
An Architecture Model for a Distributed Virtualization System

Pablo Pessolani

Facultad Regional Santa Fe

Universidad Tecnológica Nacional

Santa Fe – Argentina

e-mail: ppessolani@frsf.utn.edu.ar

Fernando G. Tinetti

III-LIDI Facultad de Informática- UNLP

Comisión de Inv. Científicas, Prov. Bs. As

La Plata, Argentina

e-mail: fernando@info.unlp.edu.ar

Toni Cortes

Barcelona Supercomputing Center & UPC

Barcelona – España

e-mail: toni.cortes@bsc.es

Silvio Gonnet

INGAR - Facultad Regional Santa Fe

CONICET - Universidad Tecnológica Nacional

Santa Fe - Argentina

e-mail: sgonnet@santafe-conicet.gov.ar

Abstract — This article presents an architecture model for a

Distributed Virtualization System, which could expand a

virtual execution environment from a single physical machine

to several nodes of a cluster. With current virtualization

technologies, computing power and resource usage of Virtual

Machines (or Containers) are limited to the physical machine

where they run. To deliver high levels of performance and

scalability, cloud applications are usually partitioned in several

Virtual Machines (or Containers) located on different nodes of

a virtualization cluster. Developers often use that processing

model because the same instance of the operating system is not

available on each node where their components run. The

proposed architecture model is suitable for new trends in

software development because it is inherently distributed. It

combines and integrates Virtualization and Distributed

Operating Systems technologies with the benefits of both

worlds, providing the same isolated instance of a Virtual

Operating System on each cluster node. Although it requires

the introduction of changes in existing operating systems,

thousands of legacy applications would not require

modifications to obtain their benefits. A Distributed

Virtualization System is suitable to deliver high-performance

cloud services with provider-class features, such as high-

availability, replication, migration, and load balancing.

Furthermore, it is able to concurrently run several isolated

instances of different guest Virtual Operating Systems,

allocating a subset of nodes for each instance and sharing

nodes between them. Currently, a prototype is running on a

cluster of commodity hardware provided with two kinds of

Virtual Operating Systems tailored for internet services (web

server) as a proof of concept.

Keywords: Virtualization, Virtual Machines, Containers,

Distributed Operating Systems.

I. INTRODUCTION

Current virtualization technologies are massively adopted
to cover those requirements in which Operating Systems
(OS) have shown weakness, such as performance, fault, and
security isolation. They also add features like resource
partitioning, server consolidation, legacy application support,

management tools, among others, which are attractive to
Cloud service providers.

Nowadays, there are several virtualization technologies
used to provide Infrastructure as a Service (IaaS) mounted in
a cluster of servers linked by high-speed networks. Storage
Area Networks (SAN), security appliances (network and
application firewall, Intrusion Detection/Prevention Systems,
etc.), and a set of management systems complement the
required provider-class infrastructure.

Hardware virtualization, paravirtualization, and OS-level
virtualization are the most widely used technologies to carry
out these tasks, although each of them presents different
levels of server consolidation, performance, scalability, high-
availability, and isolation.

The term “Virtual Machine” (VM) is used in issues
related to hardware virtualization and paravirtualization
technologies to describe an isolated execution environment
for an OS and its applications. Containers, Jails, Zones are
the names used in OS-level virtualization to describe the
environments for applications confinement. Regardless of
the definition of the virtualization abstraction, its computing
power and resource usage are limited to the physical
machine where it runs.

Current IaaS providers use SANs in their Data Centers
for storage virtualization, supplying disk drives for VMs. In
some way, the resources (disks) of a VM expand outside the
host and this can be seen as an exception to the above
statement. If this processing mode is extended to several
types of services and resources, it becomes a new model of
distributed processing in virtualization technologies. The
proposed architecture model takes this approach, distributing
processes, services, and resources to provide virtual
environments based on OS factoring and OS containers. The
outcome is a Distributed Virtualization System (DVS),
which combines and integrates OS-virtualization and
Distributed Operating Systems (DOS) technologies,
providing the same isolated instance of a Virtual Operating
System (VOS) [1] on each node of a virtualization cluster.

Nowadays, to deliver high performance and scalability
levels, Cloud applications are usually partitioned in several

116Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

VMs/Containers, running on the nodes of a virtualization
cluster (as Docker-enabled applications) [2]. Developers
often use those kinds of processing models as Platform as a
Service (PaaS) because the same instance of the OS is not
available on all nodes and, hence, they must use some kind
of middleware, which provides the cluster with Application
Programming Interfaces (APIs) and services. A DVS is
suitable as infrastructure for this new trend in software
development, like applications based on microservices
architecture (MSA) [3], because it is inherently distributed.
Furthermore, thousands of legacy applications would benefit
because they would not require modifications to take
advantage of DVS features. Migration of legacy applications
from on-premises servers to a Cloud execution environment
requires changes in their design and coding. If a standard
interface, such as POSIX is available in the Cloud, the
migration task is simplified by reducing costs and time.

A DVS fits the requirements for delivering high-
performance cloud services with provider-class features as
high-availability, replication, elasticity, load balancing,
resource management, and process migration. Furthermore, a
DVS is able to run several instances of different guest VOS
concurrently, allocating a subset of nodes for each instance
(resource aggregation), and to share nodes between them
(resource partitioning). Each VOS runs isolated within a
Distributed Container (DC), which could span multiple
nodes of the DVS cluster as it is presented in the topology
example in Fig.1. The proposed model keeps the appreciated
features of current virtualization technologies, such as
confinement, consolidation and security, and the benefits of
DOS, such as transparency, greater performance, high-
availability, elasticity, and scalability.

Figure 1. DVS topology example.

A DVS allows running multiple Distributed VOSs as
guests that can extend beyond the limits of a physical
machine. Each DVOS could have more computing power
and could provide greater scalability and elasticity in its
configuration as a consequence of resource and computing
power aggregation. The set of resources (both physical and
abstract) and the set of processes that constitute a DVOS can
be scattered (and eventually replicated) in the nodes of a
cluster.

This work is intended to contribute proposing a new
model of virtualization that allows building several isolated
execution environments that take advantage of the
aggregation of computational, storage, and network
resources of the nodes of a cluster.

The use of a DVS is based on the same
arguments/grounds for the use of DOSs. Several related
processes (in the same DC) could be executed in different
nodes using the same abstract resources as those offered by
the VOS. This feature simplifies application (or library)
programming since standard APIs, such as operations on
semaphores, message queues, mutexes, etc. can be used. On
the other hand, the process location transparency is helpful
for application administrators since it avoids dealing with IP
addresses, ports, URLs, etc., simplifying applications
deployment and management, and reducing costs and
implementation times.

Let us suppose a configuration of a database server
(DBMS) running on a host (or VM), and the need to perform
an online backup which ensures consistency of a restored
database. The backup process should run on a host (or VM),
other than the DBMS for performance reasons, but
connected to the same network, and both processes
connected to the same SAN. As each process runs on its own
OS, the DBMS process and the backup process must
communicate using an ad-hoc protocol through the network
in order to synchronize the access to the database. This
requires setting up IP addresses, ports, names, etc. to
describe the topology.

In a DVS configuration, both processes (DBMS and
backup) could run on the same VOS, but on different nodes.
Therefore, they can synchronize the access to the database
using semaphores, mutexes, signals or any other facilities
offered by the VOS.

The remainder of this paper is organized as follows.
Section II explains background and related works. Section III
describes the proposed architecture model, its design, and
details of a prototype implementation. Section IV presents
performance results of several components of the prototype.
Finally, the conclusions of this contribution and future work
are summarized in Section V.

II. BACKGROUND AND RELATED WORK

The term virtualization is usually associated with such
technologies, which allow the partition of hardware
resources to conform isolated execution environments called
Virtual Machines. But there is a technology which has the
opposite goals: Reverse Virtualization. As suggested by its
name, it integrates hardware resources from multiple
computers (nodes of a cluster) to provide the image of a
virtual Symmetric Multiprocessing System or vSMP. Works
related to Distributed Virtualization present a cluster as a
virtual shared memory multiprocessor. v-NUMA [4], and the
University of Tokyo’s Virtual Multiprocessor [5] allow
multiple physical computers to host a single OS instance.
ScaleMP [6] virtualizes an SMP and defines its virtualization
paradigm as an aggregation of computational resources as
opposed to partitioning. Somehow, Reverse Virtualization

117Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

and a DVS share the same goals, but the latter allows not
only the aggregation of resources but also their partitioning.

Since there are plenty of articles which can be used as
surveys of virtualization [7][8], this section will include
details only about those technologies on which the DVS
model is based and other related works.

A. Background

Classical definitions about Operating System mention
that it is a layer of software located between applications and
hardware. In OS-virtualization technology, the guest OS
does not manage real hardware, but operates on virtual
devices provided by a lower layer of software, such as a
host-OS. Therefore, it seems appropriate to refer to the
guest-OS as a VOS. There is a noticeable similarity with the
paravirtualization [9] approach, the difference lying in the
fact that there is a host-OS instead of a hypervisor in the
lower layer. Instead of requesting services by means of
hypervisor-calls, the guest-OS uses system calls. Hence, OS-
virtualization and paravirtualization share the same benefits
and drawbacks.

A well-known project that allows running multiple
instances of Linux over other native Linux (as host) is User-
Mode Linux (UML) [10]. CoLinux [11] is another project
that allows running Linux as a guest-OS, but on a Windows
host. Minix over Linux (MoL) [12] allows running multiple
instances of a multi-server OS, such as Minix [13] over a
Linux host.

MoL emulates Minix Interprocess Communications
(IPC) mechanisms using TCP sockets, so that processes of
the same instance of MoL can be executed in different hosts.
This was the germinal version of the architecture model
proposed in this article, but the use of Linux provided IPC
and a pseudo-microkernel process running in user-mode
turns performance its main weaknesses. To improve it, a
microkernel with its own IPC mechanisms was developed to
be embedded in the Linux kernel named M3-IPC (as a
lightweight co-kernel) [14][15]. Later, it was extended to
exchange messages and data among processes of the same
MoL instance running on several nodes, allowing a multi-
server VOS to be turned into a DVOS.

Other technologies that were sources of inspiration for
the proposed model are those used by DOSs [16]. They fully
developed and investigated in the 1990s as a consequence of
the limited performance of a single host and the growing
demand for computing power and scalability. Unlike
Reverse Virtualization, which is a technology that virtualizes
an SMP computer, a DOS performs distributed processing by
expanding OS abstract resources to all its nodes. These
resources are analogous to those provided by a centralized
OS, such as users, processes, files, pipes, sockets, message
queues, shared memory, semaphores, and mutexes.

Software factoring is a well-known approach in the field
of OSs used by microkernel technologies. Servers and
processes communicate with one another by passing
messages through an IPC facility furnished by the OS kernel
[17]. Unlike monolithic OS, a microkernel-based OS factors
the kernel functions and services into multiple layers. Each
layer is made up of several isolated processes running in

user-mode, and the lowest layer runs the microkernel in
supervisor mode [18]. Since upper layer servers and tasks do
not have the right privileges to handle the hardware by their
own, the microkernel provides services which allow them to
operate on the hardware indirectly. A similarity between a
microkernel OS and a paravirtualization system becomes
evident [19]. In some ways, the microkernel acts as a para-
virtualization hypervisor for a single VM, consisting of a set
of user-space processes that constitute the guest-OS.
Factoring an OS into multiple user-space tasks and servers
provides the isolation required by a virtualization system and
allows the distribution of processes in multiple nodes of a
cluster.

The proposed model takes advantage of another
technology: OS-based virtualization. It is a system call level
virtualization, partitioning OS resources into isolated
instances of execution environments. The host-OS isolates
sets of user-space applications in Containers, Jails or Zones.
Linux implements Containers [20] with two main kernel
features; 1) cgroups [21]: It allows to isolate, prioritize, limit,
and account for resource usage of a set of processes named
Control Groups; 2) namespaces [22]: Usually, an OS
provides a global namespace for OS abstract resources like
UIDs, PIDs, file names, sockets, etc. All Containers provide
applications with their own execution environment, but they
all share the same OS. Therefore, the isolation property
seems to be weaker against hardware virtualization and
paravirtualization, but the performance gain is significant
[23].

Any virtualization system whose aim is to provide IaaS
with provider-class quality must consider high-availability as
a requirement in its design. As a distributed system, a DVS
must support the dynamic behavior of clusters where nodes
are permanently added and removed. In a data center, several
kinds of failures occur: in computers, in processes, in the
network, and in operations; hence, they should be all
considered in system design. Generally, component
replication is the mechanism adopted to tolerate faults.
Although there is extensive research about fault handling in
distributed systems and because it is a complex issue [24], it
is better to use tested tools, such as Distributed Consensus
[25] and Group Communications Systems (GCS) [26] for
achieving fault-tolerance through replication. Birman [26]
states that: "The use of a GCS should be considered for
standardization, complexity, and performance reasons". As
Birman suggests, the prototype built as a proof of concept of
a DVS is based on the use of an underlying GCS, which
helped in the development of fault-tolerant components.
Moreover, the use of a GCS allows the decoupling of a
distributed application from the group communication
mechanisms and from its failure detectors.

If a critical application runs on a DVS and its distributed
components are strongly coupled, a fault on one member
could result in a complete application failure. A GCS could
be used by critical services, such as file servers, storage
servers, web servers, etc. to solve the replication issue,
providing more reliable services.

118Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

B. Related Works

Clustered Virtual Machines [27] is a technology used to
run applications in a distributed way across a group of
containers spread on several nodes of a cluster. On Clustered
Virtualization, each application component runs within a
container using the services of the host-OS in which each
container is located.

Mesosphere‘s Data Center Operating System (DC/OS)
[28] allows developers and administrators to consider a data
center as a single computer that runs applications in software
containers, but it is not really an OS; it is rather a container
cluster manager with frameworks that provides PaaS.
JESSICA2 [29] is a distributed Java Virtual Machine
implemented as a middleware, which supports parallel
execution in a networked cluster environment, but it is
limited to Java applications. Another software architecture
model used for application development proposes to
partitioning the application in autonomous components
named Microservices [3]. With a set of microservices
running on a cluster of servers the application’s computing
and resource needs are distributed, thus increasing
application performance and scalability.

Unlike Clustered Virtualization, running a distributed
application on a DVS can share the same instance of a
DVOS allowing references to the same resource namespaces
and system objects (such as users, pipes, queues, files, PIDs,
sockets, etc.) as if they were running on the same host. This
key feature can be sometimes used by developers when they
need legacy applications to migrate to the Cloud, as well as
for applications specifically developed to run in the Cloud.

III. DESIGN AND IMPLEMENTATION

Thinking of a distributed virtualization technology seems
to make sense to achieve higher performance and increase
service availability. OS-based virtualization and DOS
technologies lead the authors to think about their
convergence to achieve these goals, extending the
boundaries of the virtual execution environment to multiple
hosts and thereby multiplexing a cluster among multiple
isolated instances of a DVOS.

An OS-based distributed virtualization approach will
explore aggregation with partitioning. In such systems, a set
of server processes constitutes a DVOS running within an
execution environment made up of Distributed Containers
(DC). Processes belonging to a DC may be spread on several
nodes of a cluster (aggregation); and processes of different
DCs could share the same host (partitioning).

Several hardware virtualization products offer high-
availability and fault-tolerance by replicating a VM with its
inner OS and all its processes. In such systems, load
distribution is made using a VM migration facility that
moves a complete VM from one server to another as a
whole. A DVS could allow replication and migration of
either all processes of DVOS or only some of them, such as
the critical ones.

DOSs implement their policies and mechanisms, such as
load balancing, process migration, leader election,
consensus, fault detection, etc., within the system itself. As a

result of this monolithic design, software modules are
strongly coupled to one another and to the kernel, so that
they cannot be reused by other applications. It is also
difficult to change one of these components without
changing the whole system. The DVS model relaxes the
coupling among components, breaking them up as
independent services with specific liabilities.

A. DVS Architecture

The main components of the DVS architecture are (see
Fig. 2):

1) Distributed Virtualization Kernel (DVK): It is the

core software layer that integrates the resources of the

cluster, manages and limits the resources assigned to each

DC. It provides interfaces for low-level protocols and

services, which can be used to build a VOS, such as IPC,

GCS, synchronization, replication, locking, leader election,

fault detection, mutual exclusion, performance parameter

sensing, processes migration mechanism, and key-value

services. The DVK provides interfaces to manage all DVS

resources, such as nodes, DCs and processes. Process

management allows the DVS administrator to assign

processes to a DC and to allocate nodes for it. The node in

which the process runs can be changed, as in case of a

migration, or when the process was replaced by another one,

such as a backup process. For communication purposes,

location changes made by the replacement or migration of a

process are hidden from the other processes within the DC.

Figure 2. Distributed Virtualization System architecture model

2) Distributed Virtualization Management System

(DVMS): It is the software layer that allows the DVS

administrator to both manage the resources of the cluster,

providing a DC for each VOS, and perform DVS

monitoring.

3) Container: It is a host-OS abstraction which provides

an isolated environment to run the components of a VOS. A

set of Containers which belongs to the same VOS makes up

a Distributed Container.

4) Distributed Container (DC): It is a set of single

Containers, each one being set up by the DVMS in the host-

OS of each node. There is one DC per VOS, and a DC can

span from one to all nodes.

119Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

5) Virtual Operating System (VOS): Although any kind

of VOS can be developed or modified to meet DVS

architecture requirements, a DVOS can obtain greater

benefits because it is able to distribute its processes in

several nodes. Each VOS (single or distributed) runs within

a DC. The task of modifying an existing OS to turn it into a

VOS is simplified because it does not need to deal with real

hardware resources but with virtual ones. Moreover, a VOS

needs to manage neither virtual memory nor CPU

scheduling because it is done by the host-OS.

6) VOS applications: They are applications (single or

distributed) running within the same DC, using VOS-

provided services.
The resource allocation unit for a DOS is the node as a

whole; but for a DVOS (running within a DC) it is each
single virtual resource provided by the host-OS on each
node. This higher degree of granularity of the infrastructure
unit allows a better use of resources and provides greater
elasticity and efficiency.

B. DVS Prototype

Since the project startup (2013), a DVS prototype was
implemented which runs on a cluster of x86 computers and
Linux as OS-host. The DVS prototype considers the
following abstractions, and the relations between them are
presented in Fig. 3.

1) DVS: It is the top level layer that assembles all cluster

nodes and it embraces all DCs.

2) Node: It is a computer that belongs to the DVS where

processes of several DCs are able to be run. All nodes are

connected by a network infrastructure.

3) DC: It is the group or set of related processes that

might be scattered on several nodes. M3-IPC only allows

communications among processes that belong to the same

DC. The boundary of each DC can be based on

administrative boundaries. A DC hides its internals from the

outside world and hides network communication issues

from its processes.

4) Proxies: They are special processes used to transfer

messages and data blocks between nodes. M3-IPC does not

impose a network/transport protocol to be used for inter-

node communications. This feature allows programmers to

choose the protocol that best fit their needs. Nodes

communicate among them through proxies.

5) Process: Every process registered in a DC has an

endpoint which identifies it. Process endpoints are unique

and global within a DC, but could be repeated within other

DCs.
With the exception of the process endpoints, the other

DVS abstractions are hidden from the VOS and its
processes. They are managed by the DVS administrator,
such as adding or removing hosts as nodes of the DVS,
allocating nodes to DCs, or setting proxies to communicate
nodes.

Two simple VOS were developed to be executed as
guests on the prototype as proof of concept. One of them is a
multiserver VOS named MoL, and the other is a unikernel
[30] VOS named ukVOS; both are able to provide Internet
services (web server). MoL is made up of loosely coupled
servers and tasks integrated as VOS components.
Alternatively, they can be run alone serving Linux ordinary
client processes by using some kind of kernel-user interface
as FUSE or BUSE.

C. Distributed Virtualization Kernel

A DVK was implemented in the DVS prototype as a
Linux kernel module and a patch, complemented by a set of
libraries, commands and tools. The DVK module of each
node (which includes M3-IPC) is implemented as a Linux
co-kernel.

DVK APIs allow configuring and managing all DVS
abstractions (DVS, DCs, nodes, and proxies), and mapping
processes to DCs, DCs to nodes, and proxies to nodes.

Figure 3. DVS abstractions and their relationships.

Through DVK APIs, a program can set the new node
where an endpoint is located as a result of a process
migration. DVK APIs also allow changing the endpoint type
from Backup to Primary after the primary process has
finished by a fault in a replicated service. These APIs were
tested in a Virtual Disk Driver, which was developed for the
prototype.

D. M3-IPC

A critical component of every distributed system is the

software communication infrastructure. To simplify the

development of VOS for the DVS prototype, an IPC

infrastructure was developed and is named M3-IPC

[14][15]. It allows building VOS components, such as

clients, servers and tasks with a uniform semantics without

considering process location. Provider-class features were

considered in the design stage, such as process replication,

process migration, communications confinement, and

performance for both intra-node and inter-node

communications. M3-IPC is a pluggable module embedded

120Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

in the Linux kernel, supplying the IPC primitives of a

microkernel OS.

Messages and data exchange among nodes is carried out by

proxies. A proxy transports messages and data between two

nodes without considering source/destination processes or

the DC they belong to. Proxies can run either in user-mode

to provide versatility or in kernel-mode for efficiency

reasons, according to the DVS administrator's choice.

Running proxies in user-mode may result in an efficiency

loss, but it has the benefit of granting flexibility to freely

choose protocols, and to easily add facilities, such as

compression and encryption. At present, several kinds of

proxies were developed for the DVS prototype using

different protocols (TCP, TIPC [31], UDP, UDT [32],

custom Raw Ethernet), some of them in user-mode and

others in kernel-mode.

E. MoL-FS

One of the main processes of MoL is Filesystem Server
(FS). It handles requests from user-level applications using
POSIX system calls related to filesystems, files, directories,
etc.

MoL-FS [33] is a modified version of Minix FS which
uses M3-IPC as a message transfer mechanism. On Minix,
clients, FS server and Disk task are independent user-space
processes which reside on the same host. Since MoL-FS uses
M3-IPC, which it does not limit communications within the
same host, clients, MoL-FS, and a storage server named
MoL-VDD [34] could be on different nodes of a cluster like
a distributed OS.

As MoL-FS was designed to be used as a component of a
VOS, only those applications developed using M3-IPC and
MoL-FS protocol could use its services. A FUSE gateway
was developed to extend its use to ordinary Linux
applications, taking advantage of the ability to adapt granted
by FUSE. Another advantage of having the FUSE gateway is
that it allows performance evaluation by using standard
Linux tools.

Currently, a replicated MoL-FS server is at development
stage using Spread Toolkit [35] as Group Communications
System (GCS) for multicast message services, failure
detection, and group membership management.

F. MoL-VDD

MoL-FS supports several storage devices: ram disks,
image files, raw Linux devices, and a Virtual Disk Driver
(MoL-VDD).

MoL-VDD runs as a server process within a DC, and it
provides its clients with the same storage devices as MoL-
FS. A fault-tolerance support through data and processing
replication techniques was added to it to test the behavior of
the DVS infrastructure in failure scenarios. Fault-tolerance is
achieved transparently for the application through the use of
the facilities offered by the DVS, M3-IPC and Spread
Toolkit.

MoL-VDD supports this kind of distributed environment
in a dynamic and transparent way in which user processes,
servers, and drivers can migrate due to availability or

performance issues. These characteristics are highly
appreciated by IaaS providers because they increase the
elasticity, high availability, and robustness of their offered
services, and because they optimize the use of their
computational and storage resources.

A BUSE [36] driver was developed so as to allow Linux
to mount a MoL-VDD device. Currently, an NBD [37]
gateway is at development stage, which allows MoL-VDD to
mount an NBD volume.

G. Other MoL Servers and Drivers

MoL is made up of several servers and tasks, which are
communicated using M3-IPC. In addition to MoL-FS and
MoL-VDD, other servers and tasks were developed and
implemented:

 System Task (Systask): It handles low level requests
from other servers and tasks, and it makes its own
requests to its host-OS. It is also a replicated process
which must run in every node of the DC.

 Process Manager (PM): It handles process and
memory related system calls.

 Information Server (IS): It allows gathering
information about the state of every server and task
in the DC. A Web Information Server is also
available to present VOS status information to a web
browser.

 Reincarnation Server (RS): It allows for starting
processes in any node of the DC and handles process
migration.

 Data Server (DS): It is a key-value server.

 Ethernet Task (ETH): It is the interface to virtual
(TUN/TAP) or real host’s Ethernet devices.

 Internet Server (INET): It is a user-space
implementation of the TCP/IP protocol.

As aforementioned, all MoL components must run within
a DC, and all of them could run spread on several nodes of
the DVS.

H. Unikernel-like VOS

Unikernel is a recent technology, which takes up library
OS concepts, but instead of working on the bare-metal it runs
over some hypervisor. It has many benefits that make it
attractive to provide Cloud services.

A unikernel-like VOS was developed to test the DVS
prototype named ukVOS. It is a single executable image,
which uses low-level services provided by the host-OS and
by the DVS infrastructure instead of being provided by a
hypervisor.

ukVOS is based on LwIP [38] code because it includes a
user-space implementation of the TCP/IP protocol and a
simple web server with a fixed in-memory web page. A FAT
Filesystem code and M3-IPC support were added to allow
several unikernel VOS images and the web server was
modified to support files.

Several images of ukVOS with different configurations
were developed to test the DVS. One of them is a ukVOS
image with FAT filesystem support, which uses the disk
image file from a Linux regular file. Another image with
M3-IPC allows using an external MoL-VDD. In the other

121Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

ukVOS image, the web server gets the files from an external
MoL-FS.

I. DVS Management

Management is a fundamental requirement of a
virtualization system designed to offer Cloud services. At
present, the DVS prototype is managed by a Command Line
Interface (CLI). A Webmin [39] module is at development
stage, which will allow for a web-based management
interface (Fig. 4).

IV. EVALUATION

A DVS is a complex system in which several metrics
may be considered as CPU, network and memory usage of
cluster nodes, the time to restore a replicated service after a
failure, IPC recovery time after the destination process of a
message has been migrated to another node, to name a few.

The following metrics were established to be presented in
this section:

1) IPC performance (Fig. 5): It is a critical issue

because communications among different components of a

VOS or DVOS are performed using RPC based on IPC.

User-space applications use IPC to (transparently) make

local or remote system calls.

2) Virtual Disk Driver performance: The throughput of

storage services is critical, with or without replication.

3) Filesystem Server performance: Other components of

an infrastructure are filesystem services. They provide high-

level applications with files and directory services. Their

throughput to store and retrieve data directly impact on

applications.

4) Web server performance: File transfer throughput

was considered an important metric (response time is

another one) to provide web services.
For performance evaluation in distributed systems, such

as a DVS, benchmarks and micro-benchmarks should be
made between co-located processes and processes running
on different nodes.

Benchmarks and micro-benchmarks were performed on
the prototype deployed in a cluster made up of 20 PCs
(Intel(R) Core(TM) i7-4790 3.60GHz), a 1-Gbps network,
and Linux as the host-OS.

A. IPC performance evaluation

I. Tests between Co-located Processes

Tests between co-located processes allow the comparison
of M3-IPC performance versus other IPC mechanisms
available on Linux.

One of the design goals states that the expected
performance should be as good as the fastest IPC
mechanisms available on Linux. The following IPC
mechanisms were tested using custom and [40, 41] provided
micro-benchmarks: Message Queues, RPC, TIPC, FIFOs,
pipes, Unix Sockets, TCP Sockets, SRR [42], SIMPL [43].

The presented results (Fig. 5-A) summarize message
transfer throughput achieved by the IPC mechanisms running
a single pair of client/server processes. Linux IPC

mechanisms with the highest performance were pipes and
named pipes (or FIFOs) followed by M3-IPC (925,314
[msg/s]).

Another micro-benchmark of message transfers between
multiple pairs of client/server processes was run to evaluate
performance in concurrency. The highest average throughput
was 1,753,206 [msg/s], which was reached with 4 pairs of
client/server processes (4 cores).

Figure 4. Webmin module menu for DVS management.

Fig. 5-B presents data transfer throughput, M3-IPC
performance surpasses other IPC mechanisms on Linux. The
reasons for this behavior are: 1) M3-IPC performs a single
copy of data between address spaces while the others
perform at least two copies (Source to Kernel, Kernel to
Destination); 2) it requires a lower number of context
switches; 3) it uses the Linux kernel provided page_copy()
function, which uses MMX instructions.

II. Tests between Processes Located on Different Nodes

This section presents performance results of M3-IPC
against RPC and TIPC.

M3-IPC does not consider flow control, error control, or
congestion control. Those issues are delegated to proxies and
the protocol they use. Reference implementations of M3-IPC
proxies use TCP and TIPC as transport protocols.

As it can be seen in Fig. 5-C, a proxy using RAW
Ethernet sockets has the highest message transfer throughput
followed by TIPC. M3-IPC, using TCP on proxies, has a
throughput similar to that of RPC. A custom RAW Ethernet
protocol was designed to be used in M3-IPC proxies. In this
protocol, not all frames are acknowledged because the upper
layer protocol between proxies acknowledges messages and
data transfers.

The remarkable performance of TIPC suggested that it
could be well used by M3-IPC proxies as transport protocol.
M3-IPC versatility and flexibility in proxy programming
allowed authors to modify the source code of proxies in a
few hours so as to use TIPC instead of TCP. These changes
result in an improvement of performance, emphasizing the
impact of the transport protocol on its throughput.

As shown in Fig.5-D, TIPC presents the highest
throughput for transferring blocks of data lower than 16
[Kbytes]. The proxy using the custom RAW ethernet
protocol has the highest throughput for transferring blocks of
data greater than 16 [Kbytes].

122Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig.5-D also shows that there is no noticeable difference
in performance when using TIPC instead of TCP as transport
protocol on M3-IPC proxies to copy data blocks.

B. Mol-VDD Performance Evaluation

Two types of micro-benchmarks were developed to
assess the performance of MoL-VDD and its BUSE driver:

1) Local Tests: Client process and MoL-VDD run on the

same node (Fig. 6).

2) Remote or Cluster Tests: Client process and MoL-

VDD run on different nodes (Fig. 7).
The performance evaluation was carried out in

conjunction with NBD [37] for comparison purposes. Micro-
benchmarks used time and dd commands to perform data
transfers and take measurements.

We used image files located on a Linux RAM disk to
avoid the latency of hard disks.

Figure 5. Results of IPC performance tests.

When MoL-VDD is mentioned in Fig. 6 and Fig. 7, it
means that the transfer was performed between a client
process and the disk driver by using M3-IPC.

When BUSE is mentioned, it means that the transfer was
performed by the client process through the BUSE driver.

Since the BUSE driver was built using Linux threads and
user-space mutexes, they negatively impact on its
performance.

If the word single is mentioned, it means that the server
is not replicated. If the word replicated is mentioned, it
means that there is one backup MoL-VDD driver running on
another node.

A TCP user-space proxy was used to exchange data and
messages between nodes, while Spread Toolkit was used as
GCS between replicas.

C. Mol-FS Performance Evaluation

As MoL-FS is implemented in user-space, its
performance was compared against other user-space
filesystems. An NFS Server (UNFS [44]) and an NFS Client
(HSFS [45]), both implemented in user-space, were chosen
for that purpose.

A FUSE driver was developed for MoL-FS, which
allows mounting it and using every Linux command on its
files and directories. For micro-benchmarks, a simple cp
Linux command was used to evaluate the performance. The
source and destination files were on a RAM disk image to
avoid the delay of a hard disk. By space limitations, only
tests where processes run on different nodes are presented in
Table I.

Several operational scenarios were tested, but before
starting micro-benchmarks, network performance was
measured with other tools:

123Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

- SSH scp reports 43 Mbytes/s.
- TIPC custom application reports 81 Mbytes/s.
- M3-IPC custom application reports 58 Mbytes/s.
In Config-A, client process (Node0) gets/puts files

from/to MoL-FS (Node1) which gets/puts raw data from an
image file.

Figure 6. Mole-VDD throughput (client process in another node).

In Config-B, client process (Node0) gets/puts files
from/to MoL-FS (Node1) which gets/puts raw data from
MoL-VDD (Node1).

Figure 7. Mol-VDD throughput (client process in the same node).

Although the results are not attractive to adopt Mol-FS as
a remote filesystem, it must be considered that they were
obtained using the FUSE Gateway.

TABLE I. MOL-FS FILE TRANSFER THROUGHPUT (TWO NODES)

 Read Mol-FS Read Mol-FS Write

File size

[Mbytes]

UNFS/HSFS

[Mbytes/s]

Config. A

[Mbytes/s]

Config. B

[Mbytes/s]

Config. A

[Mbytes/s]

Config. B

[Mbytes/s]

1 4.17 8.00 7.04 1.98 2.34

10 56.82 9.52 10.54 2.30 2.40

100 59.84 10.15 11.83 2.04 2.13

Other raw tests performed on MoL-FS without using the

FUSE gateway showed a single transfer throughput of 47
Mbytes/s, but further performance optimizations must be
made.

D. Web Server Performance Evaluation

Table II shows the performance results of benchmarks
performed on a web server (nweb) running on ukVOS, and in
MoL considering different file sizes and configurations. The
web client program (wget) was located in the same DC and
in the same node. The disk image files used in benchmarks
were located on RAM disks to avoid hard disk latencies.

In Config-A, the web server gets its files from the host-
OS filesystem on a RAM disk, and it represents a baseline
measurement. In Config-B, the web server gets the files from
MoL-FS which uses a disk image file. In Config-C, the web
server gets the files from MoL-FS, which uses a MoL-VDD
as a storage server to get raw data from an image file. The
three processes run in the same DC and in the same node,
using M3-IPC between them.

TABLE II. WEB SERVER FILE TRANSFER THROUGHPUT (SAME NODE)

 Unikernel (ukVOS) Multi-server (MoL)

File size

[Mbytes]

Config-A

[Mbytes/s]

Config-B

[Mbytes/s]

Config-C

[Mbytes/s]

Config-A

[Mbytes/s]

Config-B

[Mbytes/s]

Config-C

[Mbytes/s]

10 7.44 7.03 7.04 74.62 70.00 67.54

50 6.86 6.76 6.85 81.43 79.10 79.52

100 7.96 6.82 6.72 97.11 92.13 92.31

There is an evident performance difference between

running the web server in ukVOS versus running it in MoL.
This suggests that this user-mode TCP/IP protocol stack
implementation with Linux threads is not efficient.

MoL performance for those configurations in which
process components are located on the same node (Config-B
and Config-C) is somewhat lower than if running the web
server directly in Linux (Config-A). This confirms the results
presented in [23].

Table III shows the performance results of benchmarks
performed on a web server and other related processes on the
same DC but on different nodes.

In Config-D, the web server (Node0) gets the files from
MoL-FS (Node0), which gets raw data from MoL-VDD
(Node1), which uses a disk image file.

In Config-E, the web server (Node0) gets the files from
MoL-FS (Node1) which gets raw data from a disk image file.

In Config-F, the web server (Node0) gets the files from
MoL-FS (Node1) which gets raw data from MoL-VDD
(Node1).

TABLE III. WEB SERVER FILE TRANSFER THROUGHPUT (TWO NODES)

 Unikernel (ukVOS) Multi-server (MoL)

File size

[Mbytes]

Config-D

[Mbytes/s]

Config-E

[Mbytes/s]

Config-F

[Mbytes/s]

Config-D

[Mbytes/s]

Config-E

[Mbytes/s]

Config-F

[Mbytes/s]

10 2.62 2,90 2.75 4.08 3.,81 3.51

50 2.72 2.89 2.88 4.32 3.75 3.57

100 2.70 2.94 2.74 4.32 3.79 3.55

Since TCP user-space proxies were used in Node0 and

Node1 for the benchmarks, better results are expected by
using TIPC or RAW ethernet proxies according to the M3-
IPC performance evaluation.

124Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

V. CONCLUSIONS AND FUTURE WORKS

The proposed DVS model combines and integrates
Virtualization and DOS technologies to provide the benefits
of both worlds, making it suitable to deliver provider-class
Cloud services. With a DVS, the limits for an isolated
execution environment for running applications are
expanded to all cluster nodes (aggregation). Moreover, its
utilization is improved by enabling the same cluster to be
shared (partitioning) among several DCs. A DVS prototype
was developed to check the design and implementation
correctness; and after several testing environments, the
feasibility of the proposed model was proved.

Migrating legacy applications from on-premises servers
to a DVS is facilitated since POSIX APIs and RPC (supplied
by a VOS) could be used, allowing code reuse. In this way,
implementation costs and time are improved by reducing the
encoding effort. On the other hand, new applications based
on the MSA can execute their set of microservices in several
nodes of the cluster by using RPC for communications.

Future research and development stages will focus on
making improvements to provide scalable, elastic, high-
performance and high-availability virtualization services;
and integrating DVS management to Openstack [46].

ACKNOWLEDGMENTS

Toni Cortes’ involvement in this work was financially
supported by the Spanish National Government (financial
grant SEV2015-0493 of Severo Ochoa program), the
Spanish Ministry of Science and Innovation (contract
TIN2015-65316), and the Government of Catalonia (contract
2014-SGR-1051).

Fernando G. Tinetti’s involvement in this work was
financially supported by Universidad de La Plata (Faculty of
Informatics) and the Scientific Research Board (CIC, for its
Spanish initials) of Buenos Aires, Argentina.

REFERENCES

[1] D. Hall, D. Scherrer, and J. Sventek, “A Virtual Operating
System”, Journal Communication of the ACM, 1980.

[2] J. Turnbull, “The Docker Book”, 2014, Available online at:
https://www.dockerbook.com/, accessed on 30 October 2017.

[3] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and
N. Josuttis. “Microservices in Practice, Part 1: Reality Check
and Service Design”, IEEE Softw. 34, pp 91-98, Jan. 2017,
2017.

[4] M. Chapman and G.t Heiser, “vNUMA: a virtual shared-
memory multiprocessor”, Proc. of the 2009 conference on
USENIX Annual technical conference (USENIX'09),
USENIX Association, Berkeley, CA, USA, pp. 2-2.

[5] K. Kaneda, Y. Oyama, and A. Yonezawa, “A virtual machine
monitor for utilizing non-dedicated clusters”, Proc. of the
twentieth ACM symposium on Operating systems principles
(SOSP '05), ACM, New York, NY, USA, pp. 1-11, doi:
https://doi.org/10.1145/1095810.1118618.

[6] ScaleSMP, “vSMP Foundation Architecture”, WhitePaper,
Available online at http://www.scalemp.com/media-
hub/resources/white-papers, 2013, accessed on 30 October
2017.

[7] N. Goel, A. Gupta, and S. N. Singh, "A study report on
virtualization technique," 2016 International Conference on

Computing, Communication and Automation (ICCCA),
Noida, pp. 1250-1255, doi: 10.1109/CCAA.2016.7813908.

[8] S. Liu and W. Jia, “A Survey: Main Virtualization Methods
and Key Virtualization Technologies of CPU and Memory”,
The Open Cybernetics & Systemics Journal, vol. 9, 2015, pp.
350-358, doi: 10.2174/1874110X01509010350.

[9] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali:
Lightweight Virtual Machines for Distributed and Networked
Applications”, Proc. of the USENIX Annual Technical
Conference, 2002.

[10] J. Dike, “A user-mode port of the linux kernel”, Proc. of the
4th annual Linux Showcase & Conference, vol. 4, pp. 7-7,
USENIX Association, Berkeley, CA, USA , 2000.

[11] D. Aloni, “Cooperative Linux”, Proc. of the Linux
Symposium, 2004.

[12] P. Pessolani and O. Jara, "Minix over Linux: A User-Space
Multiserver Operating System," Proc. Brazilian Symposium
on Computing System Engineering, Florianopolis, 2011, pp.
158-163, doi: 10.1109/SBESC.2011.17.

[13] A. S. Tanenbaum, R. Appuswamy, H. Bos, L. Cavallaro, C.
Giuffrida, T. Hrubỳ, J. Herder, and E. van der Kouwe,
“Minix 3: Status Report and Current Research”, login: The
USENIX Magazine, 2010.

[14] P. Pessolani, T. Cortes, F. G. Tinetti, and S. Gonnet, “An IPC
microkernel embedded in the Linux kernel” (in Spanish), XV
Workshop on Computer Science Researchers, Argentina,
2012.

[15] P. Pessolani, T. Cortes, F. G. Tinetti, and S. Gonnet, “An IPC
Software Layer for Building a Distributed Virtualization
System”, Congreso Argentino de Ciencias de la Computación
(CACIC 2017) La Plata, Argentina, October 9-13, 2017.

[16] R. Buyya, T. Cortes, and H. Jin, “Single System Image”, Int.
J. High Perform. Comput. Appl. Vol. 15, May 2001, pp 124-
135, doi: http://dx.doi.org/10.1177/109434200101500205.

[17] G. Heiser and K. Elphinstone, “L4 Microkernels: The Lessons
from 20 Years of Research and Deployment”, ACM Trans.
Comput. Syst., vol. 34, Article 1, April 2016, doi:
http://dx.doi.org/10.1145/2893177.

[18] M.Gien and L. Grob, “Micro-kernel Architecture Key to
Modern Operating Systems Design", 1990.

[19] F. Armand and M. Gien, "A Practical Look at Micro-Kernels
and Virtual Machine Monitors", 6th IEEE Consumer
Communications and Networking Conference, Las Vegas,
NV, 2009, pp. 1-7, doi: 10.1109/CCNC.2009.4784874.

[20] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L.
Peterson, “Container-based operating system virtualization: a
scalable, high-performance alternative to hypervisors”, Proc.
of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007 (EuroSys '07), ACM, New York,
NY, USA, pp. 275-287, doi:
http://dx.doi.org/10.1145/1272996.1273025.

[21] P. B. Menage, “Adding Generic Process Containers to the
Linux Kernel”, Proc. of the Ottawa Linux Symposium, 2007.

[22] R. Pike, D. Presotto, K. Thompson, H. Trickey, and P.
Winterbotto, “The use of name spaces in plan 9”, Proc. of the
5th workshop on ACM SIGOPS European workshop: Models
and paradigms for distributed systems structuring (EW 5).
ACM, New York, NY, USA, pp. 1-5, doi:
http://dx.doi.org/10.1145/506378.506413.

[23] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, "An
updated performance comparison of virtual machines and
Linux containers," 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Philadelphia, PA, USA, 2015, pp. 171-172, doi:
10.1109/ISPASS.2015.7095802.

125Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

[24] C. Cachin, R. Guerraoui, and L. Rodrigues, “Introduction to
Reliable and Secure Distributed Programming (2nd ed.)”,
Springer Publishing Company Incorporated, 2011.

[25] T. D. Chandra, R. Griesemer, and J. Redstone ,”Paxos made
live: an engineering perspective”, Proc. of the twenty-sixth
annual ACM symposium on Principles of distributed
computing (PODC '07), ACM, New York, NY, USA, pp.
398-407, doi: http://dx.doi.org/10.1145/1281100.1281103.

[26] K. P. Birman, ”The process group approach to reliable
distributed computing”, Commun. ACM 36, Dec. 1993, pp.
37-53, doi:http://dx.doi.org/10.1145/163298.163303.

[27] V. Chavan and P. R. Kaveri, “Clustered virtual machines for
higher availability of resources with improved scalability in
cloud computing”, First International Conference on
Networks & Soft Computing (ICNSC2014), pp. 221--225,
Guntur, 2014.

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and Ion Stoica, “Mesos: a
platform for fine-grained resource sharing in the data center”,
Proc. of the 8th USENIX conference on Networked systems
design and implementation (NSDI'11), USENIX Association,
Berkeley, CA, USA, pp. 295-308.

[29] C. Wang, F. C. Lau, and W. Zhu, "JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread Migration
Support," 2013 IEEE International Conference on Cluster
Computing (CLUSTER), Chicago, Illinois, 2002, pp. 381,
doi: 10.1109/CLUSTR.2002.1137770.

[30] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and Jon Crowcroft, “
Unikernels: library operating systems for the cloud”, Proc. of
the eighteenth international conference on Architectural
support for programming languages and operating systems
(ASPLOS '13), ACM, New York, NY, USA, pp. 461-472,
doi: http://dx.doi.org/10.1145/2451116.2451167.

[31] J. P. Maloy, “TIPC: Providing Communication for Linux
Clusters”, Proc. of the Linux Symposium, vol. 2, pp. 347-356
2004.

[32] Y. Gu and R. L. Grossman, ”UDT: UDP-based data transfer
for high-speed wide area networks”, Comput. Netw., vol. 51,
May 2007, pp. 1777-1799, doi:
http://dx.doi.org/10.1016/j.comnet.2006.11.009.

[33] D. Padula, M. Alemandi, P. Pessolani, T. Cortes, S. Gonnet,
and F. Tinetti, “A User-space Virtualization-aware
Filesystem”, CONAIISI 2015, Buenos Aires, Argentina,
2015.

[34] M. Alemandi and O. Jara, “A fault-tolerant virtual disk
driver”, (in spanish) JIT 2015, Venado Tuerto, Argentina,
2015.

[35] The Spread Toolkit: http://www.spread.org, accessed on 30
October 2017.

[36] BUSE: https://github.com/acozzette/BUSE, accessed on 30
October 2017.

[37] NBD: http://nbd.sourceforge.net/, accessed on 30 October
2017.

[38] LwIP: http://savannah.nongnu.org/projects/lwip/, accessed on
30 October 2017.

[39] Webmin: http://www.webmin.com/, accessed on 30 October
2017.

[40] M. Kerrisk, “The Linux Programming Interface”, No Starch
Press, ISBN 978-1-59327-220-3, 2010.

[41] ipc-bench: http://www.cl.cam.ac.uk/research/srg/netos/ipc-
bench/ , accessed on 30 October 2017.

[42] SRR, “QNX API compatible message passing for Linux”,
http://www.opcdatahub.com/Docs/booksr.html, accessed on
30 October 2017.

[43] J. Collins and R. Findlay, “Programming the SIMPL Way”,
ISBN 0557012708, 2008.

[44] “A User-space NFS Server”, http://unfs3.sourceforge.net/,
accessed on 30 October 2017.

[45] HSFS: https://github.com/openunix/hsfs, accessed on 30
October 2017.

[46] Openstack: https://www.openstack.org/, accessed on 30
October 2017.

126Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

