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Abstract—Recognition of human activities and situation
awareness is an important basis for safe human-robo
cooperation. In this paper, a recognition module ipresented
and discussed. The usage of Description Logics alle for
knowledge based representation of activities and teations.
Furthermore, reasoning about context dependent aains
enables conclusions about expectations for robot bavior.
This approach represents a significant step towards full-
fledged cognitive industrial robotic framework.

Keywords — cognitive robotics, Description Logi@nbient
intelligence, situation and action recognition, huam-robot
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l. INTRODUCTION

Industrial robatics is a challenging domain for citige
systems, especially, when human intelligence meetisl
machinery like most of today’s industrial robots.

predetermined test cases and under real-life donditIn
Section VI, a summary is given. Finally, some hifas
future work are also mentioned.

II.  RELATED WORKS

There are a lot of approaches for action recognitio
systems based on probabilistic methods, e.g., hititkrkov
Models (HMMs) [16, 17, 18], as their theoretic folation is
well understood and applications in speech recmgnhave
shown their capabilities.

Based on arguments, that HMMs are not suitable for
recognition of parallel activities, instead propaga
networks [19] have been introduced. The propagation
network approach associates each node of the retmity
an action primitive, which incorporates a probatidi
duration model. Also conditional joint probabilgiare used
to enforce temporal and logic constraints. In agyaldo

Hence, guaranteeing safety for human workers, ysafettMMs, many propagation networks are evaluated,rdeo

fences are installed to separate humans and roBeta
consequence no real interaction or cooperationrghéime
and space can be found in industrial robotics.

to approximate the observation probability.
In [20], arguments are put forward, that recognitiof
prolonged activities is not feasible based on purel

Some progress has gained in the past so that sorREobabilistic me.thods. Thus, an approach is presewhich
modern working cells are equipped with laser scenne USeS parameterized stochastic grammars.

performing foreground detection. But with thesetelys one
is not able to know what is going on in the in fitene and
therefore could not contribute something meaningturl
challenging tasks like safe human-robot cooperation

The application of knowledge based methods foroacti
recognition tasks is scarce, but work on scengpratation
using DLs has been conducted.

In [9], DLs are used for reasoning about trafficiafions

We are conducting research on recognition of and@nd understanding of intersections. Deductive @rfee

reasoning about actions and situations in a huneateced
production environment, in order to enable intévacand
cooperative scenarios.

This paper focuses on using Description Logics ()8
as means for representation of knowledge and a®mawy
facilities for inference about activities and sttaas.

services are used to reduce the intersection hgpethspace
and to retrieve useful information for the driver.

In [10], scene interpretation was established u§ihg.
Table cover scenes are analyzed and interpretest bais
temporal and spatial relations of visual aggregatecepts.
The interpretation uses visual evidence and comdéxt

Furthermore, conclusions about user expectationsutab information in order to guide the stepwise process.

robotic behavior can be drawn.

Additionally probabilistic information is integratewithin

In Section Il, some related research work on reagon the knowledge based framework in order to generate

about scenes and situations will be presentedettic 11,

the framework will be introduced, which enables se@sor
data processing and subsequent knowledge basezhirens
In Section IV, DLs will be briefly introduced andet module
realizing the communication with a Description Laxi

preferred interpretations. This work is widenedc:dpe with
general multimedia data in [11], in which a general
interpretation framework based on DLs is presented.

In [12], a comprehensive approach for situation-
awareness is introduced, which incorporates context

reasoner, knowledge base management and reasuér recapturing, context abstraction and decision makirig a

management will be presented in detail. Also thedeted

situations and activities are explained. Sectionlis€usses

experimental results which have been carried outbfiih,
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generic framework. This framework manages sensing
devices and reasoning components which allows $imgu
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different reasoning facilities. Thus, DLs can bedifor high
level decision making.

These last examples show that the usage of DLssbear

great potential. Hence its adoption in the situatiod action
recognition task incorporated into the MAROCO framek.
To the best of our knowledge this is the first paphkich
incorporates description logics in the domain ofjrdtive
robotics. For reasons of this, it was not possibleompare
the runtime analysis results to concurrent resegrahips.
There are some investigations concerning
analysis of descriptions logic reasoners (see [21.,) but
they are far away from the robotics community aimalfy
they show that the pellet system which was usedhis
publication is one of the best with respect to theen
constraints of the software architecture of MAROCO.
The main motivation writing this paper is introdougithe
description logics approach into the domain of dibgn
robotics. There are just a few other research graupich
are dealing with description logics in a similarsearch
domain and the most related ones were referencetisn
paper. Most attention was spent on extending tlymitioe

runtime

Figure 1. (Up) Reconstructed human model from dépigiges. (Down)
Environmental scene model consisting of severarkigtical chains. Three
different industrial robots and a human model. &gjents and robots have
been reconstructed by MAROCO and are integratedtiré virtual model
in real-time including safety features extractiosk estimation and path
planning.

Every system implementing machine intelligence seed
sensors. The MAROCO system analyzes image sequences

robotic system MAROCO with description logics and that are gathered from a 3D vision system [1] basetime-
building a knowledge base for action and gesturéf-flight principle which is mounted to the top thfe ceiling

recognition.

The markerless tracking of a human body in reagtim
not at the core this paper. But this paper is trst fhich
brings together markerless real time tracking dfeman
body together with a safe robot path-planning medahd
the description logic approach. Thus, this papégnids to
present interesting results that are gathered
experimental investigations using description lsgic

I1l.  THE MAROCO FRAMEWORK

of the working cell (see Fig. 1). Modules dedicatedmage
sequence analysis make it possible to estimate tharea
dozen of kinematical parameters, e.g., head otienta
upper body orientation, arm configuration, etc.adfiuman
model without using any markers (Fig. 1). The téchin
details of the methods realizing the real-time nstaction

froraf the kinematical model are not in the focus a$ thaper.

Details can be found in [3,6,7].
As safety is one of the most demanding featuresnwhe
industrial robots get in contact with human workers

[2,3] is an implemented architecture that enablamdn

centered computing realizing a safe human-robetraation

and cooperation due to advanced sensor technolegiés
fancy algorithms [6,7].
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worker depending on the scene configuration. Aepgrbf
methods are integrated into the framework like pure
functional evaluation, machine learning tools, ,esypport
vector machines, and a two-threaded adaptive flagic
approach, which at the moment makes the race [7].

Having estimated the risk, one is interested idlifig a
procedure minimizing the risk for both, the workand
machinery. Re-planning is an efficient tool minimg the
risk. A method for re-planning the path of the rbldth
respect to safety and real-time capability is pratin [4].

The kinematical model also allows for recognitioh o
human activities and situations inside the robatking area.
Using Description Logic (DL) reasoning facilities,
conclusions about occurring situations, actionsegirth
temporal relations and expectations about roboatieh can
be drawn. This is what will be shown in the nexttiems.

IV. THE RECOGNITIONMODULE

This section is dedicated to discuss the recognitio
module including its components and modeled knogéed
base after a very brief introduction to DLs.

A. Description Logics

In this paper, DLs [8] are used to formalize knaige
about situations, actions and expectations. DLdsvariable
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Figure 3. Communication between interface compoaedtDL reasoner.
fragment of First Order Logic and most DLs are dable.
Thus, sound, complete and terminating reasoningyighgns
exist.
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Figure 2. Components of the recognition module.

The DIG-interface follows a functional approachleal
Tell&Ask [8]. After defining a knowledge base — thall
operation — reasoner results and information caretseeved
— the ask operation. The modification of an existing
knowledge base after using ask operation is not defined
by the DIG-interface. Therefore in each run timeleythe
recognition module creates a complete knowledges,bas
which will be released in the end (see Fig. 3).

As a consequence the recognition module needs to
manage an up-to-date model of the knowledge basiehw
consists of domain specific knowledge and assestion

knowledge and knowledge about the individuals ie th gependent on the current kinematical human model an

domain. The former defines the terminology of tlwendin
and its axioms are declared in the terminology bweqce
TBox. The latter defines assertions about indivisiLend,
therefore, is declared in the assertion box, hé®ex. This
allows for modular and reusable knowledge basetaumifor
more efficient coding of knowledge [9].

Due to DL’s open world assumption, it can deal radiy
with incomplete information, which is essentialr@asoning
about sensor data.

B. The Module Design

The recognition module needs to fulfill at least thsks of
establishing a communication interface with the digsion

robot specific parameters. This distinction corcegls in
Description Logics with TBoxes and ABoxes even titou
the DIG-interface does not distinguish between théire
domain specific knowledge is modeled a priori, the
assertional knowledge is created in each runtimelecy
afresh. The modeled knowledge base will be expthine
more detail in Section IV C.

As the assertional knowledge depends on kinematical
parameters a feature extraction component is apjlierder
to fill the attribute values of the assertions. Thiowing
features are important w.r.t. the componientman: Angles
of both elbows, Angles of both arms to shouldepeesive
to the up-axis, Angle difference between head taiém

Logics reasoner, managing the knowledge base anghd robot, Walking velocity and used tool.

managing the reasoner results.
In Figure 2, components of the module are preseritad

communication via TCP and the XML parsing are dbye

The featureused tool is not supported by existing sensors
at the moment and is therefore simulated. It cam lume of
the following values:none, measurement tool or working

the components marked as DlG-interface. The DIG+tool. The simulation of this parameter can be influence

interface is a W3C standard developed by the Detsoni

directly by user input using standard human machine

Logic Implementation Group for communication with interfaces. As a result complex working scenariaa be

Description Logics reasoners in the realm of theasdic
web and is introduced in [5]. Many reasoners [133}
support this interface definition, which allows theparation
of application and reasoner by the means of prograg
language and execution place.
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modeled and analyzed.
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The componentRobot provides the parameters for: also modeled for actions. For reasons of readgbilits
gripper status and movement status. relation is not depicted.

During feature vector creation, extracted values ar The occurrence of the situati@ooperation implies that
mapped onto sharp sets. The knowledge base is théimere areexpectationstowards the robot behavior. Moreover,
populated with corresponding set strings which lbarused an expectation can biggered by an action (see Fig. 6).
for comparative operations during reasoning. This allows for reasoning about expectations withou

One major aspect of understanding human activity imecessarily recognizing a triggering action. Thigplicit
modeling temporal relations between different axtioln  relation is also exploited between the activitidsnitor,

this work, these relations are introduced by defiranafter- Hold Tool andActions.
role. Hence a certain action can only be recognizeertain
other actions occurred prior. Thadter-role can be regarded V. EXPERIMENTAL RESULTS

as defining preconditions onto actions. Previously For reasons of experimental analysis of the impteet
recognized actions need to be included in the kedgé activity and situation recognition different cowssef action
base in order to allow for correct recognition affrent  were executed and the recognition results weradedo

actions. All recognized actions are stored by th@soner In order to analyze different scenarios efficientigans
result management component and are retrieved glurirof automated feature value presetting were impléeaen
recreation of the knowledge base. The overall analysis is based on these preset®arattual
C. TheKnowledge Base sensor data processing. Hence natural movements and

In Figure 4, the ontology about situations andvitis @
which are modeled by the knowledge base are predent
The concepStuation has the attribut&lumber Humans to
distinguish between the concep®sbot alone and Human

prm]t_ | Robot alone | Human present takesPlace
In the situations oHuman present, or its sub-concepts, 4

Activities cantake place, which aredone by a Human. This [ | | | |

defineS the Corresponding Concepts and I’e|atim}l’0| | walking By " Distraction || Monitering Communication || Cooperatien

<

| Activity |

consistsOf

I | | |

| Held Teol

Arm Down

1

| Complex Action

Stop Robot

Turn Rebot left / right

Arm Streched Up | Monitor || Ignore

Head Crientation
Arm Angles
Used Tool

Figure 4. ER model of activity and situation ontpio

| Move Arms

Arm Up, Ellbow Bent

Cortinue Robet Motion

Take Tool

Human

Put Tool Away

Figure 5. ER model of the action ontology.

In Figure 5, the ontology concerningctions and
complex Actions is shown. As pointed out above, actions can

have a temporal relation expresseobﬁa-role_. The action  ansitions between actions can be tested and apese
Put Tool Away can only occur after the actiorake Toal. cases can be investigated.

This role is also exploited in complex actions, gdpntinue In this section, recorded recognition results Wik
Robot Motion can only be signaled aft&op Robot. illustrated and discussed.
Actions can be regarded as atomic concepts, whereas
complex actions consist of other actions, regasdles
atomicity. The concept$ake Tool and Put Tool Away are
considered atomic, because they are defined byased on
the single attributeUsed Tool. This attribute is directly
altered by user input, thus does not result fronsse data
analysis. The roleloneBy which is defined for activities is
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TABLE lIl. RESULTS FROMEVALUATION
Gripper Status —
# Recognition cycles 2140 Max [ms] 9705
@ Response time [ms] 551.78 #> 1000 ms 17 (0.79%
Min [ms] 216 # > 5000 ms 4(0.18%
toComply By triggeredny In Table Ill, the results of 2140 recognition c\glare

summarized. It shows that the average processing is
approximately 550 ms. The lower bound is 216 mse Th
. casual outliers take up to 10 seconds in worst sesearios.
The number of cycles taking more than 1 secondhe=ac
I I T I 0.79% of all cycles. The amount of processing ycle
consuming more than 5 seconds is 0.18%.

;msiti:mTCPl get Work Piece follow Path Planning follow Instructions
TABLE IV. RECORD FORANALYSIS OF LONG RUNTIMES

Figure 6.ER model of the expectation ontology. 60260 90 0 0 00 0 0 O 1 60740 Conm MNoveArns 480
A. Examplary Result Records 64501 90 0 0 0 0 0 0 O 1 64940 439
The recorded experimental results contain a timgsta| 84940 90 0 0 0 0 0 0 0 1 66475 1535
= A " ! 66475 90 0000 00 0 1 67017 542
which indicates the starting time of the recogmit@ycle in | 67017 90 0 0 0 0 0 0 0 1 72300 5283
milliseconds since program start. This timestampthisn | 72300 90 0 0 0 0 0 0 0 1 72750 450
followed by the extracted feature values if thexeihuman | 72750 90 0 0 0 0 60 0 0 1 73221 Distr. Ignore 471

worker in the supervised area. The componentseofetiture

vector are listed in following order: Angle armtlefingle In Table IV, cycle run times are noted at line’sden
arm right, angle elbow left, angle elbow right, kimy ~ These numbers show that long cycle times cannotlaged
velocity, angle difference between head orientatwmd directly to changes in the feature vector. Thuse th
robot, holding tool, gripper status and robot mmeat recognition process itself might not cause theienst| This
status. will need further investigation.

The next number is the timestamp of the final resul By using the kinematical human model, recognitién o
message from the DL reasoner (Tab. ). Results béll gestures and human motion can be analyzed (see7Fig.
recorded whenever there are new insights. Thudathewo  Table V shows an example in which a human firstches
lines of Table | have no special entries past #s¢ teturn the robot. This concludes the expectation, thatabet shell

timestamp. follow a planned path. After some time the humarvesahis
arms which results in a communicative situationcdese
TABLE I. EXAMPLE RECORDBASED ONSENSORDATA the arms are moved differently by the humai®ap Robot
59009 29395 Robot Al one instruction is recognized in the next recognitigitle. The
29396 0 000 18400 129797 Distraction lgnore reasoning results in the expectation that the ratiull
29799 0 0 00186 00 1 30212 comply with the instructions.
30213 01508 1 56 0 0 1 30642 Consequently natural movements and actions can be
Table Il demonstrates the recognition of different‘;emgmzecI despite the average cycle processing o
Lo o o X pprox. 550 ms.
situations and activities. Furthermore an additicaetion
and expectation are reasoned and recognized. TABLEV.  EXAMPLE RECORD FORNATURAL MOVEMENT

During a recognition cycle all recognized conCepis  —o=ro—475 355 17 104135 WonTTorTng Woni Tor
returned from the DL reasoner in a single flusterefore, fol | owPat hPl anni ng
the number of lines in the records represents timeber of | . . .
returned responses. 112169 0 0 1 0 1 9 0 0 1 112706

13000 1113193 Conm MoveAr s
3260

112707 62 9 26
113194 74 70 21 0 1 113823 St opRobot
foll oW nstructions

TABLE II. EXAMPLE RECORDBASED ONPRESETS 113824 76 88 20 35 5 9 0 0 2 114473

16160 90 0 0 0 20 0 O O 1 16965 Wal ki ngBy Wal ki ng

Co Tables Il and V demonstrate that depending on tiitua
22061 90 0

0020000 122447 i ; :
22448 0000 00 10 1 22834 Cooperation and actions expectations are generated. The geEmersit
Hol dTool TakeTool get Wor kPi ece expectation is also dependent on the robot movestanis.
Table VI shows that at first a cooperative situatits
B. Results recognized and a generated expectagjenWork Piece. At

Tables | and Il already indicate that the processime  this moment the robot was following a planned pathich
of a recognition cycle varies around 500 ms. Thilidation is signaled asl in the feature vector. In the simulation
can be shown to hold true by analysis of a largewarnof  incorporated in MAROCO, this generated expectaliauls
cycles. to a change of the robot movement status which thets
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corresponding feature value ty meaning the robot is
obeying instructions. This change allows the reegpno

conclude the new expectation to position the rabédvol

center point in order to ease the work that the issgbout to
do with the work piece.

TABLE VI. EXAMPLE FORDYNAMIC EXPECTATION REASONING

96795 75 0 21 0 0 3 1 0 1 97287 Coop. Hol dTool
TakeTool get Wor kPi ece
97289 75 022 0 0 0 1 1 2 97799 positionTCP

This process of interaction between reasoner st
robotic behavior demonstrates the dynamic abiliéshe
presented approach to recognize and understanatisits
and actions.

Figure 7. (Top) Human watching the robot. Recoghizgtuation:

Monitoring. Recognized activity: Monitor. No speei action recognized.
The robot is expected to carry on with its taskotibwing its planned path.
(Bottom) Human is communicating with the robot. Twnplex action to
signal a right turning movement is recognized. Raeced situation:
Communication. Activity: Move arms. The robot ispegted to comply
with the users instructions.

C. Evaluation of Results

The results demonstrate that the capabilities @& th
presented approach reach beyond sole activity duation
recognition. By generating expectations towards otob
behavior, an understanding of the situation caadgeved.
This induction of relations between concepts camllizabe
realized by purely probabilistic methods.

The achieved processing cycle time of approx. 550 m

does not allow for safe cooperation based only loa t
recognition module. Thus, the MAROCO framework utes

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

implemented techniques and algorithms to enforfetysand
real-time capabilities during robot motion. Nevelidss, the
measured results will be used to quantify improveisief
later developments. To the best of our knowledigeret are
no such time related results made available infitld of

industrial human-robot cooperation or another eeldfield

close to it so far.

VI. SUMMARY AND FUTURE WORK

In this paper, a situation and action recognitionduie
was implemented, which is capable of generating
expectations towards robotic behavior.

A knowledge base containing domain and assertional
knowledge was modeled. It defines concepts about
situations, activities, actions and expectationshese
concepts are linked and related by role definitidresmporal
associations of actions are modeled byafier-role, which
allows preconditioning the recognition of certaatians.

Description Logics are used to define the knowledge
base. By implementing the DIG-interface, Descriptio
Logics reasoning facilities can be used indepetylewit
programming language and execution space.

In order to express value constraints on concept
attributes, the feature extraction process mapsirieaalues
onto sets, which can be represented as stringshén t
knowledge base. This allows additionally for suppafr a
wide range of Description Logic reasoners.

During evaluation the effectiveness was shown.
Situations, activities and naturally conducted aagi are
recognized. Expectations are generated and caneirdée
dynamically subsequent processing cycles.

The here presented experimental results are pnogrisi
further research in the field of cognitive industriobotics.

The next steps will be modeling a broader knowledge

base in order to incorporate multi-robot setupssoAlthe
implementation of action plan recognition will deepthe
understanding of situations and enable the analg$is
complex cooperation scenarios.
It was taken a stand against the probabilistic vedy
estimating actions from image sequences in thenbewj of
the related work section. But it is suggested taluwate
different approaches in the near future which aiske
probabilistic methods into account or maybe fuséedint
methods bringing together the best of both worlds.
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