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Abstract—The joint attention is an important cognitive
function that human beings learn in childhood. This nonverbal
communication is very important for a person understands
other individuals and the environment during the interaction.
Because of this, it is essential that the robots learn this skill
to be inserted in the environment and interact socially. In
this article, we have enhanced a robotic architecture, which
is inspired on Behavior Analysis, to provide the capacity of
learning joint attention on robots or agents using only relational
reinforcement learning when the environment changes. Then,
a set of empirical evaluations has been conducted in the social
interactive simulator for performing the task of joint attention.
The performance of this algorithm have been compared with
the Q-Learning algorithm, contingency learning algorithm
and ETG algorithm. The experimental results show that this
algorithm solves the problems of learning and makes the
architecture with greater flexibility to insert new modules.

Keywords-joint attention; relational reinforcement learning;
social robots; shared attention.

I. INTRODUCTION

Attention is the process whereby an agent concentrates on
some features of the environment to the exclusion of others.
The agent’s concentration can be broken when some event
happens and the attention is changed by some gaze behavior.
Gaze behavior is a crucial element of social interactions and
helps to establish triadic relations between self, other, and
the world. In others words, this ability is very important for
communication among humans because it helps a person
expresses his or her intentions around external entities [1],
[2].

The term joint attention (JA) is one type of gaze behavior.
It is typically used to denote when the directing of attention
of a person is taken to a third entity, an object or an event
(e.g., a sound or a common goal), by focusing attention
sequentially (not simultaneously) from another person. In
the final of the process, reinforcement is assimilated. The
importance of JA in humans and the greater inclusion of
robots in our environment led robotics researchers seek
mechanism that enables robots with this capability. The
researches include creating mechanism to provide robots
with the skill of JA or the ability of robots to learn it.

Reinforcement Learning (RL) is a machine learning
method used by computer scientist to provide a machine

learn only interacting with the environment. This approach
has been used on robots to provide robots the capability
of learn JA because this approach emphasizes the role of
biologically plausible reward-driven learning processes. This
plausible is explained with a basic set to construct an agent
by Triesch et al [3]. This set includes perceptual skills
and preferences, reinforcement learning, habituation and a
structured social environment.

When RL algorithm is used as learning mechanism it
needs additional information for learning process and it
causes difficulties to create new modules in the architecture.
In order to provide this capability for a robot only using
reinforcement learning (i.e., without additional information)
by adopting Markovian assumption is respected, might be
infeasible. For JA, the problem is when the robot must to
return to eye contact from a state, which is characterized as
empty.

In our previous work [4], we proposed an algorithm where
the last action is associated with current state to choose the
next action to solve the problem cited above. But some gaps
need to be solved before we start to insert new modules in
our architecture. One example is a necessity of a caregiver
stay fixed while the robot learn to return the attention to the
caregiver on early rounds of interaction.

Then, this paper reports an ongoing work aimed at devel-
oping the robotic architecture, which is inspired on Science
of Behavior Analysis [5], [6], [7]. In order to provide
this, we proposed an improvement on FAIETGQ algorithm
using the idea of plan of actions to select an action to
response only when the environment changes. After this,
we have incorporated four different learning algorithms in
the robotic architecture. It has been inserted and evaluated
in the simulator of social interactions. Then, the robotic
architecture has been evaluated in the context of the JA.

This article is organized as it follows. We start with related
work section making the case for a rigorous experimental
study of JA behaviors. After, we describe the robotic archi-
tecture, in which the learning mechanism will be inserted
in. In Section IV, we present the FAIETGQ algorithm and
the changes proposed in this paper and the advantages
of it. Then, a social interaction simulator are presented
in Section V. Afterward, in Section VI, the experimental
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results from a set of experiments carried out to evaluate
the performance of the proposed architecture with each
learning algorithm tested. A comparative analysis among the
four learning algorithms is also been presented. Finally, in
Section VII, conclusion and future works are presented.

II. RELATED WORK

Despite the biological plausibility of the RL, it is not the
only way exploited by researchers to enable a robot with the
ability to learn to JA.

A temporal-difference (TD) reinforcement learning
scheme for learning joint visual attention was proposed by
Matsuda[8]. This model is limited because the robot only
gets reward when the object, operated by the observer, moves
itself. Also the caregiver’s face is treated separately from the
objects and does not lead to any reward, that is, mutual gaze
was not considered in this work. Nagai et al. [9], [10] used
face edge features and motion information (optical flow) to
estimate the sensor motor coordination and the motor output
using two separate neural networks. Their model does not
utilize the depth information of the images and thus can
not handle ambiguous situations where an object appears
in robot’s gaze direction that may not be located within
the caregiver’s gaze direction. Shon et al. [11] presented
a probabilistic model of gaze following imitation in which
estimated gaze vectors are used in conjunction with the
saliency maps of the visual scenes to produce maximum a
posteriori (MAP) estimative of the object positions attended
by the caregiver. In another study, Triesh proposed a basic
set of structures and mechanism for gaze following [3]. This
set includes perceptual skills and preferences, reward-driven
learning, habituation and a structured social environment.
This work is evaluated only on simulator. Kim et al. [12]
improved a model that uses a basic set [3], on a robotic
head. They have been used an actor-critic reinforcement
learning model for learning gaze following. The drawback
of this proposed method is related of using a salient map
as additional information. More specifically, this map uses
representations of the caregiver head direction (h) and the
caregiver eye direction (e). In our previous work [13],
we applied the contingency learning in architecture for JA
aiming to control a real robotic head.

III. ROBOTIC ARCHITECTURE

The robotic architecture is under development and aims
to build intelligent agent based on Behavior Analysis theory
[5], [6], [7]. This study is motivated to help understand the
human being and help someone in many parts of our day,
like robots assistants and entertainment activities. Thus, it
is composed by two main modules: Stimulus Perception
is State Estimation and Response Emission Module is the
Controller.

Figure 1 illustrates the general organization of the ar-
chitecture and the interaction between modules. Arrows

Figure 1. General organization of the architecture.

indicate the flow of information in the three modules of
the architecture. The circles indicate the methods and com-
ponent structures of the modules. The Stimulus Perception
Module encodes stimulus from environment then it is used
by Response Emission Modules for learning and exhibition
appropriate behaviors.

The Stimulus Perception Module (SPM) may employ
algorithms of data acquisition, a vision system, and a voice
system, depending on the application domain. This module
detects the state from the environment and encodes this state
using an appropriate representation. The relational represen-
tation was chosen because it enabling the representation of
large spaces in an economical way.

The Response Emission Module (REM) is composed by
a learning mechanism that constructs a nondeterministic
policy for response emission, that is, what response is to
be emitted on the presence of certain antecedent stimulus.
Other function of this mechanism generates a reward on the
basis of the internal state estimate. Other part of REM, the
response emission mechanism receives the information from
learning mechanism and converts it in action to be executed
by the motors.

The original version of this robotic architecture has a
Motivational Module and it was proposed by Policastro [13].
This module helps to provide the ability of learn JA to robots
but it create some problems to insert new modules. Now, in
the process of developing this robotics architecture with new
abilities to be incorporated into, we remove the Motivational
Module and we are looking for a better learning mechanism
for it.

The Consequence Control Module (CCM) is composed
by a motivational system that simulates internal necessities
of the robot. The motivational system is formed by necessity
units that are implemented as a simple perceptron [14]
with recurrent connections. Those necessity units simulate
the homeostasis of alive organisms. A positive value of a
necessity unit, above a predefined threshold, indicates the
privation of the robot to certain reinforcement stimulus. In
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this way, the architecture supplies mechanisms to simulate
privation states and satisfaction of necessities.

The motivational system works as it follows. Initially,
the stimuli detected from the environment are sent to the
consequence control module. Then, the Preprocessor en-
codes these stimuli to construct an appropriate input pattern.
This input pattern may be or not normalized, depending on
the numeric interval of the selected connection weights and
problem domain. Afterwards, the necessity units calculate
their activation values and their output values. After this,
the Mediator performs a competition among all unit outputs
and selects the winner. The Mediator checks if the winner is
higher than the activation threshold. If so, the motivational
system outputs the active necessity [13].

IV. LEARNING MECHANISM

A. FAIETGQ

The main idea of FAIETGQ algorithm is related with the
possibility of using the previous action as a way of solving
the problem of JA. Then, only with the action that resulted
in the state that subsequently led to positive reinforcement
are used as information to choose next action [4].

The FAIETGQ algorithm learns a control policy for an
agent while it moves through the environment and receives
rewards for its actions. An agent perceives a state si, decides
to take some action ai, makes a transition from si to si+1

and receives the reward ri. The task of the agent is to
maximize the total reward it gets while doing actions. Agents
have to learn a policy which maps states into actions. All
knowledge is stored in a tree and the mechanism responsible
to infer an action is called relational regression engine.

This engine is denominated relational because the repre-
sentation of states. Moreover, the states use binarization by
conversion of a categorical attribute to asymmetric binary
attributes [15]. The regression is the mechanism of using a
tree with a dependent variable action and the independent
or predictor variable state [16].

The learning mechanism takes the state from the SPM and
use the relational regression engine to select the action. This
mechanism tries to find the current state in the intermediate
nodes. If this operation is positive it takes an action which
antecessor action executed in current action was positive,
otherwise a random action is done. The action executed
over the state changes it and the agent receives its reward.
The reward can be either positive (equals to 10) or negative
(equals to -1). After this occurred, the qvalue is computed
by:

Q̂i ← Q(si, ai) + α[ri+1 + γmax(Q(si+1, ai+1))−Q(si, ai)] (1)

Then, the relational regression engine is updated receiving
a set of (state, action, qvalue, last action). The state is
tested with internal nodes if it already exists. In the case

Figure 2. An example of simple plan. Actions label states, events and
guards label transactions [17]

this performance is false, the state is inserted in the tree and
the leaf receives the action with the qvalue and last action,
forming a new branch. Otherwise, it updates the qvalue for
respective action in the leaf node.

In a leaf node, more than one action can be considered.
For an easier access to the most adequate action, these
actions can be ordered in decreasing order according to their
qvalue always that an example is inserted or updated. Each
leaf also has a last action associated with action and it
refers to a last action of the robot to choose this action on
this state. This process is repeated until there are not more
interactions to be executed.

B. New FAIETGQ

In this section, we propose a simple modification on
FAIETGQ algorithm based on the idea of agent plan by
Leonetti [17]. His work used a reactive plans representation
with graphs, or charts, for plan state and event. The plan
states are the nodes of the graph which represent the actions
that can be performed and the events are the vertices that
reflect environment state. Moreover, the vertices may have
guardians, which are conditions that must be satisfied to
reach the other state. Thus, the agent remains on a node
until the state is changed. If there is a guardian, the condition
must be satisfied for the agent to move from one node to
another.

The Figure 2 is an example of simple plan for robot
soccer. The agent starts holding the ball until an event
occurs. When takerApproaching or player2calling happen
the agent can go to the next node. The agent reaches the
node passToPlayer1 or passToPlayer2 if the condition of
Player1Ready or Player2Ready is satisfied.

Our propose change the FAIETGQ to take an action
only when a state changes. Then, in the beginning of the
interaction the agent do not need to do a random search
to find a target, object or human, and we can improve
our experiments eliminating the necessity of the caregiver
waiting fixed looking for a robot while it learns to return to
mutual gaze. In addition this new algorithm is more natural
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than the original because the robot only reacts to a change in
the environment. In other words, the robot, in early learning
stage, do not need to search disorderly to find a correct
action to establish eye contact.

However, this algorithm creates a problem during the
interaction. When the caregiver turns his head to the object
and the robot turns wrongly to another place. At his moment,
the robot does not find the object, receive a negative reward
and the state will not change. Because this problem other
addition to algorithm is inserted. When the robot receives
the negative reward it does not wait to change the state of
the environment, it immediately takes an action.

The new FAIETGQ algorithm learns a control policy
for an agent. It learns only from the interaction with the
environment and receives rewards for its actions. An agent
perceives a state si and compare with its previous si−1.
If they are the same, the algorithm verify if the reward is
negative to take an action ai randomly. Otherwise, the robot
wait for the next state si+1. The other case is when the states
are different, then the agent decides to take some action ai
following the knowledge stored. After it takes an action it
always makes a transition from si to si+1 and receives the
reward ri. The task of the agent is to receive positive reward
while takes actions. Agents have to learn a policy which
maps states into actions.

All new knowledge is stored in a tree. This relational
engine receives a set of (state, action, previous action) and
tests the internal nodes if the state already exists. In the case
this performance is false, the state is inserted in the tree and
the leaf receives the action with the previous action and
necessity values, forming a new branch. The tree is updated
when a positive example occur.

V. SOCIAL INTERACTIVE SIMULATOR

To evaluate the proposed architecture, an interactive social
simulator has been developed by us and it is presented
here. This social interaction simulator is able to simulate
an interaction between a robot and a human in a controlled
social environment.

In order to simulate the JA task, it has been defined three
entities that can be manipulated through functions of the
simulator. They are a human, a robot, and two toys. The
human being and the robot are positioned face to face, at
a distance of approximately 50 cm from each other. The
simulator enables that up two toys are positioned in the
social environment. A toy can be positioned at any empty
place of the social environment at any moment.

The social environment was modeled in the following
way. Both the robot and the human can turn left or right
their heads up to 90◦. The robot has its central focus in 0◦

and has its visual field limited by a foveation parameter λ◦,
starting from the central focus, in [−λ◦, +λ◦].

The position of the robot’s head is given by θr, that can
assume values in [−90◦, +90◦]. The position of the human

Figure 3. Positioning control [18].

being’s head is given by θa, that also can assume values
in [−90◦, +90◦]. When an object i is positioned in the
social environment, the simulator maps the angle between
this object and the robot’s focus, that is, the distance that
the robot must move its head to focus the positioned object.
This mapping is given by θoi, that can assume values in
[−90◦, +90◦]. In this way, if an object is positioned in the
environment, the simulator verifies if the same is inside the
robot’s field of vision, by comparing its position in relation
to the robot’s focus, considering the foveation of the robot.

Figure 3 shows the interface of the developed simulator
with the robot head position explained above. In this figure,
on the left side of the interface is the control panel that
enables interactive or automatic simulations, the human
being is fixed on the upper side of the interface and the
robot is fixed on the lower side of the interface.

Additionally, the simulator provides an adult attending
stimulus that simulates attention from human being to the
robot. The simulator provides the stimulus when the human
and the robot are keeping eye contact and when the robot
correctly follows the human gaze. This mechanism was
incorporated in the simulator to validate the behavioral
analysis presented by Dube and their colleagues [19], stating
that the human serves as motivational operator in the context
of JA learning.

During a simulation, the simulator executes interactions
continually and each interaction takes 1 second. The simu-
lator is able to position up to two simultaneous objects in
the social environment, on places stochastically selected with
probability ρo. These objects are positioned in the respective
places for a time determined by the user (given in seconds).
Additionally, the simulator is able to turn the human being’s
head to focus an object present in the environment or to
focus the robot. The object that receives the human’s focus
is stochastically selected with probability ρoi and the human
keeps his focus at the selected object for a time determined
by the user (given in seconds), before turn his head to
another object or to the robot.
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VI. EXPERIMENT

In this section, the main results of the experiments car-
ried out to evaluate the proposed learning algorithms are
presented and discussed. The experiments were carried out
employing the simulator previously presented, in the context
of the emergence of JA. The purpose was to evaluate the
capabilities of the new version of the robotic architecture
on exhibit appropriate social behavior and learn from inter-
action.

For a complete evaluation of this previous proposed, we
compared it with FAIETGQ to analyze the improvements
of this algorithms. In addition, we used the old architecture
with Contingency Learning, Q-learning and ETG algorithm
to compare with new FAIETGQ to validate of this new
architecture over the original version.

The experiments were composed by a learning phase
of 10,000 time units (10,000 seconds in the simulator).
During the learning phase, the human being initially kept
the focus on the robot until it establish eye contact with
him, characterized by 3 time units looking each other. Then,
two objects were positioned in the environment and the
human being turned his gaze for one of these objects,
obeying the probabilities defined in the social interactive
simulator. The human keeps his gaze at the object by 5
time units. Afterwards, the objects are then removed from
the environment and the human turns his gaze to the robot,
keeping the robot make eye contact again. This procedure
is done in order to simulate an interaction where two agents
are keeping eye contact and then one turns his gaze to an
interesting event or object.

During the learning, the robot looks for the human.
However, when an object is positioned in the environment
and the human turns his gaze to it, the robot loses the human
attention and starts to seek anything in the environment. Ad-
ditionally, if the robot looks for a toy, which the human keeps
his gaze turned on it, the robot receives a reinforcement and
the human gives attention to the robot, in relation to that toy.
In this way, after a history of reinforcement the robot will
learn to follow the human’s gaze to receive his attention.

The learning capabilities of the architecture were analyzed
by observing the robot interacting with the human and the
environment, and computing a measure, the correct gaze
index (CGI). The CGI measure is based on measures prosed
by Whalen [20] and is defined as the frequency of gaze shifts
from the human to the correct location where the human is
looking at, given by:

CGI =
#shifts from the human to correct location

#shifts from the human to any location
(2)

To quantify the learning capabilities of the architecture
through the learning of gaze following, at specific points
during the learning process we temporarily interrupt the
learning phase to evaluate its behavior. This evaluation was

done by 10 runs of 500 time units (500 seconds in the
simulator). For each run, the CGI value, given by Equation
(2) was computed. After the evaluation phase, the learning
process was resumed. A total of 20 interrupt points were
placed. The whole procedure was performed 10 times and
then a mean and standard deviation was calculated for each
evaluation phase.

During the evaluation phase, the human initially kept the
focus on the robot until it establishes eye contact with the
human, characterized by 3 time units keeping eye contact.
Then two objects were positioned in the environment and the
human turned his gaze for one of these objects. However,
in the evaluation phase, the object to which the human
should turn his gaze was place on a position given by pre-
established sequence (to prevent non determinism in the
results). The second object (the distractor) was placed on
an empty position, obeying the probabilities defined in the
social interactive simulator. Once the robot turns its head to
any direction, the simulator verifies if it is looking to the
correct position in the environment (a toy which the human
is looking for) or not, and update the CGI measure. This
procedure takes 1 time unit. Afterwards, the objects are then
removed from the environment and the human turns his gaze
to the robot, keeping the robot make eye contact again.

For the experiments, the architecture knowledge was set as
follows. Four stimuli were declared: face, object, attention,
and environment, where attention is a reinforcement stimuli.
Two facts were declared to define that red and blue objects
are toys. Thirteen facts where declared in order to differen-
tiate the human’s head pose in frontal pose, six poses of left
profile and six poses of right profile. Additionally, two more
facts were declared to define when the robot is focusing the
human or a toy.

When we are dealing with JA, a fact very important that it
must be considered in all interactions is the number of times
that the robot establishes eye contact with human. This is an
essential fact for JA. By the simulator, the robot can choose
one of the options: to find anything in the environment or pay
attention to human. If the robot chooses only the first option,
it could not simulate the joint attention. Because this, it is
important that the learning algorithm maximizes the number
of established eye contacts.

The Figure 4 shows the average number of times that the
robot establishes eye contact with human for each evaluation
phase by using each one of the algorithms. In this figure, it is
showed the beginning of the interaction between human and
robot, in a total of 125 possible opportunities to establish
eye contact each other.

In performing the analysis of the Figure 4 we can verify
that the new FAIETGQ achieved a better final result than
the other techniques.

It shows that the robot has an increasing learning in the
beginning of process until find a threshold, after that, the
agent no longer learns how to establish eye contact and will
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Figure 4. Average of attention obtained by human from the robot during
evaluation phase.

Figure 5. Learning evolution during the experiments.

only use the knowledge learned. This shows that it could
learn to give attention to human. The graphics also show
that the ETG technique achieves a lower level of the other
algorithms and the Q-learning has irregular behavior.

Figure 5 shows the performance, the learning progress
over the time, of five different learning algorithms used as
learning mechanism in the architecture to solve JA. It plots
the CGI average value measured for each evaluation phase,
at specific points during the learning process.

Initially, it can be seen that all of the algorithms have
not any knowledge about the problem. In the first run, all
of them have a great improve your knowledge attaining at
least 40% of maximum CGI value. In this stage, the robot
or the agent learns a lot about the problem. After this, the
contingency learning does not improve your knowledge until
the end, remaining constant. In contrast, other algorithms
have a reasonable growth until to attain a stabilization level.

In the end, the ETG and Q-learning algorithms have the
best results for CGI. The new FAIETGQ and FAIETGQ
algorithms have a good performance and has results close
to the best. The contingency learning has result of CGI lower
than the others.

A deeper analysis can be made considering Figures 4 and
5. Considering the factors of learning and the number of
established eye contact, you can say that the new FAIETGQ
algorithm achieved better results. This means that the robot

can establish eye contact with some frequency and follows
the attention to the object that is of caregiver’s interest.

The experimental results also showed that the ETG and Q-
learning algorithms have a high quality to follow the human
gaze, but they have poor quality to establish eye contact. The
ETG is the worst of this two. And finally, the contingency
learning that can make half of the relations of JA, which is
very low compared to other.

One good improvement can be seeing here if we compare
the way as the experiment was made before. In other
experiments performed so far was necessary that in the first
100 times units of learning phase, no objects are positioned
in the environment and the human kept his focus on the
robot the whole time, so the robot have learned that it may
obtain the human attention by keeping eye contact with
him. In others words, at this moment the robot explores the
possibilities while the caregiver remains in the static way.
This change decreases the performance of Contingency, Q-
learning and ETG algorithms.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented an ongoing work for the
development of a robotic architecture inspired on Behavior
Analysis [7]. Five different learning algorithms, RL, contin-
gency, ETG, FAIETGQ and this improvement on FAIETGQ
proposed, were incorporated to robotic architecture to pro-
vide to the robot the ability of sharing attention. The learning
mechanism were evaluated on a social interactive simulator
and made by interacting real robotic head and the human in
the context of the emergence of JA.

The experimental results show the evaluation by using
new FAIETGQ algorithm compared with others algorithms
for JA problem. It can be considered as step forward in a
more natural interaction.

Future works include the insertion of new modules, for
instance energy, emotions, needs. Another planned advance
is to work with learning the joint attention by the robot
where the caregiver does not have just one fixed position.
So, we can better evaluate the learning method. Furthermore,
it would be more natural and the robot would not need to
move its trunk if the caregiver changes your position.
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