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Abstract—Recognition of human activities and situation 
awareness is an important basis for safe human-robot-
cooperation. In this paper, a recognition module is presented 
and discussed. The usage of Description Logics allows for 
knowledge based representation of activities and situations. 
Furthermore, reasoning about context dependent actions 
enables conclusions about expectations for robot behavior. 
This approach represents a significant step towards a full-
fledged cognitive industrial robotic framework.    

Keywords – cognitive robotics, Description Logics, ambient 
intelligence, situation and action recognition, human-robot 
cooperation. 

I.  INTRODUCTION 

Industrial robotics is a challenging domain for cognitive 
systems, especially, when human intelligence meets solid 
machinery like most of today’s industrial robots. 

Hence, guaranteeing safety for human workers, safety 
fences are installed to separate humans and robots. As a 
consequence no real interaction or cooperation sharing time 
and space can be found in industrial robotics.  

Some progress has gained in the past so that some 
modern working cells are equipped with laser scanners 
performing foreground detection. But with these systems one 
is not able to know what is going on in the in the scene and 
therefore could not contribute something meaningful for 
challenging tasks like safe human-robot cooperation. 

We are conducting research on recognition of and 
reasoning about actions and situations in a human centered 
production environment, in order to enable interactive and 
cooperative scenarios. 

This paper focuses on using Description Logics (DLs) [8] 
as means for representation of knowledge and as reasoning 
facilities for inference about activities and situations. 
Furthermore, conclusions about user expectations about 
robotic behavior can be drawn. 

In Section II, some related research work on reasoning 
about scenes and situations will be presented. In Section III, 
the framework will be introduced, which enables the sensor 
data processing and subsequent knowledge based reasoning. 
In Section IV, DLs will be briefly introduced and the module 
realizing the communication with a Description Logics 
reasoner, knowledge base management and reasoner result 
management will be presented in detail. Also the modeled 
situations and activities are explained. Section V discusses 
experimental results which have been carried out for both, 

predetermined test cases and under real-life conditions. In 
Section VI, a summary is given. Finally, some hints for 
future work are also mentioned. 

II. RELATED WORKS 

There are a lot of approaches for action recognition 
systems based on probabilistic methods, e.g., hidden Markov 
Models (HMMs) [16, 17, 18], as their theoretic foundation is 
well understood and applications in speech recognition have 
shown their capabilities. 

Based on arguments, that HMMs are not suitable for 
recognition of parallel activities, instead propagation 
networks [19] have been introduced. The propagation 
network approach associates each node of the network with 
an action primitive, which incorporates a probabilistic 
duration model. Also conditional joint probabilities are used 
to enforce temporal and logic constraints. In analogy to 
HMMs, many propagation networks are evaluated, in order 
to approximate the observation probability. 

In [20], arguments are put forward, that recognition of 
prolonged activities is not feasible based on purely 
probabilistic methods. Thus, an approach is presented which 
uses parameterized stochastic grammars. 

The application of knowledge based methods for action 
recognition tasks is scarce, but work on scene interpretation 
using DLs has been conducted.  

In [9], DLs are used for reasoning about traffic situations 
and understanding of intersections. Deductive inference 
services are used to reduce the intersection hypotheses space 
and to retrieve useful information for the driver. 

In [10], scene interpretation was established using DLs. 
Table cover scenes are analyzed and interpreted based on 
temporal and spatial relations of visual aggregate concepts. 
The interpretation uses visual evidence and contextual 
information in order to guide the stepwise process. 
Additionally probabilistic information is integrated within 
the knowledge based framework in order to generate 
preferred interpretations. This work is widened to cope with 
general multimedia data in [11], in which a general 
interpretation framework based on DLs is presented. 

In [12], a comprehensive approach for situation-
awareness is introduced, which incorporates context 
capturing, context abstraction and decision making into a 
generic framework. This framework manages sensing 
devices and reasoning components which allows for using 
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different reasoning facilities. Thus, DLs can be used for high 
level decision making. 

These last examples show that the usage of DLs bears 
great potential. Hence its adoption in the situation and action 
recognition task incorporated into the MAROCO framework. 

To the best of our knowledge this is the first paper which 
incorporates description logics in the domain of cognitive 
robotics. For reasons of this, it was not possible to compare 
the runtime analysis results to concurrent research groups. 

There are some investigations concerning runtime 
analysis of descriptions logic reasoners (see [21], e.g.) but 
they are far away from the robotics community and finally 
they show that the pellet system which was used in this 
publication is one of the best with respect to the given 
constraints of the software architecture of MAROCO. 

The main motivation writing this paper is introducing the 
description logics approach into the domain of cognitive 
robotics. There are just a few other research groups which 
are dealing with description logics in a similar research 
domain and the most related ones were referenced in this 
paper. Most attention was spent on extending the cognitive 
robotic system MAROCO with description logics and 
building a knowledge base for action and gesture 
recognition. 

The markerless tracking of a human body in real time is 
not at the core this paper. But this paper is the first which 
brings together markerless real time tracking of a human 
body together with a safe robot path-planning module and 
the description logic approach. Thus, this paper intends to 
present interesting results that are gathered from 
experimental investigations using description logics. 

III.  THE MAROCO FRAMEWORK 

The MAROCO (human robot cooperation) framework 
[2,3] is an implemented architecture that enables human 
centered computing realizing a safe human-robot interaction 
and cooperation due to advanced sensor technologies and 
fancy algorithms [6,7]. 

 

 

 
 
Figure 1. (Up) Reconstructed human model from depth images. (Down) 
Environmental scene model consisting of several kinematical chains. Three 
different industrial robots and a human model. All agents and robots have 
been reconstructed by MAROCO and are integrated into the virtual model 
in real-time including safety features extraction, risk estimation and path 
planning. 
 

Every system implementing machine intelligence needs 
sensors. The MAROCO system analyzes image sequences 
that are gathered from a 3D vision system [1] based on time-
of-flight principle which is mounted to the top of the ceiling 
of the working cell (see Fig. 1). Modules dedicated to image 
sequence analysis make it possible to estimate more than a 
dozen of kinematical parameters, e.g., head orientation, 
upper body orientation, arm configuration, etc., of a human 
model without using any markers (Fig. 1). The technical 
details of the methods realizing the real-time reconstruction 
of the kinematical model are not in the focus of this paper. 
Details can be found in [3,6,7]. 

As safety is one of the most demanding features when 
industrial robots get in contact with human workers, 
MAROCO is focused on estimating the risk for the human 
worker depending on the scene configuration. A variety of 
methods are integrated into the framework like pure 
functional evaluation, machine learning tools, e.g., support 
vector machines, and a two-threaded adaptive fuzzy logic 
approach, which at the moment makes the race [7]. 

Having estimated the risk, one is interested in finding a 
procedure minimizing the risk for both, the worker and 
machinery. Re-planning is an efficient tool minimizing the 
risk. A method for re-planning the path of the robot with 
respect to safety and real-time capability is presented in [4].  

The kinematical model also allows for recognition of 
human activities and situations inside the robot working area. 
Using Description Logic (DL) reasoning facilities, 
conclusions about occurring situations, actions, their 
temporal relations and expectations about robot behavior can 
be drawn. This is what will be shown in the next sections. 

IV.  THE RECOGNITION MODULE 

This section is dedicated to discuss the recognition 
module including its components and modeled knowledge 
base after a very brief introduction to DLs. 

A. Description Logics 

In this paper, DLs [8] are used to formalize knowledge 
about situations, actions and expectations. DL is a 2-variable 
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fragment of First Order Logic and most DLs are decidable. 
Thus, sound, complete and terminating reasoning algorithms 
exist. 

 
A DL knowledge base is divided distinctly into general 

knowledge and knowledge about the individuals in the 
domain. The former defines the terminology of the domain 
and its axioms are declared in the terminology box, hence 
TBox. The latter defines assertions about individuals and, 
therefore, is declared in the assertion box, hence ABox. This 
allows for modular and reusable knowledge base and thus for 
more efficient coding of knowledge [9]. 

Due to DL’s open world assumption, it can deal naturally 
with incomplete information, which is essential in reasoning 
about sensor data. 

B. The Module Design 

The recognition module needs to fulfill at least the tasks of 
establishing a communication interface with the Description 
Logics reasoner, managing the knowledge base and 
managing the reasoner results.  
In Figure 2, components of the module are presented. The 
communication via TCP and the XML parsing are done by 
the components marked as DIG-interface. The DIG-
interface is a W3C standard developed by the Description 
Logic Implementation Group for communication with 
Description Logics reasoners in the realm of the semantic 
web and is introduced in [5]. Many reasoners [13,14,15] 
support this interface definition, which allows the separation 
of application and reasoner by the means of programming 
language and execution place. 

 

 
 

Figure 2. Components of the recognition module. 
 
The DIG-interface follows a functional approach called 

Tell&Ask [8]. After defining a knowledge base – the tell 
operation – reasoner results and information can be retrieved 
– the ask operation. The modification of an existing 
knowledge base after using an ask operation is not defined 
by the DIG-interface. Therefore in each run time cycle the 
recognition module creates a complete knowledge base, 
which will be released in the end (see Fig. 3). 

 
As a consequence the recognition module needs to 

manage an up-to-date model of the knowledge base, which 
consists of domain specific knowledge and assertions 
dependent on the current kinematical human model and 
robot specific parameters. This distinction corresponds in 
Description Logics with TBoxes and ABoxes even though 
the DIG-interface does not distinguish between them. The 
domain specific knowledge is modeled a priori, the 
assertional knowledge is created in each runtime cycle 
afresh. The modeled knowledge base will be explained in 
more detail in Section IV C. 

As the assertional knowledge depends on kinematical 
parameters a feature extraction component is applied in order 
to fill the attribute values of the assertions. The following 
features are important w.r.t. the component Human: Angles 
of both elbows, Angles of both arms to shoulder respective 
to the up-axis, Angle difference between head orientation 
and robot, Walking velocity and used tool. 

The feature used tool is not supported by existing sensors 
at the moment and is therefore simulated. It can have one of 
the following values: none, measurement tool or working 
tool. The simulation of this parameter can be influenced 
directly by user input using standard human machine 
interfaces. As a result complex working scenarios can be 
modeled and analyzed. 

 
 

Figure 3. Communication between interface component and DL reasoner. 
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 The component Robot provides the parameters for: 
gripper status and movement status. 

During feature vector creation, extracted values are 
mapped onto sharp sets. The knowledge base is then 
populated with corresponding set strings which can be used 
for comparative operations during reasoning. 

One major aspect of understanding human activity is 
modeling temporal relations between different actions. In 
this work, these relations are introduced by defining an after-
role. Hence a certain action can only be recognized if certain 
other actions occurred prior. This after-role can be regarded 
as defining preconditions onto actions. Previously 
recognized actions need to be included in the knowledge 
base in order to allow for correct recognition of current 
actions. All recognized actions are stored by the reasoner 
result management component and are retrieved during 
recreation of the knowledge base. 

C. The Knowledge Base 

In Figure 4, the ontology about situations and activities 
which are modeled by the knowledge base are presented. 
The concept Situation has the attribute Number Humans to 
distinguish between the concepts Robot alone and Human 
present. 

In the situations of Human present, or its sub-concepts, 
Activities can take place, which are done by a Human. This 
defines the corresponding concepts and relating roles. 

 

  
In Figure 5, the ontology concerning Actions and 

complex Actions is shown. As pointed out above, actions can 
have a temporal relation expressed as after-role. The action 
Put Tool Away can only occur after the action Take Tool. 
This role is also exploited in complex actions, e.g., Continue 
Robot Motion can only be signaled after Stop Robot. 

Actions can be regarded as atomic concepts, whereas 
complex actions consist of other actions, regardless of 
atomicity. The concepts Take Tool and Put Tool Away are 
considered atomic, because they are defined by and based on 
the single attribute Used Tool. This attribute is directly 
altered by user input, thus does not result from sensor data 
analysis. The role doneBy which is defined for activities is 

also modeled for actions. For reasons of readability this 
relation is not depicted. 

 The occurrence of the situation Cooperation implies that 
there are expectations towards the robot behavior. Moreover, 
an expectation can be triggered by an action (see Fig. 6).  
This allows for reasoning about expectations without 
necessarily recognizing a triggering action. This implicit 
relation is also exploited between the activities Monitor, 
Hold Tool and Actions. 

V. EXPERIMENTAL RESULTS 

For reasons of experimental analysis of the implemented 
activity and situation recognition different courses of action 
were executed and the recognition results were recorded. 

In order to analyze different scenarios efficiently means 
of automated feature value presetting were implemented. 
The overall analysis is based on these presets and on actual 
sensor data processing. Hence natural movements and  

 
transitions between actions can be tested and special use 
cases can be investigated. 

In this section, recorded recognition results will be 
illustrated and discussed. 

 

 
 

Figure 4. ER model of activity and situation ontology. 

 
 

Figure 5. ER model of the action ontology. 
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Figure 6. ER model of the expectation ontology. 

A. Examplary Result Records 

The recorded experimental results contain a timestamp 
which indicates the starting time of the recognition cycle in 
milliseconds since program start. This timestamp is then 
followed by the extracted feature values if there is a human 
worker in the supervised area. The components of the feature 
vector are listed in following order: Angle arm left, angle 
arm right, angle elbow left, angle elbow right, walking 
velocity, angle difference between head orientation and 
robot, holding tool, gripper status and  robot movement 
status. 

The next number is the timestamp of the final result 
message from the DL reasoner (Tab. I). Results will be 
recorded whenever there are new insights. Thus, the last two 
lines of Table I have no special entries past the last return 
timestamp. 

TABLE I.   EXAMPLE RECORD BASED ON SENSOR DATA 

29009 29395 RobotAlone 
29396 0  0 0 0 1 84 0 0 1 29797 Distraction Ignore 
29799 0  0 0 0 1 86 0 0 1 30212 
30213 0 15 0 8 1 56 0 0 1 30642 

 
Table II demonstrates the recognition of different 

situations and activities. Furthermore an additional action 
and expectation are reasoned and recognized.  

During a recognition cycle all recognized concepts are 
returned from the DL reasoner in a single flush, therefore, 
the number of lines in the records represents the number of 
returned responses.  

 

TABLE II.  EXAMPLE RECORD BASED ON PRESETS 

16160 90 0 0 0 20 0 0 0 1 16965 WalkingBy Walking 
. . . 
22061 90 0 0 0 20 0 0 0 1 22447 
22448  0 0 0 0  0 0 1 0 1 22834 Cooperation  
                    HoldTool TakeTool getWorkPiece 

B. Results 

Tables I and II already indicate that the processing time 
of a recognition cycle varies around 500 ms. This indication 
can be shown to hold true by analysis of a large amount of 
cycles.  

TABLE III.  RESULTS FROM EVALUATION  

# Recognition cycles 2140  Max [ms] 9705 

Ø Response time [ms] 551.78  # > 1000 ms 17 (0.79%) 

Min [ms] 216  # > 5000 ms 4 (0.18%) 

 
In Table III, the results of 2140 recognition cycles are 

summarized. It shows that the average processing time is 
approximately 550 ms. The lower bound is 216 ms. The 
casual outliers take up to 10 seconds in worst case scenarios. 
The number of cycles taking more than 1 second reaches 
0.79% of all cycles. The amount of processing cycles 
consuming more than 5 seconds is 0.18%. 

TABLE IV.  RECORD FOR ANALYSIS OF LONG RUNTIMES 

60260 90 0 0 0 0  0 0 0 1 60740 Comm. MoveArms 480 
. . . 
64501 90 0 0 0 0  0 0 0 1 64940                439 
64940 90 0 0 0 0  0 0 0 1 66475               1535 
66475 90 0 0 0 0  0 0 0 1 67017                542 
67017 90 0 0 0 0  0 0 0 1 72300               5283 
72300 90 0 0 0 0  0 0 0 1 72750                450 
72750 90 0 0 0 0 60 0 0 1 73221 Distr. Ignore  471 

 
In Table IV, cycle run times are noted at line’s end. 

These numbers show that long cycle times cannot be related 
directly to changes in the feature vector. Thus, the 
recognition process itself might not cause the outliers. This 
will need further investigation. 

By using the kinematical human model, recognition of 
gestures and human motion can be analyzed (see Fig. 7). 
Table V shows an example in which a human first watches 
the robot. This concludes the expectation, that the robot shell 
follow a planned path. After some time the human moves his 
arms which results in a communicative situation. Because 
the arms are moved differently by the human, a Stop Robot 
instruction is recognized in the next recognition cycle. The 
reasoning results in the expectation that the robot shell 
comply with the instructions. 

 Consequently natural movements and actions can be 
recognized despite the average cycle processing time of 
approx. 550 ms. 

TABLE V.  EXAMPLE RECORD FOR NATURAL MOVEMENT 

103607 0 0 1 0 3 5 0 1 2 104135 Monitoring Monitor  
                                followPathPlanning 
. . . 
112169 0 0 1 0 1 9 0 0 1 112706 
112707 62  9 26 21 3 0 0 0 1 113193 Comm. MoveArms 
113194 74 70 21 23 2 6 0 0 1 113823 StopRobot  
                                followInstructions 
113824 76 88 20 35 5 9 0 0 2 114473 

 
Tables II and V demonstrate that depending on situation 

and actions expectations are generated. The generation of 
expectation is also dependent on the robot movement status. 
Table VI shows that at first a cooperative situation is 
recognized and a generated expectation get Work Piece. At 
this moment the robot was following a planned path, which 
is signaled as 1 in the feature vector. In the simulation 
incorporated in MAROCO, this generated expectation leads 
to a change of the robot movement status which sets the 
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corresponding feature value to 2, meaning the robot is 
obeying instructions. This change allows the reasoning to 
conclude the new expectation to position the robot’s tool 
center point in order to ease the work that the user is about to 
do with the work piece. 

TABLE VI.  EXAMPLE FOR DYNAMIC EXPECTATION REASONING 

96795 75 0 21 0 0 3 1 0 1 97287 Coop. HoldTool  
                             TakeTool getWorkPiece 
97289 75 0 22 0 0 0 1 1 2 97799 positionTCP 

 
This process of interaction between reasoner results and 

robotic behavior demonstrates the dynamic abilities of the 
presented approach to recognize and understand situations 
and actions. 

 

 

 
 
Figure 7. (Top) Human watching the robot. Recognized situation: 
Monitoring. Recognized activity: Monitor. No specified action recognized. 
The robot is expected to carry on with its task of following its planned path. 
(Bottom) Human is communicating with the robot. The complex action to 
signal a right turning movement is recognized. Recognized situation: 
Communication. Activity: Move arms. The robot is expected to comply 
with the users instructions. 
 

C. Evaluation of Results 

The results demonstrate that the capabilities of the 
presented approach reach beyond sole activity and situation 
recognition. By generating expectations towards robot 
behavior, an understanding of the situation can be achieved. 
This induction of relations between concepts can hardly be 
realized by purely probabilistic methods. 

The achieved processing cycle time of approx. 550 ms 
does not allow for safe cooperation based only on the 
recognition module. Thus, the MAROCO framework uses its 

implemented techniques and algorithms to enforce safety and 
real-time capabilities during robot motion. Nevertheless, the 
measured results will be used to quantify improvements of 
later developments. To the best of our knowledge, there are 
no such time related results made available in the field of 
industrial human-robot cooperation or another related field 
close to it so far. 

VI.  SUMMARY AND FUTURE WORK 

In this paper, a situation and action recognition module 
was implemented, which is capable of generating 
expectations towards robotic behavior.  

A knowledge base containing domain and assertional 
knowledge was modeled. It defines concepts about 
situations, activities, actions and expectations. These 
concepts are linked and related by role definitions. Temporal 
associations of actions are modeled by an after-role, which 
allows preconditioning the recognition of certain actions. 

Description Logics are used to define the knowledge 
base. By implementing the DIG-interface, Description 
Logics reasoning facilities can be used independently of 
programming language and execution space. 

In order to express value constraints on concept 
attributes, the feature extraction process maps feature values 
onto sets, which can be represented as strings in the 
knowledge base. This allows additionally for support of a 
wide range of Description Logic reasoners. 

During evaluation the effectiveness was shown. 
Situations, activities and naturally conducted actions are 
recognized. Expectations are generated and can influence 
dynamically subsequent processing cycles. 

The here presented experimental results are promising for 
further research in the field of cognitive industrial robotics. 

The next steps will be modeling a broader knowledge 
base in order to incorporate multi-robot setups. Also, the 
implementation of action plan recognition will deepen the 
understanding of situations and enable the analysis of 
complex cooperation scenarios. 
It was taken a stand against the probabilistic way of 
estimating actions from image sequences in the beginning of 
the related work section. But it is suggested to evaluate 
different approaches in the near future which also take 
probabilistic methods into account or maybe fuse different 
methods bringing together the best of both worlds. 
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