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Abstract — This article presents an architecture model for a 

Distributed Virtualization System, which could expand a 

virtual execution environment from a single physical machine 

to several nodes of a cluster. With current virtualization 

technologies, computing power and resource usage of Virtual 

Machines (or Containers) are limited to the physical machine 

where they run. To deliver high levels of performance and 

scalability, cloud applications are usually partitioned in several 

Virtual Machines (or Containers) located on different nodes of 

a virtualization cluster. Developers often use that processing 

model because the same instance of the operating system is not 

available on each node where their components run. The 

proposed architecture model is suitable for new trends in 

software development because it is inherently distributed. It 

combines and integrates Virtualization and Distributed 

Operating Systems technologies with the benefits of both 

worlds, providing the same isolated instance of a Virtual 

Operating System on each cluster node. Although it requires 

the introduction of changes in existing operating systems, 

thousands of legacy applications would not require 

modifications to obtain their benefits. A Distributed 

Virtualization System is suitable to deliver high-performance 

cloud services with provider-class features, such as high-

availability, replication, migration, and load balancing. 

Furthermore, it is able to concurrently run several isolated 

instances of different guest Virtual Operating Systems, 

allocating a subset of nodes for each instance and sharing 

nodes between them. Currently, a prototype is running on a 

cluster of commodity hardware provided with two kinds of 

Virtual Operating Systems tailored for internet services (web 

server) as a proof of concept.  

Keywords: Virtualization, Virtual Machines, Containers, 

Distributed Operating Systems. 

I.  INTRODUCTION 

Current virtualization technologies are massively adopted 
to cover those requirements in which Operating Systems 
(OS) have shown weakness, such as performance, fault, and 
security isolation. They also add features like resource 
partitioning, server consolidation, legacy application support, 

management tools, among others, which are attractive to 
Cloud service providers. 

Nowadays, there are several virtualization technologies 
used to provide Infrastructure as a Service (IaaS) mounted in 
a cluster of servers linked by high-speed networks. Storage 
Area Networks (SAN), security appliances (network and 
application firewall, Intrusion Detection/Prevention Systems, 
etc.), and a set of management systems complement the 
required provider-class infrastructure. 

Hardware virtualization, paravirtualization, and OS-level 
virtualization are the most widely used technologies to carry 
out these tasks, although each of them presents different 
levels of server consolidation, performance, scalability, high-
availability, and isolation. 

The term “Virtual Machine” (VM) is used in issues 
related to hardware virtualization and paravirtualization 
technologies to describe an isolated execution environment 
for an OS and its applications. Containers, Jails, Zones are 
the names used in OS-level virtualization to describe the 
environments for applications confinement. Regardless of 
the definition of the virtualization abstraction, its computing 
power and resource usage are limited to the physical 
machine where it runs. 

Current IaaS providers use SANs in their Data Centers 
for storage virtualization, supplying disk drives for VMs.  In 
some way, the resources (disks) of a VM expand outside the 
host and this can be seen as an exception to the above 
statement. If this processing mode is extended to several 
types of services and resources, it becomes a new model of 
distributed processing in virtualization technologies. The 
proposed architecture model takes this approach, distributing 
processes, services, and resources to provide virtual 
environments based on OS factoring and OS containers. The 
outcome is a Distributed Virtualization System (DVS), 
which combines and integrates OS-virtualization and 
Distributed Operating Systems (DOS) technologies, 
providing the same isolated instance of a Virtual Operating 
System (VOS) [1] on each node of a virtualization cluster. 

Nowadays, to deliver high performance and scalability 
levels, Cloud applications are usually partitioned in several 
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VMs/Containers, running on the nodes of a virtualization 
cluster (as Docker-enabled applications) [2]. Developers 
often use those kinds of processing models as Platform as a 
Service (PaaS) because the same instance of the OS is not 
available on all nodes and, hence, they must use some kind 
of middleware, which provides the cluster with Application 
Programming Interfaces (APIs) and services. A DVS is 
suitable as infrastructure for this new trend in software 
development, like applications based on microservices 
architecture (MSA) [3], because it is inherently distributed. 
Furthermore, thousands of legacy applications would benefit 
because they would not require modifications to take 
advantage of DVS features. Migration of legacy applications 
from on-premises servers to a Cloud execution environment 
requires changes in their design and coding. If a standard 
interface, such as POSIX is available in the Cloud, the 
migration task is simplified by reducing costs and time. 

A DVS fits the requirements for delivering high-
performance cloud services with provider-class features as 
high-availability, replication, elasticity, load balancing, 
resource management, and process migration. Furthermore, a 
DVS is able to run several instances of different guest VOS 
concurrently, allocating a subset of nodes for each instance 
(resource aggregation), and to share nodes between them 
(resource partitioning). Each VOS runs isolated within a 
Distributed Container (DC), which could span multiple 
nodes of the DVS cluster as it is presented in the topology 
example in Fig.1. The proposed model keeps the appreciated 
features of current virtualization technologies, such as 
confinement, consolidation and security, and the benefits of 
DOS, such as transparency, greater performance, high-
availability, elasticity, and scalability. 

 

 
Figure 1.  DVS topology example. 

A DVS allows running multiple Distributed VOSs as 
guests that can extend beyond the limits of a physical 
machine. Each DVOS could have more computing power 
and could provide greater scalability and elasticity in its 
configuration as a consequence of resource and computing 
power aggregation. The set of resources (both physical and 
abstract) and the set of processes that constitute a DVOS can 
be scattered (and eventually replicated) in the nodes of a 
cluster.  

This work is intended to contribute proposing a new 
model of virtualization that allows building several isolated 
execution environments that take advantage of the 
aggregation of computational, storage, and network 
resources of the nodes of a cluster. 

The use of a DVS is based on the same 
arguments/grounds for the use of DOSs. Several related 
processes (in the same DC) could be executed in different 
nodes using the same abstract resources as those offered by 
the VOS. This feature simplifies application (or library) 
programming since standard APIs, such as operations on 
semaphores, message queues, mutexes, etc. can be used. On 
the other hand, the process location transparency is helpful 
for application administrators since it avoids dealing with IP 
addresses, ports, URLs, etc., simplifying applications 
deployment and management, and reducing costs and 
implementation times. 

Let us suppose a configuration of a database server 
(DBMS) running on a host (or VM), and the need to perform 
an online backup which ensures consistency of a restored 
database. The backup process should run on a host (or VM), 
other than the DBMS for performance reasons, but 
connected to the same network, and both processes 
connected to the same SAN. As each process runs on its own 
OS, the DBMS process and the backup process must 
communicate using an ad-hoc protocol through the network 
in order to synchronize the access to the database. This 
requires setting up IP addresses, ports, names, etc. to 
describe the topology. 

In a DVS configuration, both processes (DBMS and 
backup) could run on the same VOS, but on different nodes. 
Therefore, they can synchronize the access to the database 
using semaphores, mutexes, signals or any other facilities 
offered by the VOS. 

The remainder of this paper is organized as follows. 
Section II explains background and related works. Section III 
describes the proposed architecture model, its design, and 
details of a prototype implementation. Section IV presents 
performance results of several components of the prototype. 
Finally, the conclusions of this contribution and future work 
are summarized in Section V. 

II. BACKGROUND AND RELATED WORK 

The term virtualization is usually associated with such 
technologies, which allow the partition of hardware 
resources to conform isolated execution environments called 
Virtual Machines. But there is a technology which has the 
opposite goals: Reverse Virtualization. As suggested by its 
name, it integrates hardware resources from multiple 
computers (nodes of a cluster) to provide the image of a 
virtual Symmetric Multiprocessing System or vSMP. Works 
related to Distributed Virtualization present a cluster as a 
virtual shared memory multiprocessor. v-NUMA [4], and the 
University of Tokyo’s Virtual Multiprocessor [5] allow 
multiple physical computers to host a single OS instance. 
ScaleMP [6] virtualizes an SMP and defines its virtualization 
paradigm as an aggregation of computational resources as 
opposed to partitioning. Somehow, Reverse Virtualization 
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and a DVS share the same goals, but the latter allows not 
only the aggregation of resources but also their partitioning.  

Since there are plenty of articles which can be used as 
surveys of virtualization [7][8], this section will include 
details only about those technologies on which the DVS 
model is based and other related works. 

A. Background 

Classical definitions about Operating System mention 
that it is a layer of software located between applications and 
hardware. In OS-virtualization technology, the guest OS 
does not manage real hardware, but operates on virtual 
devices provided by a lower layer of software, such as a 
host-OS. Therefore, it seems appropriate to refer to the 
guest-OS as a VOS. There is a noticeable similarity with the 
paravirtualization [9] approach, the difference lying in the 
fact that there is a host-OS instead of a hypervisor in the 
lower layer. Instead of requesting services by means of 
hypervisor-calls, the guest-OS uses system calls. Hence, OS-
virtualization and paravirtualization share the same benefits 
and drawbacks.  

A well-known project that allows running multiple 
instances of Linux over other native Linux (as host) is User-
Mode Linux (UML) [10]. CoLinux [11] is another project 
that allows running Linux as a guest-OS, but on a Windows 
host. Minix over Linux (MoL) [12] allows running multiple 
instances of a multi-server OS, such as Minix [13] over a 
Linux host.  

MoL emulates Minix Interprocess Communications 
(IPC) mechanisms using TCP sockets, so that processes of 
the same instance of MoL can be executed in different hosts. 
This was the germinal version of the architecture model 
proposed in this article, but the use of Linux provided IPC 
and a pseudo-microkernel process running in user-mode 
turns performance its main weaknesses. To improve it, a 
microkernel with its own IPC mechanisms was developed to 
be embedded in the Linux kernel named M3-IPC (as a 
lightweight co-kernel) [14][15]. Later, it was extended to 
exchange messages and data among processes of the same 
MoL instance running on several nodes, allowing a multi-
server VOS to be turned into a DVOS.  

Other technologies that were sources of inspiration for 
the proposed model are those used by DOSs [16]. They fully 
developed and investigated in the 1990s as a consequence of 
the limited performance of a single host and the growing 
demand for computing power and scalability. Unlike 
Reverse Virtualization, which is a technology that virtualizes 
an SMP computer, a DOS performs distributed processing by 
expanding OS abstract resources to all its nodes. These 
resources are analogous to those provided by a centralized 
OS, such as users, processes, files, pipes, sockets, message 
queues, shared memory, semaphores, and mutexes. 

Software factoring is a well-known approach in the field 
of OSs used by microkernel technologies. Servers and 
processes communicate with one another by passing 
messages through an IPC facility furnished by the OS kernel 
[17]. Unlike monolithic OS, a microkernel-based OS factors 
the kernel functions and services into multiple layers. Each 
layer is made up of several isolated processes running in 

user-mode, and the lowest layer runs the microkernel in 
supervisor mode [18]. Since upper layer servers and tasks do 
not have the right privileges to handle the hardware by their 
own, the microkernel provides services which allow them to 
operate on the hardware indirectly. A similarity between a 
microkernel OS and a paravirtualization system becomes 
evident [19]. In some ways, the microkernel acts as a para-
virtualization hypervisor for a single VM, consisting of a set 
of user-space processes that constitute the guest-OS. 
Factoring an OS into multiple user-space tasks and servers 
provides the isolation required by a virtualization system and 
allows the distribution of processes in multiple nodes of a 
cluster. 

The proposed model takes advantage of another 
technology: OS-based virtualization. It is a system call level 
virtualization, partitioning OS resources into isolated 
instances of execution environments. The host-OS isolates 
sets of user-space applications in Containers, Jails or Zones. 
Linux implements Containers [20] with two main kernel 
features; 1) cgroups [21]: It allows to isolate, prioritize, limit, 
and account for resource usage of a set of processes named 
Control Groups; 2) namespaces [22]: Usually, an OS 
provides a global namespace for OS abstract resources like 
UIDs, PIDs, file names, sockets, etc. All Containers provide 
applications with their own execution environment, but they 
all share the same OS. Therefore, the isolation property 
seems to be weaker against hardware virtualization and 
paravirtualization, but the performance gain is significant 
[23]. 

Any virtualization system whose aim is to provide IaaS 
with provider-class quality must consider high-availability as 
a requirement in its design. As a distributed system, a DVS 
must support the dynamic behavior of clusters where nodes 
are permanently added and removed. In a data center, several 
kinds of failures occur: in computers, in processes, in the 
network, and in operations; hence, they should be all 
considered in system design. Generally, component 
replication is the mechanism adopted to tolerate faults. 
Although there is extensive research about fault handling in 
distributed systems and because it is a complex issue [24], it 
is better to use tested tools, such as Distributed Consensus 
[25] and Group Communications Systems (GCS) [26] for 
achieving fault-tolerance through replication. Birman [26] 
states that: "The use of a GCS should be considered for 
standardization, complexity, and performance reasons". As 
Birman suggests, the prototype built as a proof of concept of 
a DVS is based on the use of an underlying GCS, which 
helped in the development of fault-tolerant components. 
Moreover, the use of a GCS allows the decoupling of a 
distributed application from the group communication 
mechanisms and from its failure detectors.  

If a critical application runs on a DVS and its distributed 
components are strongly coupled, a fault on one member 
could result in a complete application failure. A GCS could 
be used by critical services, such as file servers, storage 
servers, web servers, etc. to solve the replication issue, 
providing more reliable services. 
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B. Related Works 

Clustered Virtual Machines [27] is a technology used to 
run applications in a distributed way across a group of 
containers spread on several nodes of a cluster. On Clustered 
Virtualization, each application component runs within a 
container using the services of the host-OS in which each 
container is located.  

Mesosphere‘s Data Center Operating System (DC/OS) 
[28] allows developers and administrators to consider a data 
center as a single computer that runs applications in software 
containers, but it is not really an OS; it is rather a container 
cluster manager with frameworks that provides PaaS.  
JESSICA2 [29] is a distributed Java Virtual Machine 
implemented as a middleware, which supports parallel 
execution in a networked cluster environment, but it is 
limited to Java applications. Another software architecture 
model used for application development proposes to 
partitioning the application in autonomous components 
named Microservices [3]. With a set of microservices 
running on a cluster of servers the application’s computing 
and resource needs are distributed, thus increasing 
application performance and scalability.  

Unlike Clustered Virtualization, running a distributed 
application on a DVS can share the same instance of a 
DVOS allowing references to the same resource namespaces 
and system objects (such as users, pipes, queues, files, PIDs, 
sockets, etc.) as if they were running on the same host. This 
key feature can be sometimes used by developers when they 
need legacy applications to migrate to the Cloud, as well as 
for applications specifically developed to run in the Cloud. 

III. DESIGN AND IMPLEMENTATION 

Thinking of a distributed virtualization technology seems 
to make sense to achieve higher performance and increase 
service availability. OS-based virtualization and DOS 
technologies lead the authors to think about their 
convergence to achieve these goals, extending the 
boundaries of the virtual execution environment to multiple 
hosts and thereby multiplexing a cluster among multiple 
isolated instances of a DVOS.  

An OS-based distributed virtualization approach will 
explore aggregation with partitioning. In such systems, a set 
of server processes constitutes a DVOS running within an 
execution environment made up of Distributed Containers 
(DC). Processes belonging to a DC may be spread on several 
nodes of a cluster (aggregation); and processes of different 
DCs could share the same host (partitioning).  

Several hardware virtualization products offer high-
availability and fault-tolerance by replicating a VM with its 
inner OS and all its processes. In such systems, load 
distribution is made using a VM migration facility that 
moves a complete VM from one server to another as a 
whole. A DVS could allow replication and migration of 
either all processes of DVOS or only some of them, such as 
the critical ones.  

DOSs implement their policies and mechanisms, such as 
load balancing, process migration, leader election, 
consensus, fault detection, etc., within the system itself. As a 

result of this monolithic design, software modules are 
strongly coupled to one another and to the kernel, so that 
they cannot be reused by other applications. It is also 
difficult to change one of these components without 
changing the whole system. The DVS model relaxes the 
coupling among components, breaking them up as 
independent services with specific liabilities.  

A. DVS Architecture 

The main components of the DVS architecture are (see 
Fig. 2): 

1) Distributed Virtualization Kernel (DVK): It is the 

core software layer that integrates the resources of the 

cluster, manages and limits the resources assigned to each 

DC. It provides interfaces for low-level protocols and 

services, which can be used to build a VOS, such as IPC, 

GCS, synchronization, replication, locking, leader election, 

fault detection, mutual exclusion, performance parameter 

sensing, processes migration mechanism, and key-value 

services. The DVK provides interfaces to manage all DVS 

resources, such as nodes, DCs and processes. Process 

management allows the DVS administrator to assign 

processes to a DC and to allocate nodes for it. The node in 

which the process runs can be changed, as in case of a 

migration, or when the process was replaced by another one, 

such as a backup process. For communication purposes, 

location changes made by the replacement or migration of a 

process are hidden from the other processes within the DC. 

 

 
Figure 2.  Distributed Virtualization System architecture model 

2) Distributed Virtualization Management System 

(DVMS): It is the software layer that allows the DVS 

administrator to both manage the resources of the cluster, 

providing a DC for each VOS, and perform DVS 

monitoring.  

3) Container: It is a host-OS abstraction which provides 

an isolated environment to run the components of a VOS. A 

set of Containers which belongs to the same VOS makes up 

a Distributed Container. 

4) Distributed Container (DC): It is a set of single 

Containers, each one being set up by the DVMS in the host-

OS of each node. There is one DC per VOS, and a DC can 

span from one to all nodes. 
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5) Virtual Operating System (VOS): Although any kind 

of VOS can be developed or modified to meet DVS 

architecture requirements, a DVOS can obtain greater 

benefits because it is able to distribute its processes in 

several nodes. Each VOS (single or distributed) runs within 

a DC. The task of modifying an existing OS to turn it into a 

VOS is simplified because it does not need to deal with real 

hardware resources but with virtual ones. Moreover, a VOS 

needs to manage neither virtual memory nor CPU 

scheduling because it is done by the host-OS. 

6) VOS applications: They are applications (single or 

distributed) running within the same DC, using VOS-

provided services. 
The resource allocation unit for a DOS is the node as a 

whole; but for a DVOS (running within a DC) it is each 
single virtual resource provided by the host-OS on each 
node. This higher degree of granularity of the infrastructure 
unit allows a better use of resources and provides greater 
elasticity and efficiency. 

B. DVS Prototype 

Since the project startup (2013), a DVS prototype was 
implemented which runs on a cluster of x86 computers and 
Linux as OS-host. The DVS prototype considers the 
following abstractions, and the relations between them are 
presented in Fig. 3. 

1) DVS: It is the top level layer that assembles all cluster 

nodes and it embraces all DCs. 

2) Node: It is a computer that belongs to the DVS where 

processes of several DCs are able to be run. All nodes are 

connected by a network infrastructure. 

3) DC: It is the group or set of related processes that 

might be scattered on several nodes. M3-IPC only allows 

communications among processes that belong to the same 

DC. The boundary of each DC can be based on 

administrative boundaries. A DC hides its internals from the 

outside world and hides network communication issues 

from its processes. 

4) Proxies: They are special processes used to transfer 

messages and data blocks between nodes. M3-IPC does not 

impose a network/transport protocol to be used for inter-

node communications. This feature allows programmers to 

choose the protocol that best fit their needs. Nodes 

communicate among them through proxies. 

5) Process: Every process registered in a DC has an 

endpoint which identifies it. Process endpoints are unique 

and global within a DC, but could be repeated within other 

DCs.  
With the exception of the process endpoints, the other 

DVS abstractions are hidden from the VOS and its 
processes. They are managed by the DVS administrator, 
such as adding or removing hosts as nodes of the DVS, 
allocating nodes to DCs, or setting proxies to communicate 
nodes. 

Two simple VOS were developed to be executed as 
guests on the prototype as proof of concept. One of them is a 
multiserver VOS named MoL, and the other is a unikernel 
[30] VOS named ukVOS; both are able to provide Internet 
services (web server). MoL is made up of  loosely coupled 
servers and tasks integrated as VOS components. 
Alternatively, they can be run alone serving Linux ordinary 
client processes by using some kind of kernel-user interface 
as FUSE or BUSE.   

C. Distributed Virtualization Kernel 

A DVK was implemented in the DVS prototype as a 
Linux kernel module and a patch, complemented by a set of 
libraries, commands and tools. The DVK module of each 
node (which includes M3-IPC) is implemented as a Linux 
co-kernel. 

DVK APIs allow configuring and managing all DVS 
abstractions (DVS, DCs, nodes, and proxies), and mapping 
processes to DCs, DCs to nodes, and proxies to nodes. 

 

 
Figure 3.  DVS abstractions and their relationships. 

Through DVK APIs, a program can set the new node 
where an endpoint is located as a result of a process 
migration. DVK APIs also allow changing the endpoint type 
from Backup to Primary after the primary process has 
finished by a fault in a replicated service. These APIs were 
tested in a Virtual Disk Driver, which was developed for the 
prototype.   

D. M3-IPC 

A critical component of every distributed system is the 

software communication infrastructure. To simplify the 

development of VOS for the DVS prototype, an IPC 

infrastructure was developed and is named M3-IPC 

[14][15]. It allows building VOS components, such as 

clients, servers and tasks with a uniform semantics without 

considering process location. Provider-class features were 

considered in the design stage, such as process replication, 

process migration, communications confinement, and 

performance for both intra-node and inter-node 

communications. M3-IPC is a pluggable module embedded 
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in the Linux kernel, supplying the IPC primitives of a 

microkernel OS. 

Messages and data exchange among nodes is carried out by 

proxies. A proxy transports messages and data between two 

nodes without considering source/destination processes or 

the DC they belong to. Proxies can run either in user-mode 

to provide versatility or in kernel-mode for efficiency 

reasons, according to the DVS administrator's choice. 

Running proxies in user-mode may result in an efficiency 

loss, but it has the benefit of granting flexibility to freely 

choose protocols, and to easily add facilities, such as 

compression and encryption. At present, several kinds of 

proxies were developed for the DVS prototype using 

different protocols (TCP, TIPC [31], UDP, UDT [32], 

custom Raw Ethernet), some of them in user-mode and 

others in kernel-mode. 

E. MoL-FS 

One of the main processes of MoL is Filesystem Server 
(FS). It handles requests from user-level applications using 
POSIX system calls related to filesystems, files, directories, 
etc. 

MoL-FS [33] is a modified version of Minix FS which 
uses M3-IPC as a message transfer mechanism. On Minix, 
clients, FS server and Disk task are independent user-space 
processes which reside on the same host. Since MoL-FS uses 
M3-IPC, which it does not limit communications within the 
same host, clients, MoL-FS, and a storage server named 
MoL-VDD [34] could be on different nodes of a cluster like 
a distributed OS. 

As MoL-FS was designed to be used as a component of a 
VOS, only those applications developed using M3-IPC and 
MoL-FS protocol could use its services. A FUSE gateway 
was developed to extend its use to ordinary Linux 
applications, taking advantage of the ability to adapt granted 
by FUSE. Another advantage of having the FUSE gateway is 
that it allows performance evaluation by using standard 
Linux tools. 

Currently, a replicated MoL-FS server is at development 
stage using Spread Toolkit [35] as Group Communications 
System (GCS) for multicast message services, failure 
detection, and group membership management.  

F. MoL-VDD 

MoL-FS supports several storage devices: ram disks, 
image files, raw Linux devices, and a Virtual Disk Driver 
(MoL-VDD).  

MoL-VDD runs as a server process within a DC, and it 
provides its clients with the same storage devices as MoL-
FS. A fault-tolerance support through data and processing 
replication techniques was added to it to test the behavior of 
the DVS infrastructure in failure scenarios. Fault-tolerance is 
achieved transparently for the application through the use of 
the facilities offered by the DVS, M3-IPC and Spread 
Toolkit. 

MoL-VDD supports this kind of distributed environment 
in a dynamic and transparent way in which user processes, 
servers, and drivers can migrate due to availability or 

performance issues. These characteristics are highly 
appreciated by IaaS providers because they increase the 
elasticity, high availability, and robustness of their offered 
services, and because they optimize the use of their 
computational and storage resources. 

A BUSE [36] driver was developed so as to allow Linux 
to mount a MoL-VDD device. Currently, an NBD [37] 
gateway is at development stage, which allows MoL-VDD to 
mount an NBD volume.  

G. Other MoL Servers and Drivers 

MoL is made up of several servers and tasks, which are 
communicated using M3-IPC. In addition to MoL-FS and 
MoL-VDD, other servers and tasks were developed and 
implemented: 

 System Task (Systask): It handles low level requests 
from other servers and tasks, and it makes its own 
requests to its host-OS. It is also a replicated process 
which must run in every node of the DC. 

 Process Manager (PM):  It handles process and 
memory related system calls. 

 Information Server (IS): It allows gathering 
information about the state of every server and task 
in the DC. A Web Information Server is also 
available to present VOS status information to a web 
browser. 

 Reincarnation Server (RS): It allows for starting 
processes in any node of the DC and handles process 
migration. 

 Data Server (DS): It is a key-value server. 

 Ethernet Task (ETH): It is the interface to virtual 
(TUN/TAP) or real host’s Ethernet devices. 

 Internet Server (INET): It is a user-space 
implementation of the TCP/IP protocol. 

As aforementioned, all MoL components must run within 
a DC, and all of them could run spread on several nodes of 
the DVS. 

H. Unikernel-like VOS 

Unikernel is a recent technology, which takes up library 
OS concepts, but instead of working on the bare-metal it runs 
over some hypervisor. It has many benefits that make it 
attractive to provide Cloud services. 

A unikernel-like VOS was developed to test the DVS 
prototype named ukVOS. It is a single executable image, 
which uses low-level services provided by the host-OS and 
by the DVS infrastructure instead of being provided by a 
hypervisor. 

ukVOS is based on LwIP [38] code because it includes a 
user-space implementation of the TCP/IP protocol and a 
simple web server with a fixed in-memory web page. A FAT 
Filesystem code and M3-IPC support were added to allow 
several unikernel VOS images and the web server was 
modified to support files.  

Several images of ukVOS with different configurations 
were developed to test the DVS. One of them is a ukVOS 
image with FAT filesystem support, which uses the disk 
image file from a Linux regular file. Another image with 
M3-IPC allows using an external MoL-VDD. In the other 
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ukVOS image, the web server gets the files from an external 
MoL-FS. 

I. DVS Management 

Management is a fundamental requirement of a 
virtualization system designed to offer Cloud services. At 
present, the DVS  prototype is managed by a Command Line 
Interface (CLI). A Webmin [39] module is at development 
stage, which will allow for a web-based management 
interface (Fig. 4). 

IV. EVALUATION 

A DVS is a complex system in which several metrics 
may be considered as CPU, network and memory usage of 
cluster nodes, the time to restore a replicated service after a 
failure, IPC recovery time after the destination process of a 
message has been migrated to another node, to name a few.  

The following metrics were established to be presented in 
this section: 

1) IPC performance (Fig. 5): It is a critical issue 

because communications among different components of a 

VOS or DVOS are performed using RPC based on IPC. 

User-space applications use IPC to (transparently) make 

local or remote system calls. 

2) Virtual Disk Driver performance: The throughput of 

storage services is critical, with or without replication.  

3) Filesystem Server performance: Other components of 

an infrastructure are filesystem services. They provide high-

level applications with files and directory services. Their 

throughput to store and retrieve data directly impact on 

applications.  

4) Web server performance: File transfer throughput 

was considered an important metric (response time is 

another one) to provide web services. 
For performance evaluation in distributed systems, such 

as a DVS, benchmarks and micro-benchmarks should be 
made between co-located processes and processes running 
on different nodes.  

Benchmarks and micro-benchmarks were performed on 
the prototype deployed in a cluster made up of 20 PCs 
(Intel(R) Core(TM) i7-4790 3.60GHz), a 1-Gbps network, 
and Linux as the host-OS. 

A. IPC performance evaluation 

I. Tests between Co-located Processes 

Tests between co-located processes allow the comparison 
of M3-IPC performance versus other IPC mechanisms 
available on Linux.  

One of the design goals states that the expected 
performance should be as good as the fastest IPC 
mechanisms available on Linux. The following IPC 
mechanisms were tested using custom and [40, 41] provided 
micro-benchmarks: Message Queues, RPC, TIPC, FIFOs, 
pipes, Unix Sockets, TCP Sockets, SRR [42], SIMPL [43]. 

The presented results (Fig. 5-A) summarize message 
transfer throughput achieved by the IPC mechanisms running 
a single pair of client/server processes. Linux IPC 

mechanisms with the highest performance were pipes and 
named pipes (or FIFOs) followed by M3-IPC (925,314 
[msg/s]).  

Another micro-benchmark of message transfers between 
multiple pairs of client/server processes was run to evaluate 
performance in concurrency. The highest average throughput 
was 1,753,206 [msg/s], which was reached with 4 pairs of 
client/server processes (4 cores). 

 

 
Figure 4.  Webmin module menu for DVS management. 

Fig. 5-B presents data transfer throughput, M3-IPC 
performance surpasses other IPC mechanisms on Linux. The 
reasons for this behavior are: 1) M3-IPC performs a single 
copy of data between address spaces while the others 
perform at least two copies (Source to Kernel, Kernel to 
Destination); 2) it requires a lower number of context 
switches; 3) it uses the Linux kernel provided page_copy() 
function, which uses MMX instructions. 

II. Tests between Processes Located on Different Nodes 

This section presents performance results of M3-IPC 
against RPC and TIPC. 

M3-IPC does not consider flow control, error control, or 
congestion control. Those issues are delegated to proxies and 
the protocol they use. Reference implementations of M3-IPC 
proxies use TCP and TIPC as transport protocols. 

As it can be seen in Fig. 5-C, a proxy using RAW 
Ethernet sockets has the highest message transfer throughput 
followed by TIPC. M3-IPC, using TCP on proxies, has a 
throughput similar to that of RPC. A custom RAW Ethernet 
protocol was designed to be used in M3-IPC proxies. In this 
protocol, not all frames are acknowledged because the upper 
layer protocol between proxies acknowledges messages and 
data transfers. 

The remarkable performance of TIPC suggested that it 
could be well used by M3-IPC proxies as transport protocol. 
M3-IPC versatility and flexibility in proxy programming 
allowed authors to modify the source code of proxies in a 
few hours so as to use TIPC instead of TCP. These changes 
result in an improvement of performance, emphasizing the 
impact of the transport protocol on its throughput. 

As shown in Fig.5-D, TIPC presents the highest 
throughput for transferring blocks of data lower than 16 
[Kbytes]. The proxy using the custom RAW ethernet 
protocol has the highest throughput for transferring blocks of 
data greater than 16 [Kbytes]. 
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Fig.5-D also shows that there is no noticeable difference 
in performance when using TIPC instead of TCP as transport 
protocol on M3-IPC proxies to copy data blocks. 

B. Mol-VDD Performance Evaluation 

Two types of micro-benchmarks were developed to 
assess the performance of MoL-VDD and its BUSE driver: 

1) Local Tests: Client process and MoL-VDD run on the 

same node (Fig. 6). 

2) Remote or Cluster Tests: Client process and MoL-

VDD run on different nodes (Fig. 7). 
The performance evaluation was carried out in 

conjunction with NBD [37] for comparison purposes. Micro-
benchmarks used time and dd commands to perform data 
transfers and take measurements.  

We used image files located on a Linux RAM disk to 
avoid the latency of hard disks. 

 
Figure 5.  Results of IPC performance tests. 

When MoL-VDD is mentioned in Fig. 6 and Fig. 7, it 
means that the transfer was performed between a client 
process and the disk driver by using M3-IPC.  

When BUSE is mentioned, it means that the transfer was 
performed by the client process through the BUSE driver.  

Since the BUSE driver was built using Linux threads and 
user-space mutexes, they negatively impact on its 
performance.  

If the word single is mentioned, it means that the server 
is not replicated. If the word replicated is mentioned, it 
means that there is one backup MoL-VDD driver running on 
another node. 

A TCP user-space proxy was used to exchange data and 
messages between nodes, while Spread Toolkit was used as 
GCS between replicas.  

C. Mol-FS Performance Evaluation 

As MoL-FS is implemented in user-space, its 
performance was compared against other user-space 
filesystems. An NFS Server (UNFS [44]) and an NFS Client 
(HSFS [45]), both implemented in user-space, were chosen 
for that purpose. 

A FUSE driver was developed for MoL-FS, which 
allows mounting it and using every Linux command on its 
files and directories. For micro-benchmarks, a simple cp 
Linux command was used to evaluate the performance. The 
source and destination files were on a RAM disk image to 
avoid the delay of a hard disk. By space limitations, only 
tests where processes run on different nodes are presented in 
Table I. 

Several operational scenarios were tested, but before 
starting micro-benchmarks, network performance was 
measured with other tools: 
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- SSH scp reports 43 Mbytes/s. 
- TIPC custom application reports 81 Mbytes/s. 
- M3-IPC custom application reports 58 Mbytes/s. 
In Config-A, client process (Node0) gets/puts files 

from/to MoL-FS (Node1) which gets/puts raw data from an 
image file.  

 

 
Figure 6.  Mole-VDD throughput (client process in another node). 

In Config-B, client process (Node0) gets/puts files 
from/to MoL-FS (Node1) which gets/puts raw data from 
MoL-VDD (Node1). 

 

 
Figure 7.  Mol-VDD throughput (client process in the same node). 

Although the results are not attractive to adopt Mol-FS as 
a remote filesystem, it must be considered that they were 
obtained using the FUSE Gateway.  

TABLE I.  MOL-FS FILE TRANSFER THROUGHPUT (TWO NODES) 

 Read Mol-FS Read Mol-FS Write 

File size 

[Mbytes] 

UNFS/HSFS 

[Mbytes/s] 

Config. A 

[Mbytes/s] 

Config. B 

[Mbytes/s] 

Config. A 

[Mbytes/s] 

Config. B 

[Mbytes/s] 

1 4.17 8.00 7.04 1.98 2.34 

10 56.82 9.52 10.54 2.30 2.40 

100 59.84 10.15 11.83 2.04 2.13 

 
Other raw tests performed on MoL-FS without using the 

FUSE gateway showed a single transfer throughput of 47 
Mbytes/s, but further performance optimizations must be 
made. 

D. Web Server Performance Evaluation 

Table II shows the performance results of benchmarks 
performed on a web server (nweb) running on ukVOS, and in 
MoL considering different file sizes and configurations. The 
web client program (wget) was located in the same DC and 
in the same node. The disk image files used in benchmarks 
were located on RAM disks to avoid hard disk latencies. 

In Config-A, the web server gets its files from the host-
OS filesystem on a RAM disk, and it represents a baseline 
measurement. In Config-B, the web server gets the files from 
MoL-FS which uses a disk image file. In Config-C, the web 
server gets the files from MoL-FS, which uses a MoL-VDD 
as a storage server to get raw data from an image file. The 
three processes run in the same DC and in the same node, 
using M3-IPC between them.  

TABLE II.  WEB SERVER FILE TRANSFER THROUGHPUT (SAME NODE) 

 Unikernel (ukVOS) Multi-server (MoL) 

File size 

[Mbytes] 

Config-A 

[Mbytes/s] 

Config-B 

[Mbytes/s] 

Config-C 

[Mbytes/s] 

Config-A 

[Mbytes/s] 

Config-B 

[Mbytes/s] 

Config-C 

[Mbytes/s] 

10 7.44 7.03 7.04 74.62 70.00 67.54 

50 6.86 6.76 6.85 81.43 79.10 79.52 

100 7.96 6.82 6.72 97.11 92.13 92.31 

 
There is an evident performance difference between 

running the web server in ukVOS versus running it in MoL. 
This suggests that this user-mode TCP/IP protocol stack 
implementation with Linux threads is not efficient. 

MoL performance for those configurations in which 
process components are located on the same node (Config-B 
and Config-C) is somewhat lower than if running the web 
server directly in Linux (Config-A). This confirms the results 
presented in [23]. 

Table III shows the performance results of benchmarks 
performed on a web server and other related processes on the 
same DC but on different nodes.  

In Config-D, the web server (Node0) gets the files from 
MoL-FS (Node0), which gets raw data from MoL-VDD 
(Node1), which uses a disk image file. 

In Config-E, the web server (Node0) gets the files from 
MoL-FS (Node1) which gets raw data from a disk image file. 

In Config-F, the web server (Node0) gets the files from 
MoL-FS (Node1) which gets raw data from MoL-VDD 
(Node1). 

TABLE III.  WEB SERVER FILE TRANSFER THROUGHPUT (TWO NODES) 

 Unikernel (ukVOS) Multi-server (MoL) 

File size 

[Mbytes] 

Config-D 

[Mbytes/s] 

Config-E 

[Mbytes/s] 

Config-F 

[Mbytes/s] 

Config-D 

[Mbytes/s] 

Config-E 

[Mbytes/s] 

Config-F 

[Mbytes/s] 

10 2.62 2,90 2.75 4.08 3.,81 3.51 

50 2.72 2.89 2.88 4.32 3.75 3.57 

100 2.70 2.94 2.74 4.32 3.79 3.55 

 
Since TCP user-space proxies were used in Node0 and 

Node1 for the benchmarks, better results are expected by 
using TIPC or RAW ethernet proxies according to the M3-
IPC performance evaluation. 
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V. CONCLUSIONS AND FUTURE WORKS 

The proposed DVS model combines and integrates 
Virtualization and DOS technologies to provide the benefits 
of both worlds, making it suitable to deliver provider-class 
Cloud services. With a DVS, the limits for an isolated 
execution environment for running applications are 
expanded to all cluster nodes (aggregation). Moreover, its 
utilization is improved by enabling the same cluster to be 
shared (partitioning) among several DCs. A DVS prototype 
was developed to check the design and implementation 
correctness; and after several testing environments, the 
feasibility of the proposed model was proved.   

Migrating legacy applications from on-premises servers 
to a DVS is facilitated since POSIX APIs and RPC (supplied 
by a VOS) could be used, allowing code reuse. In this way, 
implementation costs and time are improved by reducing the 
encoding effort. On the other hand, new applications based 
on the MSA can execute their set of microservices in several 
nodes of the cluster by using RPC for communications.  

Future research and development stages will focus on 
making improvements to provide scalable, elastic, high-
performance and high-availability virtualization services; 
and integrating DVS management to Openstack [46]. 
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