
Building Trust in Cloud Computing – Isolation in Container Based Virtualisation

Ibrahim Alobaidan

Department of computer science

Liverpool John Moores University

Liverpool, UK

i.m.alobaidan@2012.ljmu.ac.uk

 Michael Mackay

Department of computer science

Liverpool John Moores University

Liverpool, UK

M.I.Mackay @ljmu.ac.uk

Nathan Shone

Department of computer science

Liverpool John Moores University

Liverpool, UK

N.Shone @ljmu.ac.uk

Abstract— Cloud computing is now a mature technology that

provides a wide variety of services. However, a challenging issue

that remains for many users is choosing the best cloud service

for a specific application and in many cases, one of the key

factors to consider is security and trust. For example, ensuring

data privacy is still a main factor in building trust relationships

between cloud service providers and cloud users. In this paper,

we propose a security system to address the weak isolation in

container-based virtualisation that is based on shared kernel OS

and system components. We address the isolation issue in

containers through the addition of a Role Based Access Control

model and the provision of strict data protection and security.

Keywords-Cloud computing; Container isolation; RBAC.

I. INTRODUCTION

Adding new resources and services in a highly scalbe
shared tenancy environment is a key feature of cloud
computing [1], which has now become a ubiquitous
technology in all areas of computing. However, one constant
issue faced in cloud computing is that of data security, which
has long limited the adoption of the approach in certain areas.
It has always been the responsibility of the cloud user to
ensure that the selected cloud enviroment provides a reliable
data privacy, integrity and trust model through its data
storage security framework. However, there has also always
been a corresponding trade-off to be made by the Cloud
Service Provider (CSP) in the need for security versus the
performance overheads this introduces on the system. One
example of this trade-off is in the move away from traditional
full-stack virtualization towards Containers. Performance,
isolation, security, networking, and storage are five factors
that are commonly used to compare between Virtual
Machines (VM) and Containers [2]. In the Virtual Machines
(VM) each guest VM has its own operating system and kernel
built on top of the virtualized hardware, while container-
based systems share the kernel OS and virtualize the
environment above it.

Containers provide better performance compared with
Virtual Machines because of this reduced overhead compared
to full virtualization but may provide less isolation, and
therefore be less trustworthy, as a result. The isolation aspect
is increasingly important in cloud computing to ensure the
users’ data privacy and integrity. Due to shared tenancy,
which is a central feature of virtualised infrastructures,
providers need to enforce strong mechanisms to ensure that
virtual services running on the same physical server do not

interfere with or impede each other, and that users cannot
break out of their allocated virtual machine (VM). As a result,
in this paper we propose a system to improve the isolation of
users in container-based virtualisation with the aim of
improving privacy of these services and therefore the
trustworthiness of the whole infrastructure.

In the remainder of this paper, we first describe some of
the related work on trust in cloud computing, an evaluation
of hypervisor vs container isolation, and an overview of
container security mechanisms in section 2. In Section 3, we
then present our proposed approach that would help to build
trust relationships between CSPs and users by solving the
isolation issue in container-based virtualisation. Next, we
present our system architecture that focuses on provider a
Docker plugin using Role Based Access Control (RBAC) in
Section 4. We briefly present the current implementation of
our proposed system in Section 5 and finally, we conclude in
Section 6.

II. RELATED WORK

In Cloud Computing the cloud service provider (CSP) is
responsible for providing a trusted computing platform to
guarantee privacy and security for the users [3]. This has been
an active research area since the inception of Cloud
Computing and many works in academia and industry have
aimed to address this issue. We will first discuss this in the
context of full stack virtualisation before analysing the
changed introduced with containers.

A. Cloud Security

CSPs typically deploy strong security mechanisms to
protect their infrastructure and by default use, encryption to
secure the remote connection to the user, but limited external
accountability has led to a lack of trust in the safety of data
and services entrusted to the Cloud by users. A few critical
issues for building trust in cloud computing were identified
by The Cloud Security Alliance [4] where different levels of
security are required in public and private clouds. Data
integrity and confidentially and building trust between
providers and users were the critical security issues identified
in every case. Another study [5]reported that trust was a vital
component to be combined into cloud systems, and security
is one of the key factors that many users and providers are
often concerned about.

Fundamentally, the fact that clouds use a remotely
administered shared virtual infrastructure often requires a
higher level of trust to exist between the CSP and the cloud
user. Therefore, having authorization as a form of security

127Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

measure is not only useful, but also highly necessary in order
for trust to exist between these two parties. For example, the
provider could use some approaches to limiting system
access to authorized users, such as through Role Based
Access Control (RBAC). Another mechanism to build up
trust is through a formal Trusted Computing Platform (TCP),
which can be used to ensure that only the customers can
access their data and the administrator has no access to any
of the customer’s secured data and cannot damage its
contents. This also provides assurances that user’s
computations are running on a trusted platform by validating
whether the VM is operating on a trusted implementation or
not.

B. Container vs hypevisor based isolation

Container-based virtualisation differs from that in VM
based virtualisation in that the latter is applied
comprehensively down to the hardware, whereas containers
use shared Operating System components. As such, the
hypervisor approach provides inclusively complete isolation
of the user applications and services, but incurs a
comparatively large performance overhead through the
additional management. In contrast, containers have become
very popular due to their improved performance and
relatively low overheads, but may offer less isolation to users
as a result. Some work has been done to measure the
difference in isolation between containers and hypervisors.

A study by IBM provided a comparison of isolation in
Linux containers and full Virtual Machines (VM) [6] where
the goal was to evaluate efficient methods of resource control
using the two different methodologies. The level of resource
isolation was evaluated between traditional VMs and Linux
containers when handling various workloads that were
particularly CPU, memory, and network intensive. The
results concluded that container-based technologies did offer
reduced isolation in some cases but ultimately provided a
superior alternative for cloud-based solutions because of
their better performance and easier deployment.

The authors in [7] also present results from testing the
isolation properties of VMWare, Xen, and OpenVZ through
various performance stress tests. Here, both VMware and
Xen operated perfectly in isolating the VMs in all the tests
with little resource degradation. However, OpenVZ
containers displayed a significant impact in comparison,
particularly where no resource-sharing controls are applied.
The results showed that the networking tests resulted in the
biggest impact in container isolation and therefore provided
the weakest isolation between virtual instances. This could be
a result of the network-oriented measurements using
SPECWeb, which were the benchmarking tools used. There
was also some impact on the disk intensive tests, especially
given the limited load the test introduced in the normal
servers. However, a significant shortcoming of the testing
was that it only considered a single type of container
virtualisation For example; Docker provides a much more
lightweight environment then OpenVZ and is still the default
solution for this type of virtualisation.

To evaluate the isolation performance of Docker in this
context, we replicated the test above to evaluate the

performance impact on a HTTP server in one container while
the other ran the above-mentioned isolation benchmarking
tests [2]. In this case we used Httperf for our testing because
it is a more open and flexible approach. In this test, we created
two Raspberry PI hosts connected via a local Ethernet
connection running at 1GBps, one as a client and the other as
a server; both are running Raspbian OS and Docker. The
client is running Httperf in a single container while the server
is configured with two containers, one with an Apache2
webserver and another with the isolation-benchmarking
suite. The isolation benchmark tests were compared to the
Httperf-only test to highlight any discrepancies. In particular,
the fork bomb intensive results showed significant
degradation in the presence of the stress tests and
demonstrates that Docker containers are also susceptible to
the same weaker isolation and performance.

C. Container security features

When reviewing Docker security, the Kernel namespace,
control groups and the Docker daemon itself are the three
major areas to consider. This is because Docker shares access
to the underlying Linux Kernel between the host and the
containers and therefore the responsibility of enforcing
isolation is also shared between the host and the platform.
Figure 1 shows the location of the main Dockers security
features.

 Figure 1. Kernel Namespaces and Cgroups

The Linux Kernel has Namespaces features, which is a
fundamental aspect of containers on Linux [8]. Layer
isolation is provided by these namespaces, which ensure that
Docker users can only access particular containers. Docker
creates these namespaces when the container is started, which
then isolates processes running within the container from
other containers and the host [2]. Each container has a
separate process ID (PID), network artefacts (e.g. routing
table, iptables and loopback Interface), and Inter-Process
Communication (IPC) mechanisms namely semaphores,
message queues and shared memory segments. Each

128Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

container also has its own mountpoint, which is provided by
the mnt namespace. Finally, hostnames for different
containers could be supported by the Unix Time Sharing
(UTS) namespace. Cgroups also provide many useful metrics
for container isolation [2]. Access to memory, CPU, disk I/O
and other system resources can be equally distributed on the
host, which aims to prevent a container from crashing the
system by exhausting its resources.

However, the focal point of all communication to and
from containers is the Docker daemon itself [9]. This
program runs on the host machine and provides a central
point of interaction between the system and the containers.
The users do not directly interact with the Docker daemon,
instead this is done through the Docker client, which provides
access to the daemon through sockets or a REST API.

III. PROPOSED APPROACH

Given this reliance on the underlying Linux mechanisms
in Container-based virtualisation, and the limitations in
isolation this introduces, this paper proposes the development
of an enhanced security system to address the issue by using
Role Based Access Control (RBAC). RBAC policies will be
configured for each container using an authorisation plugin
running within the Docker daemon with the not only to
isolate each container from the other and the underlying
systems but also to isolate user resources in the same
container from each other.

 In our proposed system, the containers trust the host to
make and enforce authorisation decisions as an extension of
the existing system without the need to introduce additional
components in the architecture. The plugin will be registered
as part of the Docker daemon, which resides on the host and
the containers have no access to this. Therefore, access can
be granted only to resources when authorised by the plugin.
The Docker daemon obtains this request through the CLI or
via the Engine API as before, which passes the request to the
authorisation plugin. The authorisation plugin will obtain the
user request data and provide a decision according to the user
policy. Figure 2 shows a typical authorisation scenario for a
user request.

A user request should contain information on the
username, policy, container ID, the object path, and action.
Then, the authorisation plugin will make a decision whether
to accept or deny the user request. For example, user Bob is
part of the HR user group. Bob wants to access the employee
database that is stored in a HR container that has the ID
495ad09fc530. A typical request in this case would include
the following information:

Subject: = "Bob" // the user that wants to access an employee

database.

Object: = "495ad09fc530" // the container that is going to be

accessed.

Path: = "/H/employee-database" // the path for the resources

within the containers that is going to be accessed.

Action: = "read" // the action that the Bob performs on the

employee database.

The benefits of this centralised approach are that it
reduces complexity and resource usage, as only one security
mechanism will be required per host. Further, due to the
centralised nature of data stored in cloud infrastructures, our
proposed design would minimise data leakage and improve
monitoring. Developers can already add access control in the
Docker daemon through a number of existing authorisation
plugins. However, this authorisation is currently performed
on a very coarse level and does not support the centralised
management of this process across the entire cloud
infrastructure.

Figure 2. Authorisation Scenario

The system we propose includes the ability to allow or
restrict access to specific containers, or the resources
contained within those containers on a per-user basis using
RBAC. The RBAC model has been the standard
authorisation approach for more than two decades [10].
However, RBAC has been deemed unsuitable for further use,
according to the continuously evolving access control
requirements of emerging computing paradigms. These
RBAC drawbacks have been addressed by Attribute Based
Access Control (ABAC), which has appeared as a powerful
alternative to RBAC. As such, it is necessary to explain why
we have not adopted this approach in our work. In our
analysis, we can determine that each container image will be
created in advance of deployment and so an appropriate set
of policies will be developed as part of this process. Then,
whenever an image is deployed in a container, these policies
can simply be imported into the authorisation plugin in the
host. This makes RBAC more scalable in situations where
large numbers of containers are expected to be deployed and
more performant with fewer overheads in resource-
constrained environments.

IV. SYSTEM DESIGN

We have created a first design of our security system
based on the approach outlined above. We first describe the

129Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

system architecture before focussing specifically on the
design of the plugin.

A. System architecture:

In the cloud datacentre, each Docker host is configured
with the authorisation plugin such that any container that is
deployed on is subject to the same process. Now, users who
utilise the datacentre can specify user authorisation policies
and associate them with any container images that they
configure on the system. This will provide a consistent model
of access that determines which users can access which
resources within that specific image. Thereafter, any time an
image is deployed into a container on any host with the
datacentre, the associated policies will be deployed into the
authorisation plugin alongside the image to control access, as
shown in figure 3. This system provides a scalable point of
control, such that the user roles and access can be
administered centrally and dynamically applied with each
update. Once a container is removed, the associated policies
are also simply deleted from the authorisation plugin on the
host.

 Figure 3. System Architecture

In this approach, the authorisation plugin in the host does

not require any knowledge of the resources inside the
container, but the administrator of the account can control
which users (or roles) can access which data, files or services.
The advantages of this is that only one authorisation plugin
has responsibility for each host, which may be running a
number of containers from many users. Moreover, regardless
of how the user resources are deployed in the data centre, the
policies that control user access are consistent and controlled
by the account administrator. Finally, the underlying CSP
does not need to understand how these policies are configured
to control access to resources, only that the mapping between
the image and policy is maintained.

The users can then request access to specific applications
within a Docker container, which is approved or denied
utilising the RBAC-based authorisation plugin. Each user has
a unique username that is used to access any host in the data
centre and the RBAC policies governs what actions users can

perform based on their assigned roles. The authorisation
process is shown in Figure 4 below. As outlined in the
previous section, the user accesses the deployed container via
a client, which will provide access to the Docker daemon. The
daemon will pass the request on to the authorisation plugin
which will process the request against the current policy base.
If a positive match is found then the request is granted or, as
shown below, the request is denied if no matching policy is in
place.

Figure 4. User Authentication via the plugin [11]

B. Authorisation plugin

The authorisation plugin runs directly on the Docker
framework and makes use of the intrinsic plugin support
offered by the daemon. The authorisation plugin is registered
as part of the Docker daemon at start-up and contains a user
policy file, which allows the administrator to set specific
permissions for the users. For example, a container might
have three objects groups that can be labelled objectgroup1,
which starts with /H in the file system, objectgroup2, which
stars with /W and objectgroup3, which starts with /F. Now,
user (Bob) belongs to usergroup1 that has some policies to
access objectgroup1 resources within a container. A policy
should be defined that ensures that usergroup1 has access to
all resources that have paths that start with /H in the file
system on the specific container. In this case, a typical policy
for the system would be as follows:

P, /v1.38/usergroup1/container/id//H/start, POST

P, /v1.38/usergroup1/container/id//H/attach, POST

The policy file contains rules that are specified according

to the following format. P is the policy type that is the first
field in each line. This project has one policy type, which is
P (policy_definition) that contain subject, object, path,
action) but it is possible to add more than one policy type in
the model such as P, P1and P2. For example:

[policy_definition]

P = subject, object, path, action

P1 = subject, object, action

P2 = object, action

130Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

The policy definition is matched by policy type so, for the
following policy definition:

P,/v1.38/usergroup2/container/495ad09fc530//W/start,

POST

P is the policy type and v1.38 is the Docker API version.

The subject is usergroup2 and the object is the container that
has ID 495ad09fc530. The path is /W and the action is start.
All rules in the policy file should follow the Docker API
references. For example, /containers/id/start, POST is to start
a particular container. Request data from containers is
provided by GET. Send data to server to stop, start or attach
containers is provided by POST.

The plugin model consists of a request definition, policy
definition, role definition, policy effect and matchers. Role
definition is represented by the letter G in the trust model,
which is based on the definition for RBAC role inheritance
relations. Each user will have one or more roles in the
predefined RBAC policy file. For example, the system has a
role named Role1 that is related to usergroup1, which allows
all users who are related to HR to access HR resources. If user
Ibrahim is part of the HR user group then we can define the
following policies:

P,/v1.38/Role1/container/495ad09fc530//H/start, POST

G, Ibrahim, Role1

In the first policy, the subject will allow all users who are

part of Role1 to access all resources that begins with /H
within the container that has ID 495ad09fc530. In the second
policy we simply add the user Ibrahim to Role1 which means
that he can access the resource. The action is set to read only
here because in container virtualisation, users should not have
permission to delete or edit the Docker image that contains
all the user data. In practice, this can be overcome through
the use of local caches that can be committed back to the
image over time. However, this functionality goes beyond the
scope of our work at this stage.

V. IMPLMENTATION

The trust architecture is designed to be run in a Cloud
Data Centre (CDC) cluster, which may be comprised of a
large cluster of servers. As such, the first stage of
implementing our work was to build a realistic data center
cluster by using Raspberry PI devices. This allows us to
develop our solution in a realistic, scalable, and cost-effective
environment. The Raspberry PI cluster is created using the
MPI (Messaging Passing Interface) library for
communication [12]. MPI is a communication mechanism
used in parallel computing environments to allow clustered
nodes to interact seamlessly. The Raspberry PI devices will
communicate without username or password through
configured SSH [13]. The three main capabilities provided by
secure SSH are secure command-shell, secure file transfer
and Port forwarding. Raspberry PI cluster has a master node
that has IP addresses for all cluster nodes and one or more
Docker hosts which can run containers as shown in figure 5.

Each Docker host is configured with our authorisation plugin
as part of the daemon, which has policies for each deployed
container. All containers in the system should be accessed by
users through the master node.

Figure 5. Trusted container PiCloud implementation

The authorization plugin is being created using the GO

language because this was used by Google in the
development of Docker and includes support for RBAC. GO
has many libraries including one for RBAC and so we can
easily extend the existing Docker plugin support framework
to develop our system.

The trust plugin model is made up of the request
definition, the policy definition, the role definition, the policy
effect and matchers. As explained in the previous sections,
the request definition has four factors, which are subject,
object, path and action. Our implementation has three Roles
(Role1, Role2 and Role3), which are related to Usergroup1,
Usergroup2 and Usergroup3 respectively. The policy
definitions are based on the four factors explained in the
previous section, so a policy file in the authorisation plugin
might typically comprise of the following policies:

A. Usergroup1

p, /v1.38/Role1/container/495ad09fc530//H/json, GET

p, /v1.38/ Role1/container/495ad09fc530//H/start, POST

p, /v1.38/ Role1/container/495ad09fc530//H/stop, POST

p, /v1.38/ Role1/container/495ad09fc530//H/attach, POST

g, usergroup1, Role1

B. Usergroup2

p, /v1.38/Role2/container/495ad09fc530//W/json, GET

p, /v1.38/ Role2/container/495ad09fc530//W/start, POST

p, /v1.38/ Role2/container/495ad09fc530//W/stop, POST

p, /v1.38/ Role2/container/495ad09fc530//W/attach, POST

g, usergroup2, Role2

131Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

C. usergroup3

p, /v1.38/Role3/container/495ad09fc530//F/json, GET

p, /v1.38/ Role3/container/495ad09fc530//F/start, POST

p, /v1.38/ Role3/container/495ad09fc530//F/stop, POST

p, /v1.38/ Role3/container/495ad09fc530//F/attach, POST

g, usergroup3, Role3

The policy file above specifies that Usergroup1 can
access all resources that start with /H, Usergroup2 can access
all resources that start with /W, and usergroup3 can access all
resources that start with /F within a single container that has
ID 495ad09fc530. The role definition maps users to a specific
usergroup to allow them to access the containers.

Finally, the matcher will compare the policy rule against
the request based on the subject, object, path or action.
Specifically, the matcher will compare r.sub (request
definition subject) to p.sub (policy definition subject), r.obj
(request definition object) to p.obj (policy definition object)
and so on for the path and action. A match will be found only
when there is an exact correlation between each of the request
and policy parameters:

[matchers]

m = g(r.sub, p.sub) && r.path == p.path && r.obj == p.obj

&& r.act == p.act

VI. CONCLUSION

This paper has addressed the isolation issue in container-
based virtualisation. We have developed a security system to
enhance access control policies and provide data protection
and security for users within each container. This security
system can protect container guests from malicious users and
improves the integrity of container data, applications and
resources by adding a Role Based Access Control model.

In our system, the containers rely on the host to make the
access decision through an authorisation plugin. This helps to
address scalability issues because just one security model is
required in the host instead of within each container.
Moreover, each Docker image is defined along with a set of
user groups and policies, which define how access should be
granted to the resources it contains. Each time a new image
is deployed in a container on the host, the authorisation plugin
retrieves and applies the policy.

We are in the process of developing a proof of concept
implementation of the authorisation plugin as part of our
future work. Once completed, we will deploy and test it in

our PiCloud CDC testbed to evaluate its suitability to provide
fine-grained access control.

REFERENCES

[1] P. Sirohi and A. Agarwal, "Cloud computing data storage
security framework relating to data integrity, privacy and
trust," in 2015 1st International Conference on Next
Generation Computing Technologies (NGCT), 2015, pp. 115-
118.

[2] R. Dua, A. R. Raja, and D. Kakadia, "Virtualization vs
Containerization to Support PaaS," in 2014 IEEE International
Conference on Cloud Engineering, 2014, pp. 610-614.

[3] P. Sen, P. Saha, and S. Khatua, "A distributed approach
towards trusted cloud computing platform," in 2015
Applications and Innovations in Mobile Computing (AIMoC),
2015, pp. 146-151.

[4] K. Hwang and D. Li, "Trusted Cloud Computing with Secure
Resources and Data Coloring," IEEE Internet Computing, vol.
14, no. 5, pp. 14-22, 2010.

[5] Z. Shen and Q. Tong, "The security of cloud computing system
enabled by trusted computing technology," in 2010 2nd
International Conference on Signal Processing Systems, 2010,
vol. 2, pp. V2-11-V2-15.

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, "An updated
performance comparison of virtual machines and Linux
containers," in 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
2015, pp. 171-172.

[7] J. N. Matthews et al., "Quantifying the performance isolation
properties of virtualization systems," in Proceedings of the
2007 workshop on Experimental computer science, 2007, p. 6:
ACM.

[8] D. docs. (2019). Isolate containers with a user namespace.
Available: https://docs.docker.com/engine/security/userns-
remap/

[9] B. Kelley, J. J. Prevost, P. Rad, and A. Fatima, "Securing Cloud
Containers Using Quantum Networking Channels," in 2016
IEEE International Conference on Smart Cloud (SmartCloud),
2016, pp. 103-111.

[10] I. Alobaidan, M. Mackay, and P. Tso, "Build Trust in the Cloud
Computing - Isolation in Container Based Virtualisation," in
2016 9th International Conference on Developments in
eSystems Engineering (DeSE), 2016, pp. 143-148.

[11] D. docs. (2019). Access authorization plugin. Available:
https://docs.docker.com/engine/extend/plugins_authorization/

[12] X. Wei, H. Li, and D. Li, "MPICH-G-DM: An Enhanced
MPICH-G with Supporting Dynamic Job Migration," in 2009
Fourth ChinaGrid Annual Conference, 2009, pp. 67-76.

[13] V. software. (2008). An Overview of the Secure Shell (SSH).
Available:
https://www.vandyke.com/solutions/ssh_overview/ssh_overvi
ew.pdf

132Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/extend/plugins_authorization/
https://www.vandyke.com/solutions/ssh_overview/ssh_overview.pdf
https://www.vandyke.com/solutions/ssh_overview/ssh_overview.pdf

