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Abstract—This paper presents a novel low cost learning efficient learning methods would contributes to solve these
algorithm for a Test Feature Classifier using Overlap Index problems.
Lists (OILs). In general, pattern classifiers require a large TFC’s learning process involves finding and recording

amount of training data to attain high performance, which . . e .
is expensive in terms of computation time. Our proposed PTFs which are basic sub-features, beginning with a search

algorithm uses OILs to efficiently find and check combinations ~ in lower dimensions. In this paper, we propose the method
of features starting with lower dimensions and working up-to  for efficient learning that exploits the fact that class overlaps

higher ones. Our algorithm can solve classification problems in g high dimensional feature space require overlaps in lower

in real industrial inspection lines with large reductions in dimensions. In addition, we propose an efficient learning

computation time. . ) . ’ . . .

technique for adding new features or dimensions. The detail

Keywords-Test Feature Classifier; Overlap Index List; Speed of these methods shows in section 3 and 4. The verification
Up Learning; Curse of Dimensionality. experiments shows in section 5.

I. INTRODUCTION Il. TESTFEATURE CLASSIFIER

Recently, automatic tools for inspecting products have Because the mathematical formalization of TFC has al-
become increasingly important for develop flexible manu-ready been provided in [5], we briefly introduce classifiers
facturing lines. Examples can be found in visual inspectiorthrough qualitative and semantic explanations. TFC consists
in production and precision work that is necessary for qualityof learning and discrimination procedures. In the learn-
management. Classification is one of the most importaning procedure, a nonparametric and specific investigation
technigues employed in automatic inspection systems. ldivides the overall feature space into local subspaces of
general, classifiers require a large set of training samplesombinatorial features in which class overlap. Combination
for learning in order to attain a high level of performance.of features are called “test features”, (TFs) or “prime test
However, the labelling of samples, which makes supervisefeatures”, (PTFs), which are irreducible test features. In
learning possible for a classifier, is typically, a very time- the discrimination procedure, an unclassified candidate input
consuming task. pattern is checked in each subspace using the corresponding

A current research subject in pattern recognition is rePTF, and then, the pattern is classified according to the
ducing the cost of learning. for which several approachesverage voting scores in sub-spaces. Thus, the classifier aims
have been proposed. One approach aims at reducing the siteachieve high performance with a small training dataset by
of the training data set [1] [2]. Another approach involvesthe partial discriminations contained in sub-spaces. Given
streamlining the learning algorithm [3] [4]. In this study, a training dataset in which classes do not overlap, a TF is
we discuss the latter approach and propose a high speetfined as any combination of features that does not classify
learning algorithm for a Test Feature Classifier (TFC), whichevery pattern with the selected features alone, that is, it
is a pattern classifier. Real inspections of manufacturing-linesatisfies the condition of having non-overlapping classes. In
quality have several problems including the following: 1) general, smaller combinations of features may allow class
some results of labelling for single data are not matched, 2pverlaps, but they are advantageous form the perspective
the reliability of the labels must be validated, and 3) dataof low-cost computing. Because it is provable that any
with low reliability are not useful for learning. Research into combination of features that includes a TF is itself a TF,
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Table |

EXSAMPLE OF TWO CLASSES PROBLEM The seti; shows the interclass overlap consisting of
i 72 7 T 1%2, 124,221, andaxs. The set{2, 4} represents the indices

121 2 5 9 7 of 129 and ;x4 in class 1, and the sefl,5} represents
172 > 6 10 > the indices of,z; and,xs in class 2. The set, shows the

= 122 g ; ; g overlap involving; 25 and,z3, 5 and 3 represent the indices
175 3 9 7 6 of 15 in class 1 andxs in class 2, respectively. We create
221 5 8 6 1 OlLs for f5, f3 and f4 in a similar manner, obtaining.
272 7 9 2 2

C2 zii 2 170 g 2 L(f2) = {i1,i2,13}
2o | 5 [ 4 15 o= {3}, {41}

o = {{4},{1}}
is = {{5}.{2}}
we should choose irreducible TFs, or PTFs, for discrimina-
tion. In [6], an efficient and effective learning method for L(f) = {iis)
successively adding training data by using weights for PTFs 4= v
was proposed. iv = {{2},{3,5}}

IIl. HIGH-SPEEDLEARNING ALGORITHM USING
OVERLAP INDEX LISTS There is no interclass overlap with respectfip Thus, fs3

. . . . is a TF, for which an OIL is not needed.
TFC's learning procedure involves identifying enough TFs

so that the non-overlap condition is satisfied. In our propose®. Updating OlLs for Higher Feature Dimensions
algorithm, the learning procedure finds NTFs, which are In the next step, we search TFs and update the OlLs

sub-spaces that have data with overlapping classes. The, 14 gimensions using the OlILs for single dimensions.

learning procedure begins by searching for TFs in 10Wsea ching all data for interclass overlaps is necessary while
dimensional sub-spaces and adding feature dimensions. Daéﬂecking for TFs in higher dimensions. Thus, the result of
with overlapping classes in higher-dimensional SUb'Spaceéhecking for TFs does not depend on the order in which
will be overlapped in each lower dimensional subspace th%atures are added. In the sub-featyiré,, we must decide

is contained in a higher dimensional subspace. Thereforg:,vhe,[her to add information about featurgs to the OIL

we use Overlap Index Lists (OILs) to record classifica—fOr f, or vice versa. To perform a more efficient check,
tion overlaps in order to circumvent checking data thatWe use the OIL with the smallest number of overlapping
are already known to satisfy the non-overlap condition. In.ompination. The number of data elements that must be

thls algorlthm, additional checking is necessary in |°Wersearched while checking for a TF1§ x ne, wheren; and
dimensional sub-spaces where few data overlaps occur, and

his checki o Jditional head for the alaorith 1y are the number of data elements in class 1 and class 2,
this checking provides additional overhead for the algorithm, o ghactively, Assume(f;) is the number of data elements
We will briefly discuss the computational complexity of our

. . . . that must be searched. It is calculated by multiplying the
high-speed learning algorithm using OlLs. number of L(f;) ' s i; andiy elements of class 1 by the

A. Creating OILs for Single Feature Dimensions number of elements of class 2:

Tablel shows an example of a two class problem. It has s(f1) (2x2)+(1x1)
a dataset with five data elements,, x5, -+, 2x5 in each = 5
class and four independent featurgs f2, fs and f4 . The o
left subscripted letters indicate the class the elements belon%'qm”a”y’ s(f2) = A x 1+ (A x1)+1Ax1) =3
to, whereas the right subscripted letters are indices. We wilf NUS, We choose to updat, becauses(f2) < s(f1).
describe our high-speed learning algorithm by tracing thd" the case of the featurd, f5, the three pair of data
procedures that search PTFs. The first step of the algorithrfi©3,274) ; (124,221) , and (1z5,215). Tablel shows that
is create OILs for one-dimensional features. In the case df'€re is a class overlap with respect to these features in the
f1, 129,174, 221 and oy as well as,zs and oz constitute case ofjxy andszy. Thus, fi fo is not a TF and the OIL is

an interclass overlap. Thus, featufe is an NTF, and the updated:

index information below is added to the OIL( f). L(fif2) = {i1}
L(f1) = {ir iz} ivo= {{4},{1}}
iv = {{2,4},{1,5}} We then check for TFs among the five sets of features
io = {{5},{3}} fifss fifas f2fs, f2fa, @nd f5 fy. Featuresfi fs, f2f3, and
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Figure 1.  Comparison of time costs for searching PTFs (Inspection

Dataset). Figure 2. Comparison of time costs for searching for PTFs (Letter Dataset).

f3f1 are TFs becausg; is a TF. Thus, we only need to o o Ceation E:mgﬁﬁgf;ka“st) o 08
check the two sets of featurgsf, and f> f4. For fi f4, we 0.4 « total time(checklist) /[ |

use f4's OIL becauses(f;) = 5 > s(f4) = 4. Checking ‘ | e—x 06
the data(lzg,gxg), (1LE2,21‘5), (1:6372134) and (11’5,2564) %0.3 — ‘ — é’
from the list L(f,) revealed that there is a class overlap € 0475
in the case of;z, and ;x3. Thus, f1f; is an NTF and o2 E
the OIL is updated withL (f1 f1) = {{2},{5}}. For fafa, o2
we use fa's list becauses (f2) < s(f4). Similarly, faf4 0.1 '

is an NTF because there is an overlap involving and

»x4. This completes the process of checking for TFs in two O et & a0
dimensions. Number of dimensions

Our next step is to check for TFs in three dimensions. The
process is almost the same as that for two dimensions. Thggure 3.  Comparison of time costs for searching for PTFs (Abalone
only feature combination that we need to checkfigs f,. ~ D2@seV:
We can use any of the lists (f1 f2), L (f1f1), or L (faf4)
becauses (f1f2) = s(fifs) = s(f2f1). In this case, we
will use L (f1 f2). Based on this list, we only need to check 2 contain 2033 and 3799 data elements, respectively. The
the set(yx4,271), Where there is no overlap. Thus, the second dataset is the Letter Data-set from UCI database [7];
combinationf, f, f4 is a TF. The process of creating TFC is it has two classes, class D and class P, and 16 features. Class
complete because there are no NTFs in the three dimensionBl and P contain 805 and 803 data elements, respectively.
case. The third dataset is the Abalone Data-set from UCI database
[7] that is used for distinguishing between male and female
abalones. The male and female classes contain 1528 and
After defining a set of PTFs, i.e., training the initial 1307, respectively, and there are 8 features. We used these
TFC with a specified data for which feature dimensionsthree data sets as training data. The respective times for
are provided, TFC must be able to up-date or modify itselfchecking for TFs in each dimension for the three datasets
for augmented feature spaces. We propose an algorithm feire shown in Fig. 1, 2, and 3. The bar graphs show the time
modifying a set of PTFs on the basis of new features. Whemeeded for checking for TFs in each dimension, and the
a new feature is presented and new subspaces are addéile graphs show the total time for each case. These results
the original sub-spaces are included in the new set of sutdemonstrate the efficiency of the algorithm for the Inspection
spaces, but bit vice versa. Thus, the modification procedurgnd Letter Datasets. However, the method dose not show a
will only check for TFs in the new sub-spaces that are notclear advantage in the case of the Abalone Dataset because
known to be TFs on the basis of previously identified PTFsof the overhead for lower dimensions. We believe that one
factor may be that the total amount of time needed to create
. _ _ _ the initial TFC was too small to allow a significant change.
A. High Speed Learning Algorithm using OlLs A PTF is defined as a prime TF that dose not include
We used three data sets for our experiments. The first datather TFs. In TFC and sTFC, the learning procedure involves
set is used in a real industrial inspection line (Inspectiorsearching and recording PTFs. As an example, Fig. 4 shows
Dataset). It has two classes and 20 dimensions. Class 1 atite number of PTFs and TFs for the Inspection Data-set.

IV. EFFICIENT LEARNING FORADDING DIMENSIONS

V. EXPERIMENTAL RESULTS
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3 6
4><10 ém VI. CONCLUSION AND FUTURE WORK
23dims PTF . . .
){\! o i PTF o We have proposed a new method for efficient learning us-
-+ 23dims TF ing OlILs that can eliminate unnecessary checks and efficient

3 % - 26dims TF . . . . .
/\ / \\ 8 learning method for adding feature dimensions using pre-
5 6 liminary information. We compared the performance of our
/ i / \ proposed methods with that of conventional TFC methods.
* Our proposed methods can greatly reduce the time needed

1
2 for creating TFCs.
0 .0 We found that the highest number of dimensions in

1 5 10 15 20 25 H
Number of dimensions the <_:reate_d PTFs was stable, although the hlghe_st number
of dimensions depends on the dataset. One topic for our
Figure 4. Number of PTFs with increasing number of feature dimensionsfuture research will be determining the highest number of

Number of PTFs
Number of TFs

dimensions.
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