization; (3) to measure cost of interception of SW tags;
(4) to measure cost of interception of usages. Regarding step (2),
considering elastic applications will be a major step.

REFERENCES

[1] F. N. Holsing, and D. Yen, “Software Asset Management:
Analysis, Development and Implementation”, Information
Resources Management Journal (IRMJ) 12(3), pp.13, 1999

[2] M. Ben-Menachem, and G.S. Marliss, “Inventory
Information Technology System: Supporting the « Paradigm of
Change »”, IEEE Software, pp.34-43,2004

[3] M. McCarthy, and L.M. Herger, ‘“Managing Software
Assets in a Global Enterprise”, IEEE International Conference
on Services Computing, (pp. pp.560-567), 2011

[4] P. Gocek, P. Kania, B.Malecki, M. Paluch, and T. Stopa,
“Obtaining software asset insight by analyzing collected metrics
using analytic services”, US9424403 B2, Available from
https://www.google.com/patents/US9424403, 2014

[5] J. Disbrow, "Software vedor auditing trends : What to watch
for and how to respond”, Gartner (DOI G00230816), 2012

[6] J-D. Lovelock, Worldwide IT Spending Forecast”, Gartner
(DOI: G00323753), 2016

[7] C. Rudd, ITIL V3 Guide to Software Asset Management.
Broché, 2013

ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[8]www.bmcsoftware.fr/it-solutions/asset-management.html,
September, 2016
[9] www.ocsinventory-ng.org/fr/, September, 2016
[10]www.microsoft.com/fr-fr/server-cloud/products/system-
center-configuration-manager/, September, 2016
[11]www.glpi-project.org/, September, 2016
[12]www.aspera.com/fr/, September, 2016
[13]www.snowsoftware.com/fr, September, 2016
[14]www.brainwaregroup.com/en/solutions/software-asset-
management/spider-licence/, September, 2016
[15] www.tagvault.org, September, 2016
[16] ISO/IEC 19770-2:2015
[17]A.Hughes, Seizing Opportunity
Compliance. BSA, Software Alliance, 2016
[18] www.cloudfoundry.org/, September, 2016
[19]https://github.com/cloudfoundry-incubator/cf-abacus,
January 2017

Through License

121

