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Abstract—This paper presents a self-organizing architecture
made of several maps, implementing a recurrent neural net-
work to cope with partial observations of the phase of some
dynamical system. The purpose of self-organization is to set
up a distributed representation of the actual phase, although
the observations received from the system are ambiguous (i.e.
the same observation may correspond to distinct phases). The
setting up of such a representation is illustrated by experiments,
and then the paper concludes on extensions toward adaptive
state representations for partially observable Markovian deci-
sion processes.

Keywords-Dynamical Systems; Recurrent Neural Networks;
Self-Organization.

I. INTRODUCTION

In the design of artificial agents evolving in some envi-
ronment, one has to deal with information streams. Sensors
provide input streams to the information processing system
of the agent, and actuators actually produce a stream of
actions performed in order to exploit the environment. Such
an action stream is actually the output of the agent to the
environment. The coupling of the agent and the environment
through such information and energy streams is obvious for
any biologist who analyzes the behavior of some animal.
Nevertheless, in the field of Computer Science and Machine
Learning, computation is often considered off-line, for tech-
nical reasons. The typical case is the use of data sets to train
the models, before actually using the trained models on-line.

This paper is a contribution to the part of Computer Sci-
ence that is rather involved in the design of situated systems,
thus actually focusing on the process of streams of informa-
tion. In that sense, it is related to reinforcement learning
approaches, that deal with sequential decision making of
an agent continuously interacting with its environment, as
well as temporal systems like recurrent neural networks that
handle sequences of input. Indeed, the model proposed here
allows to extract the phase of some dynamical system from a
sequence of observations computed from that phase. Let us
illustrate the need for such a feature from a straightforward
toy example.

Let us consider an animal perceiving the temperature T
of the floor. Let us suppose that any temperature T > T0 is
dangerous to it. In our example, the temperature oscillates

periodically between high and low values (for night and
day). The whole solar system configuration is the phase of
the environment, noted xt here. It evolves in a deterministic
way, according to Newton’s law. The phase evolution is thus
driven by a transition function φ such as ∀t, xt+dt = φ(xt).
The temperature perceived by the animal is an observation
of the solar system, that can be expressed as T t = O (xt)
where O is the observation function, see figure 1. The sun
position in the sky P t = O′(xt) would have been another
observation of the solar system phase. Let us now consider
a time t for which the temperature T t = T0−ε is just below
the threshold. Should the animal try to hide away from the
sun? The answer depends on the phase xt, from which the
animal could know if the temperature is currently decreasing
or increasing. The decision would have been easier from
the perception of sun position P t, since O′ is a bijective
function, and thus the values of P t allow to take the decision
directly from the current perception. If only T t is perceived
by the animal, an efficient behavior requires that the animal
is able to represent internally a value x̂t from which it can
take the right decision, since values of temperature may
be ambiguous (similar temperatures are observed twice a
day). T is thus said to be a partial observation of x. The
current value x̂t is inferred and updated from the successive
observations T t. It is not required that x̂ be the exact
representation of the phase x, i.e. the animal do not need to
know where the planets are, but x̂ has to be set up such that
a bijective observation function implicitly exists from x to x̂.

Partially observed environments are of interest in rein-
forcement learning domain. While the general trend is to
find x̂t before computing the corresponding value function
of each state, other works like [1] implement evaluation
with a recurrent network, but without explicitly extracting
some x̂t.

The neural architecture presented in this paper relies
on self-organizing neural networks in order to build such
an internal representation from ambiguous sequences of
observations. Many works in the literature try directly or
indirectly to find x̂t. Concerning the use of self-organizing
maps, many enhancements on Kohonen basic map [2] like
in [3], [4], [5] consider the temporal dimension of input
sequences but they deal with the recognition of manually
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Figure 1. Dynamical system phase extraction.
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Figure 2. Model architecture. Input map and delay map are connected
via one-to-one connections, other connections are one-to-many connections
organized in strips. For unit q, Iq is the strip of kind I handled by q.

extracted sequences, rather than on-line stream of inputs.
Reservoir computing methods [6] are closer to that pur-

pose, since they handle inputs from a stream one by one.
Readout units then search the huge reservoir states in order
to locate few significant states. The significant states repre-
sents the phases of the system that provide the inputs.

For the best of our knowledge, the present work is the first
attempt to find a mapping of a dynamical system phase space
using on-line self-organizing recurrent neural networks.

II. THE MODEL

As mentioned above, our goal is to design a system
that generates an internal representation of the dynamical
system phases from the stream of observations emerging
from it. Our model is an effort in this direction, inspiring
from biological information. It is based on the bijama
model [7], proposed and developed in our team. It enables
building computational cortical-like 2D-neural assemblies
called maps, made of computational units representing corti-
cal columns. Units allow to process in parallel external entry
and internal signals carried out by connections. A schematic
of the model is shown in Fig.s 2 and 3. The architecture
comprises three maps, namely the input map, the delay map,
and the associative map. The input map receives the external

input stream. Its activity is expected to represent at time t
the coding x̂t of the actual dynamical system phase xt.

The two other maps, the delay map and the associative
map are auxiliary maps that play the role of intermediate
structures for extracting x̂t from the input stream ot. Their
purpose is to re-inject the delayed activity of the input map
into its dynamics. This recurrent pathway actually reveals the
temporal dimension of the input stream. Map activities are
computed by a neural field. Each unit has lateral recurrent
connections to other units within the map, implementing
an on-center/off-surround connectivity [8], [9]. The field
performs lateral competition between units and computes
the activity of each one, so that the global map activity has
the shape of a bump (see dark meshes in Fig. 4). The bump
positions are actually the response of the map to its input.
Lateral competition, from which activity bumps emerge, is
used in the model in order to guide the process of self-
organization of inputs over the map surface. This is indeed
difficult with neural fields as explained in [9] from which
the neural field process used in this paper is taken. The
whole architecture evolution is controlled by successive time
steps. A time step is a discrete time instance at which the
activities of all units in all maps are evaluated once, using
an asynchronous evaluation scheme [9]. Another kind of
connectivity in the model is the inter-map connectivity. A
unit at the bi-dimensional position p in some local map can
be connected to a whole strip-shaped region Sp in some
remote map. Then unit p handles connections from the units
at positions q ∈ Sp in the remote map, as shown in Fig. 2.
Each connection in a strip between p and a remote unit q
handles a weight whose current value is s̄tpq , so that the strip
Sp owned by p handles a vector of weights S̄tp =

(
s̄tpq
)
q∈Sp

.
Let us note S the set of strips received by local map
(S = A, I,D in Fig. 2). Inter-map connections are referred
to as cortical connections. Strips are characterized by their
width ρS and direction ψS relative to the horizontal axis
connecting the centers of the local and remote map. Let us
note the activity of the unit at position p at time t as utp, and
the vector of remote unit activities perceived at p through the
strip Sp as Stp =

(
utq
)
q∈Sp

. The computation of unit activity
using bijama is achieved using a stack of modules (see
Fig. 3). Each one handles a scalar value that may be received
as input or computed from lower modules in the stack. The
higher module (here, the neural field module) handles the
unit output that is the one actually accessed through cortical
connections.

Let us first describe the stack of modules used for the
units in the input map, see Fig. 3 and 4 while reading the
definitions which follow. In general terms, the input map, in
the one hand, receives external observations ot. In the other
hand it also receives strips (noted A) from the associative
map. It outputs an activity bump as a response. This activity
represents x̂t as will be shown later. The lower module is
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referred to as the thalamic module. It handles the external
input ot, and matches it against a stored prototype ωtp and
computes the similarity θtp.

θtp = e−
(ot−ωtp)2

2σ2 (1)

The second module is referred to as the cortical module. It
handles the strip Ap emerging from the associative map, and
computes the matching ctp,A between the strip weight vector
Ātp and the activity vector Atp. The matching is computed
as follows, where B is a numerical constant:

ctp,A =

〈
Atp.Ā

t
p

〉
max

(∥∥Ātp∥∥2
, B
) (2)

The third module is referred to as cortico-thalamaic
merging. It merges θtp and ctp,A into one scalar νtp as follows:

νtp =
√
θtp.β + (1− β).ctp,A (3)

Where β is a constant. The value of νtp forms the final input
ready to use by the neural field, i.e. the upper module, to
compute the unit activity utp.

The unit activity is used to modulate the learning. Tha-
lamic learning implies moving θtp towards ot proportionally
to utp, as shown in (4).

ωt+1
p = ωtp + αω.u

t
p.(o

t − ωtp) (4)

Where αω is a fixed thalamic learning rate for all units.
On the other hand, cortical learning implies moving the

weight ātpq of each connection included in the strip Sp
towards the cortical input utq , as shown by 5.

āt+1
pq = ātpq + αS .u

t
p.(u

t
q − ātpq) (5)

Where αS is a fixed cortical learning rate for all model
connections. The previous rule means that learning occurs
only in connections to active units in local maps.

The next map in the model is the associative map. Its
receives the actual activity of the input map as well as
its delayed activity exhibited by the delayed map, then it
performs lateral competition via the neural field, and re-
injects the result into the input map through the previously
mentioned A strips. The first module of a unit q of this map
handles the strip Iq emerging from input map and computes
the matching ctq,I . The second module handles the strip Dq
emerging from delay map and computes the matching ctq,D.
Both matching values are computed similarly to what was
shown in input map units, according to 2. The third module
is referred to as cortico-cortical merging. It merges ctq,I and
ctq,D in one scalar µtq as follows:

µtq =
√
ctq,I .c

t
q,I + noiseµ (6)
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Figure 3. Module stacks of the units in the three maps, and their cortical
inter-connections.

The purpose of noise is to boost the associative map activity
in units receiving null cortical activity before being injected
into the input map. The value of µtq is actually the input to
the associative map neural field module which computes the
unit activity utq .

The last map in the model is the delay map. It receives a
unit-to-unit copy of the input map activity and delays it for
some period of T time steps, using a T -length FIFO queue.
Units in this maps have two modules. The first is the copy
module that copies utp from the input map. The second is
the FIFO module. Thus utp = ut−Tq where q is a position
in the input map and p the same position in the delay map.
There is no need for a neural field in this map.

As can be seen, the proposed architecture requires no
prior conditions on the input stream, nor on the underlying
dynamical system, it is thus a model free architecture. The
model does not require to adjust any parameter during
execution. Learning rates are thus constant. Moreover, there
is no need for resetting output bump activities u when a new
observation oτ+1 is presented.

III. EXPERIMENTS

In this section, the model is tested to validate its capability
to find an internal state representation of some unknown
dynamical system providing observations. A toy example
of dynamical system is used here to test the capacity of
spatio-temporal organization of the model. Let x ∈ C
represent the system phase, and let the transition function
be φ (x) = x.eiϕ. Let us consider that the system transition
occurs at instant τ , thus we can write xτ+1 = φ (xτ ) with
x0 = 0.5. Let the partial observation fed to the model be
O (xτ ) = 0.5 +<(xτ ) + noiseo. Its values are kept in [0, 1].
The sampled stream values are perturbed by noise to test
the robustness to noisy observations.

The dynamical system phase can be thought of as the
position of a point moving in a steady speed on a circle,
and the observation is its noisy abscissa. This sinusoidal
observation is obviously ambiguous.
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Figure 4. Activity of model maps modules.

In this experiment, τ is incremented every T time steps,
and each observation O (xτ ) is fed to the model during T
time steps, i.e. ot = ot+1 = · · · ot+T−1 = O (xτ ) and
ot+T = ot+T+1 = · · · ot+2T−1 = O

(
xτ+1

)
, etc. The reason

for that is to give enough time to the neural field to relax
and form an appropriate bump, as well as for cortical and
thalamic learning to influence significantly the weights. T
value is the same as FIFO length used in delay map units,
thus, it delays input maps activity until the next O (xτ ) is
sampled.

The input stream value ot is presented to all the units in
the input map as for Kohonen maps [2]. The map response
is computed as the barycenter position Gτ of the u activity
bump at the end of each chunk of T successive time steps.
It is computed as follows:

Gτ =
∑
p

utp.p/
∑
p

utp : p ∈ [1,M ]2 (7)

Where M is the dimension of the square surrounding the
round map. Each time that l barycenters are computed, they
are organized in a list P τ = {Gτ−l+1, Gτ−l+2, · · · , Gτ} of

positions forming l-length paths over the map as sketched
in Fig. 5. Successive paths allow to track the evolution of
the map state x̂t through time.

Fig. 5 shows the evolution through time of the input
map. At the experiment start, thalamic values ωtp are random
and the activity is located in a limited regions on the map
as illustrates Fig. 5(a). Activity bumps start to disperse in
Fig. 5(b). At this stage, due to thalamic learning guided
by the neural field, thalamic values start to exhibit spatial
organization as the grey-scaled regions show. The reason is
that ωtp mainly organize according to values of ot which
are in [0, 1]. Fig. 5(c) shows a better organization of the
thalamic values, and different regions appear, each handling
some different range of the ot values. Besides, it exhibits a
better dispersion of activity bumps in the each region.

At the end of learning, Fig. 5(d) shows that different grey-
scaled regions can be distinguished, indicating the spatial
self-organization of thalamic values.

The poly-line in the figure is formed by l = 50 points,
corresponding each to the representation x̂t of a dynamical
system phase xt. As can be seen, points are clustered along
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(a) Map activity τ = 1 time steps.
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(b) Map activity after τ = 132× 50 i.e. t = τ × T = 158400 time
steps.
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(c) Map activity after τ = 360× 50 i.e. t = τ × T = 432000 time
steps.
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(d) Map activity after τ = 554× 50 i.e. t = τ × T = 664800 time
steps.

Figure 5. Status of the input map during the system evolution. Grey-scaled values are the ω prototypes (white for 0, black for 1). P τ is represented with
a poly-line, linking successive positions Gτ−l+1, Gτ−l+2, · · · , Gτ , that are localized on the figures with red dots.

the poly-line. One cluster is formed by repeated visits of the
same system state. This indicates the stable representations
of states in the map space. Each thalamic region corresponds
to a range of close observations values. Within each region
there exists the representation of 2 or more states. For
example, the black region corresponds to observation values
close to 1, nevertheless, it contains 3 distinct successive state

representations marked A,B,C. When a range of observations
is located in the middle of the input values range, points
(like D,E) express non-successive states corresponding to the
same observation range, but in different temporal context.
Such duplications of states, related to the same value of
O, are progressively performed while the whole architecture
gets organized. It removes observation ambiguity. Thus, the
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ensemble of state representations x̂ (i.e. bump positions)
expresses a bijective mapping between the map surface
and the dynamical system phase space. This was possible
because the model allowed the previous state of the input
map to be considered in computing its new state, integrating
this way, its state history. The added noise to the input stream
did not affect the model capability to extract the mapping.

The experience was launched with numerical values for
the dynamical system as follows: ϕ = 2π/15 and noiseo is
sampled from a uniform random noise U [−0.05, 0.05].

Model numerical values was initialized as follows: M =
30 for all maps, u0

p = 0, ω0
p and ā0

pq, ī
0
pq, d̄

0
pq are initialized

to uniform random values from U [0, 1], σ = 0.07, αω =
αS = 0.0416, B = 10, β = 0.25, noiseµ is sampled from
a uniform random noise U [0, 0.1], ρI = ρA = ρD = 5.
ψI = 90, ψA = −90, ψD = 0, T = 24, and l = 50.

IV. CONCLUSION AND FUTURE WORK

In this paper, a recurrent neural architecture is proposed
for setting up a representation of the phases of a dynamical
system from the stream of partial observations of that
dynamical system. The phase extraction relies on three
self-organizing modules, whose self-organizing processes
are coupled via strip-like connections, according to the
bijama model. Experiments show that this fully unsuper-
vised architecture is able to self-organize so that the token
of hidden phases of the dynamical system are explicitly
built in the input map. Indeed, for each bump position in
that map, a phase of the dynamical system can be assigned.
Moreover, the topology preservation that is expected from
self-organizing maps actually stands here, since the input
map is still a continuous mapping of the space where the
observation lives (here the interval [0, 1]).

In the one hand, seminal works by Elman and Jordan [10],
[11] have already addressed the learning of a dynamical
system from the stream of observation, but this was obtained
from a supervised approach. In the other hand, as mentioned,
reservoir computing approaches relies on high dimensional
representation spaces to build an a priori set of states, from
which the ones corresponding to the actual phases of the
system can be extracted by readout units. In both cases, the
setting up of a phase representation is not explicit. Here,
the whole architecture adapts for extracting explicit phase
representation by self-organization.

Future work will investigate the potential of the model
self-organization features in both space and time when
applied to systems exhibiting non-stationary dynamics. The
goal is to see if the model would be able to recruit new
regions in the input map or release useless regions when
the dynamic change. Future work consists also in using the
representation built in the input map as a state space for
taking decisions within Markovian decision processes. In a
more integrated model, such cortical representations could
indeed feed actor and critic neural modules, inspired from

basal ganglia modeling [12], [13], with a Markovian state
space representation that is updated from the current partial
information provided by the robot sensors.
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