
CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 77

Securing 3rd Party App Integration in Docker-based Cloud Software Ecosystems

Christian Binkowski

Ostbayerische Technische Hochschule
Amberg-Weiden

Amberg, Germany
Email: c.binkowski@oth-aw.de

Stefan Appel

Siemens AG

Erlangen, Germany
Email: stefan.appel@siemens.com

Andreas Aßmuth

Ostbayerische Technische Hochschule
Amberg-Weiden

Amberg, Germany
Email: a.assmuth@oth-aw.de

Abstract—Open software ecosystems are beneficial for customers;
they benefit from 3rd party services and applications, e.g., analysis
of data using apps, developed and deployed by other companies
or open-source communities. One significant advantage of this
approach is that other customers may benefit from these newly
developed applications as well. Especially software ecosystems
utilizing container technologies are prone to certain risks. Docker,
in particular, is more vulnerable to attacks than hypervisor based
virtualisation as it directly operates on the host system. Docker
is a popular representative of containerisation technology, which
offers a lightweight architecture in order to facilitate the set-up
and creation of such software ecosystems. Popular Infrastructure
as a Service cloud service providers, like Amazon Web Services
or Microsoft Azure, jump on the containerisation bandwagon
and provide interfaces for provisioning and managing containers.
Companies can benefit from that change of technology and
create software ecosystems more efficiently. In this paper, we
present a new concept for significant security improvements for
cloud-based software ecosystems using Docker for 3rd party app
integration. Based on the security features of Docker, we describe
a secure integration of applications in the cloud environment.
Our approach considers the whole software lifecycle and includes
sandbox testing of potentially dangerous 3rd party apps before
these became available to customers.

Keywords–Docker; Cloud; security.

I. INTRODUCTION

Cloud computing developed within the last 10 years as the
Internet is well spread all over the globe with an acceptable
bandwith. With the development of Web 2.0, in the beginning
of the 21st century, cloud computing started spreading. Big
companies like Amazon, Google or Microsoft started hosting
services for companies and their applications. Cloud com-
puting was a breakthrough technology for smaller companies
as it reduced the costs of datacenter maintenance. Another
important benefit is the elasticity, which makes it easy for
users to upscale the resources and increase the performance.
Nowadays, companies are able to push their software ecosys-
tems easily to foreign servers instead of deploying it on their
own. Another fundamental technology that was beneficial for
cloud computing is the use of virtualisation. Creating multiple
host systems based on shared enhanced hardware is the basis
of modern cloud computing. Today, it is common to run
services in virtual machines on servers but in the last few
years containerisation is in the focus as a new virtualisation
technology. A server runs a base Linux and the services run in
lightweight containers with a small OS, which reduces storage
costs immensely. Every container has a small host OS, the base
image, which may be shared with other containers. If one user

installs an Apache Server on top of the base image, Docker will
add one layer to the image. Another user can install a Python
environment and run scripts. This will also add another layer
to the base image. This makes it easier to distribute updates to
containers, as only the layer needs to be shipped to the other
containers.

But containerisation does not only have benefits. A ma-
jor problem of Docker or other containerisation services is
security. The user has to adjust settings and install optional
packages to create a safe environment for the use of containers.

One of the main advantages of Docker is Docker Hub
with an immese amount of preconfigured images. However,
in 2015 a study from BanyanOps showed that a lot of images
uploaded to the platform are vulnerable and contain security
breaches [1]. They tested official releases like Debian images
and general images from private distributors. One third of
the official images included critical vulnerabilities like the
Heartbleed bug in OpenSSL, not being patched for some time.
The rest of the tested images contained high and medium rated
vulnerabilities. They also tested about 1700 general images
supplied by 3rd parties and the number of vulnerabilities found
was even higher. The results may be interpreted as follows:
even official images have weak spots and the user has to be
careful when bringing these images into his environment.

As the trend of cloud computing showed, many companies
are creating their own cloud platforms offering different ser-
vices. Some of them allow 3rd parties to integrate applications
into their ecosystems. In the context of Docker, it means
that a customer can push his container into the environment
and interact with the provided platform services. Therefore, a
security and test concept for the integration is indispensable
as customers upload and process their data to the platforms.
A data breach may not only result in financial consequences
due to the new General Data Protection Regulation (GDPR)
coming on 25th of May 2018, which forces companies to be
more transparent about attacks. Any security breach then needs
to be reported within 72 hours after discovery, otherwise the
company has to pay up to 2% of the worldwide turnover as a
fine for a first offense [2]. Beside the financial consequences
the loss of trust of customers can cause an image damage of
the company, too.

In Section II, we first present common attacks in the
Docker environment, and in Section III we discuss the Docker
security features and how to increase Docker security. Section
IV describes a security concept how new containers should be
able to interact with other containers. Section V discusses a



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 78

test concept for containers, and in Section VI, we discuss our
conclusions and future work.

II. ATTACKS

Researchers are finding exploits day by day and often
Docker or other container environments are affected. Many
different and sometimes also unconventional ways involving,
e.g., social engineering, lead to damage on a Docker system.
In this paper, we present mechanisms to prevent attacks using
three categories of attack vectors:

• Overloading the network: Denial of Service (DoS)
attacks

• Elevation of privileges: container breakout & exploits
• Compromising the network: ARP spoofing

A. Denial of Service Attacks
DoS attacks cause different effects. One purpose is bringing

the host down or stop the system from operating. DoS attacks
are against any kind of services, interfaces or devices like the
memory or cpu of the host system. Docker, not configured in
the right way, is prone to DoS attacks.

As Docker refers to user namespaces every container image
based on a Linux system has user IDs (UID). For example, a
UID 0 in a Docker container can relate to a UID 500 on a host
system. Docker implements a constant span between the virtual
UID in the container and the real UID on the host system. If
a system launches 20 containers, which all contain a UID 0
then every container UID will refer to the real UID 500 on the
host system. This being implemented may cause DoS attacks
by hitting specific user limits. Different examples exist for this
phenomenon described in the following paragraph [3].

Every user in a Linux host system is provided a specific
number of signals in order to let processes communicate with
each other. A signal can stop, kill a process or transport a
simple message like a number. To perform a DoS attack one
container tries to queue the user maximum amount for signals.
As other containers share the same UID and so also refer to
the same user limits they are not able to send signals anymore
due to the boundaries. This may not cause a complete host
takedown but some containers may freeze and will not be able
to operate properly anymore. To prevent this from happening
it is useful to create different users in the containers whenever
possible [3].

Another way to burst user limits is by increasing the
number of user processes. This can bring down the Docker
environment. It can be realised by creating a fork bomb. The
father process forks itself many times and creates a lot of
processes in a short time. This leads to an exceedance of the
process user limit. In tests, this behaviour leads to bringing
down the whole Docker environment but not the host.

In conclusion, different ways to burst user specific limits
exist. Further ways, like allocating disk space or increasing cpu
usage, can cause the same effects - the host is taken down or
damaged afterwards. Not only the Docker environment also the
host can be attacked in this way. Attacks based on increasing
disk space or cpu usage can be prevented easily by configuring
the Docker environment correctly. Docker gives the user the
possibility to limit the cpu usage or memory that can be used
by a single container.

B. container breakout & exploits
Linux Kernel exploits enable attackers to break out of the

container and infect the system by installing a stable backdoor
and channeling malicious code. After breaking in the attacker
is then able to take over control of the host system or the
hosted container in the environment.

A famous Linux kernel exploit is called ”Dirty COW”,
which stands for ”Dirty Copy On Write”. In this exploit,
the standard user tries to write to a file that only a user
with root permissions can write to [4]. According to Current
Vulnerabilities and Exploits (CVE) [5], almost half of the
Linux exploits found are DoS exploits in order to bring the host
system down followed by privilege elevation and information
leakage. As Linux is the host system it is important to have a
look at the published kernel vulnerabilities. It is also important
to watch out for Docker vulnerabilites or even vulnerabilities
inside the containers. This raises the potential of possible weak
spots immensely. The deduction of this attack scenario is to
keep the kernel, Docker, as it is a fast living environment, and
software inside of containers updated and patching the system
by creating new container images with updated software.

C. Address Resolution Protocol (ARP) spoofing in the con-
tainer network

ARP spoofing is popular when it comes to network
sniffing and so called Man in the Middle attacks. Although
Docker containers communicate over a private network they
are prone to these attacks. One container could contain
malicious code to spoof the private network. The following
section and Figure 1 will explain ARP spoofing shortly [6].

Figure 1. ARP Spoofing

Container A wants to communicate with container B and
sends an ARP message, which asks for the MAC address re-
lated to the IP address container A wants to communicate with.
The attacking container E sends a manipulated ARP message
pretending to be container B and transmits his own MAC
address. Instead of establishing a connection with container B,
A is now connected with container E. All packages container
A tries to send to container B now arrive at container E,
which can read the packages, forward them to the container
B or just drop them. After spying, e.g., passwords or other
credentials, container E can drop packages, which leads to a
loss of a connection. To perform a complete Man in the Middle
attack, the malicious container has to pretend to be A when



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 79

B tries to connect to container A. As both received the same
MAC address they will send the packages to container E. Now
he can eavesdrop on the entire communication between both
containers and what attacker E just has to do is forwarding
the packages between A and B. Known from public networks,
e.g., cafes, spoofing and sniffing in the end can cause serious
problems.

Using TLS as communication standard makes it more
difficult for attackers to intercept and read communications.
Containers identify themselves with certificates issued by a
root certificate authority. In order to prevent Man in the Middle
attacks with fake or self-signed certificates, certificate pinning
should be used [7][8].

III. DOCKER SECURITY FEATURES

Compared to hypervisor based virtualisation a container
based virtualisation tends to be more vulnerable to attacks.
As a hypervisor based virtualisation has an own host OS
installed, an additional layer of security is brought between the
virtualised hardware and the host OS. To understand security
in the Docker framework it is necessary to explain how the
resources are virtualised in the Docker environment. Docker
comes with some Linux specific security features that ensure
the security of each container. The following two mechanisms
are essential in the Docker virtualisation:

• Cgroups: provides the possibility to limit the resources
every container is able to access [9]

• Namespaces: namespaces lead to a separation of
spaces. In conclusion, every container thinks of itself
as the only container running on the system (Figure
2) [10]

Docker uses a process isolation to prevent a container from
accessing the process management of other containers. The
isolation is guaranteed by providing each container a unique
namespace for every container, limiting the permissions and
the visibility of underlying processes in other containers or
the host systems. The process ID namespace isolates the
process number space from the host. The process hierarchy is
also a benefit for the containers as it only sees the processes
in its own container or child processes.

Figure 2. Namespacing in Docker

The host OS and the containers must be protected from
unauthorized access and modification of the file system. Thus,
every container has its own filesystem and therefore can
operate in its own home directory. However, some of the kernel
files are not virtualised. This means that every container shares
these files with the other containers. As a Docker container is

able to see the files, the system is prone to attacks like the
already discussed Dirty COW attack. At least, a container is
generally not able to write kernel files.

Another key feature of container based virtualisation is
device isolation. Access to important device nodes like the
physical memory or storage can cause serious damage to the
host system. To prevent this from happening Docker uses the
device whitelist controller, which limits the access to devices
for Docker. Processes are also prevented from creating new
device nodes in containers.

Shared memories, pipes or semaphores are ways to interact
with other processes. Here, Docker creates an own namespace
to guarantee that every container only uses its own resources
and does not communicate with processes or overwrites data in
foreign shared memories. Thus, containers can’t interact with
processes from other containers.

Containers can communicate with each other only over
a network connection. Every container has its own network
interface including IP address, routing table, network device
and stack. Docker establishes a Virtual Ethernet Bridge to
communicate between container and the host system. This link
can be found on the host system and is named Docker0. All
hosted containers are connected to the bridge and to the eth0
interface of the container.

Figure 3. Docker Virtual Network

As Figure 3 depicts, there is a stable connection between
the containers and the host. With the default settings of this
network setup the Docker environment is vulnerable to ARP
spoofing and Man in the Middle attacks as described before.

To prevent DoS attacks Docker uses the cgroups function-
ality that allows users to configure how many resources, like
cpu usage or memory, each container can access; a container
is not able to consume the entire host system anymore. With
the start of a container the operator can tell Docker that the
container is only allowed to access a certain fraction of the
available memory. Once Docker recognises a memory limit
violation it will enforce the set rule.

Besides namespacing and cgroups Docker also offers other
security features. It allows users to run processes in two modes:

• privileged mode: using superuser permissions and no
permission checks

• unprivileged mode: full permission checks

The following measures are introduced in order to harden
the host system. All newer Linux kernels provide the possi-
bility to assign capabilities to superusers [11]. Capabilities are



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 80

rights for super users, e.g., CAP NET ADMIN, if assigned,
can be used to administrate the IP firewall or to modify
the routing table. By default, many of these capabilities are
disabled even if the container is running in privileged mode.
In conclusion, disabling capabilities makes containers safer and
the host system less vulnerable.

Third party applications can enhance Linux security.
SELinux was created by the NSA in corporation with the Linux
distributor Red Hat [12]. The user or process has access to the
files based on a Mandatory Access Control (MAC) system,
which implements rules for the user to access files. These
rules can be related to categorisation or labels. Standard Linux
applies a Discretionary Access Control (DAC) where decisions
depend on the identity of the user.

SELinux offers the user a type enforcement mode that lets
the user define the type of a file. The user can grant a process
access to a specific type of file and doesn’t have to specify the
user rights for every file. Another key security feature is called
Multi-category security (MCS) [12]. This prohibits access to
data of a foreign container. When a container is launched, the
Docker daemon randomly picks a label and attaches it to every
file and process that is launched or created in the container.
Only containers with the consistent label can access processes
or data inside the container.

AppArmor is a different approach to harden containers and
preventing them to cause damage on the host system [13].
The concept of the Linux extension refers to loading profiles
in each application. Administrators can configure two modes.
In enforcement mode, the policies in the profile are enforced
strictly. In learning mode, violations are permitted but also
logged on the system. The generated log file can be analysed to
develop new profiles. Docker has a possibility to load profiles
into containers in enforcement mode. If the user has not created
any profile, it loads the default profile with less capabilities and
no access to important filesystems.

IV. SECURITY CONCEPT

In the following section, the paper will propose a security
concept, which ensures a secure integration of 3rd party ap-
plications in an existing Docker container environment. This
section will introduce a security concept for 3rd party app in-
tegration, methods regarding to communication, authentication
and how network analysis can improve security.

We want to present a concept for intra container commu-
nication, as this is crucial for 3rd party application integration.
Open software platforms are an important foundation for
innovative business models. However, this openness comes
with risks for platform operators and customers. Especially
security is an extremely important aspect; it becomes ever more
challenging, when apps are not only delivered to customers,
e.g., Apple/Android. Platforms allowing the execution of web-
based 3rd party apps need to be secured against potentially
malicious components. On the other side, it is very important
to open the platform for other developers as it will only grow
with external input.

Cloud was an enabler for ecosystems in recent years.
Developers easily pushed their deployments on servers in cloud
farms and could scale the applications without maintaining a
big datacenter on their own. That is not only a benefit for the
developer, also the customer profits by a growing variety of
Software as a Service (SaaS) offers.

A number of researchers already have demonstrated that
Docker has some serious security concerns. They focused their
research on container hardening to minimize the number of
weak spots of a Docker container. Others refer to hardening
the host and its services in order to reduce the attack surface
for Docker containers [14].

We offer a solution for the 3rd party app integration in the
docker environment and are adding another layer of security in
addition to hardening the host and containers. Our solution fo-
cuses on the services architecture [15]. The ecosystem is based
on small services that interact with a Representational State
Transfer (REST) Application Programming Interface (API)
concept. An API Gateway routes the requests to the demanded
services. As the services are not bound to programmining
languages it is easy for 3rd parties to develop a service in
a Docker container and integrate it into the ecosystem. If one
container is down, the platform still can be up and running
because the services are not centralised on a single host.

A. Request Forwarding
As described in Section II all containers share the same net-

work interface, which allows every container to communicate
within the network. Once a new container is integrated into the
platform, it could interact with the other containers without
restrictions. To prevent this, a proxy container is introduced
into the network.

This prohibits two containers from exchanging messages
directly. The functionality of a network proxy is described
briefly:

• The client requests a service.
• The proxy receives the request and forwards the

message to the original server.
• The response of the server will be processed by the

proxy, which will forward the response to the client
in the end.

A proxy depicts a Man in the Middle, which can control
the network traffic. 3rd party application in the environment
should only be allowed to access a selected services that are
available in the environment. In this concept, we would like
to introduce two proxies for different use cases.

Figure 4. Proxy Setup



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 81

There is one proxy, also called API Gateway that will
handle the requests regarding to the backend services of the
platform. The second proxy is used for the outbound traffic
towards the Internet. Both proxies can implement rules to
refuse or drop connections, which a container wants to estab-
lish. Although this makes the communication more complex,
it adds a security layer between the backend services and the
3rd party and also a additional layer between the Internet and
the foreign application. The communication and benefits of
this setup is described in the sub paragraphs Logging and
Whitelisting. Another benefit of a proxy is that the operator can
ask for authentication and authorisation before granting access
to the services. Only containers with the correct credentials or
registration are able to use the proxy and thus the services in
other containers. This is a first step to isolate services from
direct requests in order to make them more secure.

B. Encrypted Communication
As described in Section III, ARP spoofing or Man in the

Middle attacks are a risk. As mitigation we propose to im-
plement secure connections by using Transport Layer Security
(TLS) [16]. TLS is a protocol to establish an encrypted and
authenticated connection. During the handshake, client and
server perform a key exchange. We recommend to use strong
ciphersuites to mitigate the risk of an attacker being able to
crack the keys. Both, client and server, identify themselves
via X.509 certificates issued by a root certificate authority
(CA). By signing the key exchange messages with the X.509
certificate, server and client prove that they are the sender of
these messages. As the platform can’t be reached directly from
the Internet (Figure 4) an internal Public Key Infrastructure can
be deployed. After the handshake the communication between
server and client is encrypted, and message authentication
codes additionally provide authenticity.

ARP spoofing attacks are based on rerouting packages to
a wrong MAC address. If an attacker performs ARP spoofing
in a network which deploys TLS, the attacker will receive
encrypted messages, which he can’t decrypt without the correct
key. A successful spoofing attack now requires using fake
certificates to pretend being a different container. Those fake
certificates can only be issued, if the root CA was attacked. In
conclusion, by using TLS and certificates the gain of security
is immense. A container can’t easily spy on credentials or
authentication keys, which might elevate his rights in the
system to gather confidential information, e.g., customer data.
Another extension to prevent Man in the Middle attacks is
certificate pinning. When certificate pinning is deployed, the
container requests a server connection and the server will pin
the transmitted certificate to the container that sent the request.
The server then only accepts connections when the submitted
certificate matches the pinned certificate. An attacker could add
a self signed or other certificates via a proxy and so bypass the
TLS security mechanisms. Certificate pinning can prevent this
scenario as the server does not trust all connections that would
be verified by a root certificate. This extension was added to
the handshake protocol as CA’s lost trust due to attacks and
fake certificates.

C. Logging
The API Gateway protects the services from direct requests

from a 3rd party app. The Gatway reroutes the requests to the

required platform service. But the proxy besides rerouting can
extend the functionality and log incoming requests. Analysis
of requests and the HTTP/HTTPS status codes can help
to identify malicious behaviour. We want to present three
different ways for a container to act in a malicious way.

A correct request leads to HTTP status code 200. If a
container sends a request with a wrong syntax, the server will
respond with status code 400. When the inquiring container
uses a wrong access token or is not registered to the service,
the service will respond with a status code 401. A container
can also send too many requests in order to bring it down (DoS
attack), the API Gateway can measure that as well. Thus, the
operator can create statistics on container behavior and identify
suspicious activities. For example, a user tries to access the
weather API and the database API with no permission. After
a certain time the API gateway detects that the container sends
too many requests without the correct permission. The gateway
can automatically evaluate the received status codes and ban
the container from the network if the numbers of unauthorized
requests is too high. Besides unauthorized and wrong requests,
the number of requests enable the gateway to identify DoS
attacks. If a single container sends too many request in a short
time period, e.g., calling the weather API for 1000 times in five
seconds in order to bring the service down, the API gateway
can identify the malicious container and reduce its bandwith
or block requests and isolate it from the platform services [8].

As logging data is highly valuable for digital forensics and
analysis it is important to store the collected data in a secure
way. Right now, we are also working on a concept to mitigate
the risk of data loss or manipulation. In general, a system based
on the approach of Weir and Aßmuth, which includes Message
Authentication Code (MAC) chains and secret sharing, may be
a first step towards securing monitoring data [17].

D. Whitelisting/Blacklisting

Also the outgoing traffic to the Internet (Figure 4) from
containers can indicate attacks. Some commands inside the
container require additional downloads from the Internet.
Downloaded content from the Internet can include malicious
software or exploit code that tries to cause damage in the
platform. For instance, a container might download new kernel
exploits to elevate permissions and damage the host system.
To prevent unbridled downloads, the platform operator has to
create mechanisms to keep the risk of malicious downloads
small. For this reason we propose the outbound proxy in
Figure 4. One possible measure is to define guidelines for
developers of 3rd party containers on allowed traffic. In case of
a detected rule violation, the container can be banned from the
network immediatly. In addition, the administrator can create
a whitelist of IP adresses in the proxy, which every container
is allowed to reach out to. Every IP address or host name not
included in the whitelist is blocked. The platform operator can
ensure that containers only download software from trusted
sources like IP addresses from specific countries or sources.
So locating the IP address of a request going to the Internet
can help to improve security in the network.

E. Application Authorisation

Once a request has passed the API gateway it will be
directed to the service. The container has to prove that it



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 82

has the permission to use the service which brings in authen-
tication. A common standard for securing API’s is OAuth2
[18]. Instead of submitting username and password to the
server to gain access to services, OAuth2 follows a token-
based approach for this. Once a container wants to access
a service he needs to request authorisation of the resource
owner. This step is required to identify the container can be
seen as a replacement for identifying through username and
password in every request. The service operator allows access
to the service and therefore will send an authorisation string
to the client. Every time the container wants to access the
service he has to reach out to the authorisation server with
the authorisation string. The server will compute an access
token and send it back to the container. In further service API
requests, the client has to submit the token to the server in
order to receive the required information. Access tokens have
a certain time span. If the access token expires, the client has
to request another token. As described before, the user doesn’t
need to submit username and password to the server as he only
sends a randomly chosen access string. This leads to anonymity
as an attacker can’t refer to the specific user if the connection is
eavesdropped. Combined with TLS in connection establishing
the system is secured. Now it is hard for attackers to spy on
credentials. If the attacker is able to manage an attack against
TLS, the distributor can issue a new identification string and
can make the cracked authorisation string invalid.

In summary, the platform services are now secured from
direct access through the API gateway. In addition, the log-
ging functionality enables the operator to identify malicious
activities. As the Docker network is prone to ARP spoofing
and Man in the Middle attacks the implemented TLS hardens
the network communication and hard for a container to spy
on data, e.g credentials. With OAuth2 we anonymise the
user requests and secure the API’s from unauthorized access.
The outbound proxy filters requests towards the Internet and
therefore protects the platform from downloaded exploits.
These security features help an operator to mitigate the risk of
an attack.

V. TEST CONCEPT

To mitigate the risk of damage in the container ecosystem,
it is indispensable to test the components before integrating
them into the system. In the software lifecycle, test is an
important step before the final product release. It is common
to test software to find bugs and to improve software quality
but ensuring the security of products has also become more
important in recent years. In this section, we will propose three
different methods to improve security by testing the software:

• Static Code Analysis
• Dependency Checks
• Sandbox Testing

A. Static Code Analysis
Static code analysis can take place before the functionality

of the software is tested [19]. The purpose of the test is
improving software quality by finding bad coding styles or
duplicate code. But not only from the quality perspective it
is important to perform a static code analysis. This process
also helps to improve the security of the written software. Test
tools are able to find vulnerabilities like race conditions, buffer
overflows or memory leaks before an attacker can exploit them.

But static code analysis has to be performed in the pro-
viding company, as no company will voluntarily share their
source code and know-how with the hoster of the platform. A
vendor of a platform has to create guidelines, which tell the
developers what security standards must be implemented and
what kind of tests need to be performed before application
submission. One important part of testing will be described in
the next section.

B. Dependency Checks
Most software make use of libraries. The libraries themself

can also use other libraries, which creates a tree of library
dependencies. The scenario, shown in Figure 5, helps to
illustrate the possible weak spot in the source code.

source code
library1 v2.0
library2 v1.3

library1 v1.0
library3 v12.0

library1 v1.0
library4 v3.0

library2 v1.0
library5 v3.7

library4 v4.0

Figure 5. Example Dependency Tree

For instance, the developer always uses the updated ver-
sions while the other layers may include outdated versions
of the libraries. Those old versions may be prone to vulner-
abilities, which an attacker can exploit. When the application
then runs in a container, the container could be inherited
by a 3rd party like an attacker, but also the vendor of the
application can use these unstable or vulnerable libraries to
create backdoors on purpose in order to perform malicious
activities. Hence, it is important to check the dependencies
of the source code before the integration of the container. As
stated previously it might be difficult to get the original source
code, so the developer could hand over some kind of ”header
file” that reports, which libraries are used in the application.
Then the container hoster can continously check the header
files against a vulnerability database and send out reports
if the used libraries are exploitable. The developer could be
forced to update his application within a certain timespan or
it might be excluded from the platform. In order to keep the
platform stable and secure, the vulnerability database needs to
be updated regularly.

C. Sandbox Testing
The final step before the integration of the container into

the platform is to perform a sandbox test. Sandbox testing is
a good way to evaluate how the application interacts with the
provided services. The hoster creates a development space next
to the ”Live Space”, which can be used to test the applications
and how they react in different scenarios.

Sandbox testing can also be helpful for the developer to
see how the application works in a live system. The developer
cannot cause any damage to a live system as he tests the
software in a different space. This test is meant to reduce
possible downtime of a host system.



CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1 83

Once an application doesn’t show any malicious activities
and worked fine in the sandbox environment, it can be in-
tegrated into the live system. However, a sandbox has to be
developed, equipped with analysis tools in order to monitor
behavior correctly, maintained and hosted. To reduce effort, a
smaller demo environment, which represents only the critical
interfaces of the platform may be helpful to monitor the
behavior of a container.

The sandbox can not only be used to identify possible
malicious containers, it also helps to improve the security of
the system as it reveals possible vulnerabilities. Some of the
containers are maybe not meant to be malicious on purpose
and therefore show the behavior due to bugs in the software.
So the operator has to distinguish between an attacker that
wants to harm the system and a developer who did not write
the software properly. All in all, a sandbox environment can
strengthen the security of a platform especially when it allows
3rd parties to develop and deploy apps into the ecosystem.

VI. CONCLUSION & FUTURE WORK

Our approach considers the whole software lifecycle and
also includes sandbox testing of potentially dangerous 3rd

party apps before these became available to the customers. We
presented different techniques in order to secure the system
from the described attacks. The described architecture and
security features help the operator to decouple and secure
services from the 3rd party app. Hence, the foreign app is not
able to access the services without permission and control.
Testing can be tough as the app developer will not supply the
operator with the source code. Developer guidelines can help
to streamline the process and ensure high quality

We are currently working on a proof of concept system to
get these concepts into practice. We intend to build backend
services and protect them with an API Gateway as depicted
in Figure 4. Afterwards we will attack this demo system in
various ways - our results will then be published.

REFERENCES
[1] J. Gummaraju, T. Desikan and Y. Turner, “Over 30% of Official

Images in Docker Hub Contain High Priority Security Vulnerabil-
ities,” 2015, URL: https://banyanops.com/blog/analyzing-docker-hub/
[accessed: 2018-1-8].

[2] “GDPR Regulations,” 2017, URL: http://www.eugdpr.org/the-
regulation.html [accessed: 2018-1-8].

[3] J. Hertz, “Abusing privileged and unprivileged linux containers,” ncc-
group, Tech. Rep., 2016.

[4] “Dirty COW ,” 2016, URL: https://dirtycow.ninja/ [accessed: 2018-1-8].

[5] “Linux Vulnerability Statistics,” 2017, URL: http://www.cvedetails.
com/product/47/Linux-Linux-Kernel.html?vendor id=33 [accessed:
2018-1-8].

[6] S. Fouant, “Man in the Middle (MITM) Attacks Explained: ARP
Poisoining,” 2010, URL: http://www.shortestpathfirst.net/2010/11/18/
man-in-the-middle-mitm-attacks-explained-arp-poisoining/ [accessed:
2018-1-8].

[7] F. Callegati, W. Cerroni and M. Ramilli, “Man-in-the-Middle Attack to
the HTTPS Protocol,” IEEE Security & Privacy, vol. 7, no. 1, 2009,
pp. 78–81.

[8] C. Evans, C. Palmer and R. Sleevi, “Public Key Pinning Extension for
HTTP,” RFC Editor, techreport 7469, Apr. 2015, URL: https://tools.
ietf.org/html/rfc7469 [accessed: 2018-1-8].

[9] Docker, “Docker security,” 2017, URL: https://docs.docker.com/engine/
security/security/#control-groups [accessed: 2018-1-8].

[10] M. Ridwan, “Separation Anxiety: A Tutorial for Isolating Your System
with Linux Namespaces,” 2014, URL: https://www.toptal.com/linux/
separation-anxiety-isolating-your-system-with-linux-namespaces [ac-
cessed: 2018-1-8].

[11] “Capabilities - Overview of Linux Capabilities,” 2017, URL: http://
man7.org/linux/man-pages/man7/capabilities.7.html [accessed: 2018-1-
8].

[12] D. J. Walsh, “Your visual how-to guide for SELinux policy enforce-
ment,” 2013, URL: https://opensource.com/business/13/11/selinux-
policy-guide [accessed: 2018-1-8].

[13] Ubuntu, “Apparmor,” 2017, URL: http://manpages.ubuntu.com/
manpages/trusty/man7/apparmor.7.html [accessed: 2018-1-8].

[14] Center for Internet Security, “CIS Docker Community Edition Bench-
mark,” Center for Internet Security, techreport, 2017.

[15] C. Richardson, “Pattern: Microservice Architecture,” 2016, URL: http:
//microservices.io/patterns/microservices.html accessed: 2018-1-8].

[16] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC Editor, techreport, Aug. 2008, URL: https:
//www.ietf.org/rfc/rfc5246.txt [accessed: 2018-1-8].

[17] G. R. S. Weir and A. Aßmuth, “Strategies for intrusion monitoring in
cloud services,” The 8th International Conference on Cloud Computing,
GRIDs, and Virtualization, Proceedings, 2017, pp. 49–53.

[18] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC Edi-
tor, techreport, Oct. 2012, URL: https://tools.ietf.org/html/rfc6749 [ac-
cessed: 2017-1-8].

[19] OWASP, “Static code analysis,” 2017, URL: https://www.owasp.org/
index.php/Static Code Analysis [accessed: 2018-1-8].


