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∗Human Centered Design
OFFIS Institute for Information Technology
Escherweg 2, 26121 Oldenburg, Germany

Email: lenk@offis.de
†Learning and Cognitive Systems
Department of Computing Science

University of Oldenburg
26111 Oldenburg, Germany

Email: claus.moebus@uni-oldenburg.de
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Abstract—Recently, John R. Anderson proposed a corre-
spondence between the modules of his cognitive architecture
ACT-R and specific brain regions. This Brain Mapping Hypoth-
esis allows the prediction of Blood-Oxygen-Level Dependent
curves for these regions using cognitive models. These predic-
tions may be compared to actual data from functional Magnetic
Resonance Imaging experiments. While the Brain Mapping
Hypothesis has been tested with very simple tasks mostly
from algebraic problem solving, we conducted experiments
with a more complex task to study the robustness of the
Brain Mapping Hypothesis against different domains, multi-
dimensional strategy spaces, and modeling errors. The ACT-
R model in this paper is a synthesis of our prior models,
providing a better fit imaging data. Our results show that
the Brain Mapping Hypothesis is not to be dismissed, yet
there still remain assumptions in the model that do cause
inexact predictions for some modules. We discuss how models
of complex problem solvers can achieve a better fit to data by
adaptations to their symbolic structure.

Keywords-Cognitive modeling, ACT-R, BOLD prediction,
Brain Mapping Hypothesis

I. INTRODUCTION

Cognitive architectures provide a modeling framework
with constraints preventing modelers from creating unrealis-
tic models of human cognitive processes [1] [2]. The promi-
nent ACT-R (Atomic Components of Thought-Rational) by
John R. Anderson has a long tradition, dating back at least
to 1983 [3] [4]. The latest addition to the ACT-R theory is
the mapping of its components to brain regions [5], and
the enhancement of the architecture with an appropriate
tooling to predict Blood Oxygen Level-Dependent (BOLD)
responses for these regions.

In Section II, we shall first look into the ACT-R cognitive
architecture in general and the Brain Mapping Hypothesis in
more detail. We shall summarize our prior related work as
well as specify our research question. Section III describes

the experiment and fMRI data acquisition and preprocessing
procedures. We proceed to the ACT-R model in Section IV.
Results are featured in Section V and discussed in Section
VI. We finally conclude in Section VII with a summary of
this paper and our future directions.

II. STATE OF THE ART

The ACT-R cognitive architecture consists of eight mod-
ules: The Visual, Aural, Manual, Vocal, Declarative, Imagi-
nal, Goal, and Production modules. Obviously, they perform
specific functions: The Visual and Aural modules control
the perceptual input channels of an ACT-R model, while the
Manual and Vocal modules constitute its action apparatus.
The Goal module stores the current goal in the form of
control information, while the Imaginal module represents
working memory. The Declarative module’s purpose is to
retrieve facts from long-term memory. All of these modules
interface to the Production module via buffers. A buffer
may hold a single chunk (i.e., fact) at a time. A chunk
contains information in the form of slots, which may either
hold atomic data or refer to other chunks in the Declarative
memory. The Production module represents the procedural
memory and matches, selects, and executes production rules,
which compare and manipulate the buffers’ contents. All
actions triggered by a production in a specific module
consume a certain amount of time. Thus, a model based
on this architecture is an executable program in the form of
production rules and may be used to predict a participant’s
performance in various tasks on trials of various domains,
such as algebraic problem solving.

A. The ACT-R Brain Mapping Hypothesis

Anderson’s latest addition to the ACT-R theory, the Brain
Mapping Hypothesis, maps the activity of the ACT-R mod-
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Table I
CENTERS AND DIMENSIONS OF THE ASSOCIATED BRAIN REGIONS FOR

ACT-R MODULES1

Module Region X Y Z Depth Width Height
Procedural Caudate ±15 9 2 4 4 4
Goal ACC ±5 10 38 5 3 4
Declarative Prefrontal ±40 21 21 5 5 4
Imaginal Parietal ±23 -64 34 5 5 4
Visual Fusiform ±42 -61 -9 5 5 4
Aural Auditory ±46 -22 9 5 5 4
Manual Motor ±41 -20 50 5 5 4
Vocal Motor ±43 -14 33 5 5 4

ules onto specific brain regions (Table I). Thus, ACT-R
implements a tooling that enables BOLD signal predication
for these brain regions. However, the regions cover only a
very small volume of the brain altogether, and most studies
were conducted using simple tasks with a limited strategy
space.

Each activity inside an ACT-R module, such as fact
retrieval for the Declarative or visual encoding for the
Visual module, is recorded along with its duration by the
architecture. This trace is used to predict the BOLD response
with the following set of functions.

The function H(t) (1) models the hemodynamic response
for an active module. It is parameterized by its steepness a,
magnitude m, and delay t.

H(t) = m(
t

s
)ae−(t/s) (1)

The module’s activity trace is captured by the D(t)
function at a given time t, which evaluates to either 0 or 1. In
combination with the hemodynamic function it accumulated
to model the BOLD response (2).

B(t) =

t∫
0

D(x)H(t− x)dx (2)

The postulation of the Brain Mapping Hypothesis has
been empirically validated with experiments and cognitive
models for various domains, for instance algebra problem
solving [6] [7] [8] or associative learning [9].

However, in these experiments the participants were urged
to employ a single solving strategy either by instruction or
the peculiarities of the experimental design. In contrast to
this, our experimental design allowed for the participants to
choose their personal strategies during trials.

B. Research Question and Prior Work

Thus, the research question of our project was to study
the robustness of the Brain Mapping Hypothesis towards
a non-algebraic task, a multidimensional strategy space,
and programming or modeling errors. To our knowledge,
our research group is, apart from Ragni et al. [10], the

1in Talairach coordinates, voxel size 3.125 mm × 3.125 mm × 3.2 mm

only independent research project outside Anderson’s lab
addressing the Brain Mapping Hypothesis.

Our first-pass models implemented a strategy each and
were matched onto functional Magnetic Resonance Imag-
ing (fMRI) data according to behavioral predictor such as
response times [11]. With this approach we were able to
calculate correlations between modules and regions [12] per
strategy. We were not able to dismiss the Brain Mapping
Hypothesis [13] and our results finally led to some conclu-
sions for our second-pass model: First, models should use
a multitasking approach during the first phase of a trial.
Second, subgoals should be set as explicit chunks in the
Goal buffer to predict a higher activation.

The model in this paper was implemented ex-post to
achieve a better fit to experimental fMRI data. However, we
did not touch all but one of ACT-R’s internal or BOLD-tools
parameters. Rather, we tried to adapt the symbolic structure
of the model in order to achieve a better fit.

III. METHODS AND MATERIALS

The particular design of our experiment has been dis-
cussed in detail in our previous publications [13]. The task
was to determine whether a structural formula matched a
chemical compound. The participants in the fMRI study
were 62 lower-grade school children ages ranging from 10
to 13. The chemical formula language is usually not known
to children of that age group. To prevent carry-over effects
in any case, fictional chemical elements and numerals were
used. The fMRI experiments were conducted in a multi-
disciplinary research project, which not only studied the
Brain Mapping Hypothesis, but also the impact of affective
feedback [14] and the processing of the chemical formula
language for school children [15]. The problem may be
described as a well-structured rule-using problem [16].

A. Experimental Design

Thus, a trial consisted of the visual and aural presentation
of a chemical compound as in Fig. 1. Two structural formula
were presented at the left and the right. The participant
had to decide which one of these matched the chemical
compound. For this, the participant was familiar with the
following constraints for the chemical language:

1) The abbreviation for an element is defined by two
letters

2) The first letter of the abbreviation is the same as the
first letter in the name of the element

3) Both letters appear in the element’s name.
4) An element may have a multiplicity from 1 to 4 in

the compound. Distinct three letter words served as
numerals to denote the multiplicity:

• 1/-
• 2/pli
• 3/pla
• 4/plo
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Figure 1. A sample trial [13] where a numeral constraint is violated

5) The position of a numeral is always in front of the
owning element in the compound name

6) The central element of the structural formula is always
the first in the compound name

The visual presentation of the problem lasted for 4.5
seconds. During this timespan and an additional second the
participant could respond, so that the complete trial solving
phase lasted for a maximum of 5.5 seconds. After that,
a variable jitter time between 2 and 18 seconds followed
before feedback presentation, which in turn lasted for 2.5
seconds. Subsequently, another jitter time between 2 and 18
seconds followed before the begin of the next trial.

B. fMRI Data Acquisition

The participants were presented 80 trials in two runs
of 40. The fMRI data were acquired using a Siemens
MAGNETOM Sonata (1.5 T) system with a standard whole-
head coil, obtaining T2*-weighted echo planar images with
BOLD contrast (matrix size: 64 × 64, pixel size: 3 × 3
mm2).

Each functional run resulted in 408 volumes of 30 3-mm
thick axial slices with a 0.6 mm gap (TR=2s, TE=50ms).
Preprocessing was performed with the Statistical Parametric
Mapping (SPM5) software. After rigid body motion cor-
rection, the time series from each voxel were temporally
realigned to the middle slice. Structural and functional
volumes were coregistered and spatially normalized to a
standard T1 template based on the Montreal Neurological
Institute (MNI) reference brain using 2 × 2 × 2 mm3

voxels. To accommodate inter-subject anatomical variability,
the data were smoothed with a Gaussian kernel of 8 mm
full-width-half-maximum.

After preprocessing, the fMRI data were analyzed with
a Regions of Interest (ROI) approach [17]. The ROIs (see
also Table I) were defined by the ACT-R Brain Mapping
Hypothesis [5]. Locations and dimensions of the ROIs were
transformed from Talairach into MNI coordinates. The raw
gray values for all voxels contained by each ROI were
averaged, resulting in time series of BOLD responses per
participant for each ROI in left and right hemispheres
respectively.

IV. CALCULATION

To find the correct structural formula, the constraints from
Section III-A may be checked with the following tasks [13]:

T1 Visually and/or auditorially perceive and the dif-
ferent parts of the compound name

T2 Count the outer elements of a structural formula
(T2a) and compare them with the second numeral
in the compound name (T2b).

T3 Count the inner elements of a structural formula
(T3a) and compare them with the first numeral in
the compound name (T3b)

T4 Compare the inner element with the first element
of the compound name

T5 Compare the outer element with the second ele-
ment of the compound name

T6 Indicate the correct formula
Task T1 can be parallelized with T2a and T3a as the

compound name is presented auditorially and does not
necessarily need the visual input channel. Tasks T2-T5 may
be applied to either the left or the right structural formula, or
even both. Thus, the most efficient problem solver restricts
himself to the evaluation of just one structural formula
and decides whether it matches, or, in case a constraint is
violated, if it does not.

A. ACT-R Model
Our prior models represented multiple strategies that dif-

fered in their sequences of T2 to T5 and formula positions.
The model in this paper attempts to reunify these strategies.

Thus, the model may instantiate task sequence. Tasks T1,
T2a, and T3a run parallel and share a common chunk in the
Goal buffer, as our model validations favored multi-threaded
models. Tasks T2a and T3a are always instantiated together
and may run for both left and right formula locations.

The productions for Tasks T4 and T5 create separate
subgoal chunks in the Goal buffer, thus they run single-
threaded and no productions concerning other tasks may
fire during their execution. They also regress to the visual
presentation of the compound name to check whether the
second letter of symbol appears in the elements name.

Each execution of the Tasks T2a/T3a, T4, and T5 creates
a chunk in the Imaginal buffer to store the temporary infor-
mation it needs for its context. Upon task completion this
temporary information is translated into control information
and transferred into the precedent parent goal.

If a constraint is violated, or all tests for a structural
formula have a positive result, productions for T6 may fire
and the model indicates the correct formula. If, however, 4.5
seconds have passed and the model is still busy, the model
makes a guess and chooses the formula with the greater
number of positive tests. It does not give a response if both
formulae have the same number of positive tests.

In order to randomize the task execution sequence, the
ACT-R parameter :egs for expected gain noise had been set
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to 0.04. The noise added to the productions’ utilities results
in random task sequences. This is based on the work of Jones
et al. [18], who used this technique to differ between ‘adult’
and ‘children’ models, the latter being more explorative in
terms of strategies.

For instance, the trial from Fig. 1 could be evaluated with
the following three task sequences:

S1 ={T1, T2a/T3a[Left], T3b[Left], T4[Left],
T2b[Left], T5[Left], T6[Left]}

(3)

S2 ={T1, T2a/T3a[Left], T3b[Left], T4[Left],
T2a/3a[Right], T3b[Right], T6[Left]}

(4)

S3 ={T1, T2a/T3a[Right], T3b[Right], T6[Left]} (5)

Thus, the first sequence (3) would completely evaluate
the left formula and come to the conclusion that it is indeed
correct. The second sequence (4) would first evaluate parts
of the left formula, then switch over to the right, find the
discrepancy in the numerals and indicate the left formula as
correct. The third sequence (5) would just evaluate the right
formula and find the correct answer sooner than the other
sequences. These sequences instantiate different strategies,
which differ in their effectiveness for a given trial.

B. Data Analysis

The model makes adequate predictions for trials regarding
response times as is shown in Fig. 2. It does not recapture
the error rates, i.e., wrong responses and time-outs, correctly.
This however, shall be of no concern in this work as we will
only study correctly answered trials.

For data aggregation, the time series per ROI and par-
ticipant for the whole experiment were split into short
time series for each trial with a correct response by the
participant. As the trials have different lengths, they were
aligned onset-locked to a 12-scan template with the method
from Carter, Anderson et al. [7]. In contrast to our previous
studies, all scans from the trial and feedback phases were
included.

After linear detrending, the percentual changes in the
BOLD response were calculated and averaged across partici-
pant and trials, resulting in a single average BOLD response.
Likewise, the model’s BOLD predictions were aligned to a
template and averaged. As the model can produce different
traces for the same trial, this variability was captured by
processing predictions from multiple model runs per trial.
Both curves, averaged BOLD responses and predictions,
were compared using Spearman’s rank correlation coeffi-
cient for each Module/ROI pair.

●

●

●

●

●
●●

Data Model

0
1

2
3

4
5

R
T

Figure 2. Response times (RT) in seconds for participants and model

V. RESULTS

The correlations in Table II between model and data
are high for both regions for all modules but the Manual
module, which only correlates with the left hemisphere. The
predictions for the Production ROI in Fig. 3(a) fit the data
well as in our previous studies, as do those for the Goal
module in Fig. 3(b) when compared to our prior results.
Apparently, the creation of extra subgoal chunks has raised
the magnitude of the predictions. The predictions from the
Imaginal module in Fig. 3(d) have a high correlation but
do not reach the magnitude of the actual BOLD curves. So
do the predictions for the Visual, Aural, and Manual ROIs
in Figs. 3(e), 3(f), and 3(g) respectively, but the predictions
from the Declarative manual in Fig. 3(c) exceed the actually
measured BOLD signal greatly.

The latter observation of over-estimation may be easily
explained. The ACT-R model makes heavy use of the
Declarative module, by trying to recall previous problem
instances of element symbols and names. This strategy is not
necessary for solving the problem efficiently and may not
be employed by participants. For the other modules except
Production and Goal, the model apparently does not exert
enough actions on the respective modules to explain data, at
least if the ACT-R default value for the magnitude parameter
m (Section II-A) is used.

VI. DISCUSSION

From these results, we can deduct some further guidelines
for our model. First, we need to create even more extra
subgoal chunks, for instance for Tasks T2a/T3a. This should
heighten the magnitude of the predictions for the Goal
module. However, the low magnitudes for the Visual, Aural,
and Manual modules as well as the Imaginal module will
not be as easily addressed. Chunk creation in ACT-R is time-
costly. Thus, a model exerting many chunk creation actions
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Figure 3. Predicted and actual BOLD curves for regions, averaged across all trials for Production 3(a), Goal 3(b), Declarative 3(c), Imaginal 3(d), Visual
3(e), Aural 3(f), and Manual 3(g) module/region pairs.

Table II
CORRELATION COEFFICIENT ρ FOR LEFT AND RIGHT HEMISPHERES

Module/Region Left Right
Production/Caudate 0.958 0.958
Goal/ACC 0.825 0.825
Declarative/Prefrontal 0.972 0.902
Imaginal/Parietal 1.000 0.972
Visual/Fusiform 0.972 0.734
Aural/Auditory 0.832 0.895
Manual/Motor 0.874 0.165

on these buffers would not be able to give a valid response
within the maximum response time. We could adjust ACT-
R’s parameters for the BOLD tools, such as the magnitude
parameter m (Section II-A), but since the Production and
Goal predictions fit so well this does not seem the right
approach. The internal ACT-R parameters for chunk creation
latencies seem better suited for our purposes. The model
spends too much effort into fact retrieval, thus the next
model shall encode more factual knowledge directly in the
production rules rather than in declarative memory.

VII. CONCLUSION

We were able to show that the ACT-R Brain Mapping
Hypothesis also holds in large parts for tasks with multi-
dimensional strategy spaces. However, our prior findings
seem once more confirmed. ACT-R is under-constrained:
A kind of ‘best-practice’ manual for ACT-R modeling is

missing. Thus, an ACT-R modeler is free to implement many
different strategies based on assumption, and some, if not
all of these models would explain behavioral data. Still,
these ACT-R models do not necessarily explain fMRI data
according to the Brain Mapping Hypothesis. We have shown
that the only reliable way to achieve a good fit is to adapt the
model’s structure to the fMRI data itself rather than to base
it on behavioral predictors and task decompositions alone.

The ex-post model presented in this paper is able to
reproduce a multitude of strategies. It explains fMRI data
better than its single-strategy predecessors, yet the activation
level is not high enough for some of the regions. From these
results, we are able to make educated guesses, which shall
guide our next steps and should result in an even more fine-
tuned ACT-R model. It will be interesting to check whether
the Brain Mapping Hypothesis in combination with this
model finally allows to infer the particular task executed by
individual participants, using the BOLD curves as predictors.
By this, we hope to achieve the identification of Goal
states for individual fMRI data. A cognitive model that is
able to anticipate internal states for complex problems from
neurobiological data could have many applications.
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[11] C. Möbus and J. C. Lenk, “Bayesian identification of
problem-solving strategies for checking the ACT-R/Brain-
Mapping Hypothesis,” in Proceedings of the KI 2009 Work-
shop Complex Cognition, Paderborn, Germany, ser. Bam-
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[12] C. Möbus, J. C. Lenk, A. Claassen, J. Özyurt, and C. Thiel,
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