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Abstract—A Brain-Computer Interface (BCI) allows a user
to control a computer by pure brain activity. Due to the non-
stationarity of the recorded brain signals, the BCI performance
tends to decrease over time. Recently, adaption of the BCI has
been proposed as a means to counter non-stationarity and help
to stabilize the BCI performance. Since most adaption methods
for BCI are analysed in an offline setting, one important factor
is not taken into account: that also the user is adapting.
While online experiments take into account the adaptive user, a
comparison of different classifiers with the same data is always
biased towards the method that was used for feedback and
thereby does not allow a proper evaluation of the classifier in
a co-adaptive environment. To solve this problem, we propose
a simulation approach that simulates an adapting BCI user
and allows to test and compare different adaptive algorithms
considering the co-adaptivity between BCI and user. With
this approach we can also show, under which conditions an
adaption of the BCI improves performance and when the
adaptive BCI and the adaptive user hinder each other and
lead to a decrease in BCI performance.

Keywords-Brain-Computer Interface(BCI); unsupervised
adaption; co-adaptivity.

I. INTRODUCTION

A Brain-Computer Interface (BCI) classifies the brain
signals of a user, thereby giving him the possibility to
communicate or control a computer by pure brain activity.
One problem for current BCI systems is the high non-
stationarity of the recorded brain signals, which causes the
BCI performance to deteriorate over time. Adaption of the
BCI classifier has been proposed as a means to counter
these non-stationarities and to stabilize or even improve the
BCI performance [1]. There exist numerous publications
that show different adaption methods for BCI to increase
performance in an offline analysis [2]–[5]. But an evaluation
of adaptive algorithms in an offline setting is not advisable,
since it does not take the user into account, who learns and
adapts to the BCI. Thereby it is unclear if the adaptive BCI
makes it harder for the user to learn BCI control or if the
learning of the user, who adapts his control strategy, might
hamper the learning of the adaptive BCI algorithm.

To overcome this problem and to take into account the
learning user, online experiments have to be performed. This

was already done with a supervised adaption of the classifier
[6]–[8], which is not practical, since supervised adaption can
not be used in practical BCI applications due to the missing
class labels. So far, Vidaurre et al. are the only ones to
show an unsupervised online adaption of a BCI classifier
[9] with the result that an unsupervised adaption might not
be feasible for all subjects. While these online experiments
allow a suitable evaluation of a BCI adaption, they still
do not allow a fair comparison between adaptive and non-
adaptive methods to assess the benefit of BCI adaption,
since the non-adaptive methods were evaluated offline on
the data recorded from the online experiments. The results
are thereby biased towards the adaptive method used during
the online experiment.

To compare two different adaptive and non-adaptive meth-
ods for BCI, both have to be evaluated online. Due to
external factors like inter- and intra-subject variability in
BCI performance and learning, a large subject-population
would be needed that goes beyond what is used in today’s
BCI research.

So far, there is no work that specifically addresses this
aspect of co-adaptivity in a BCI.

As an approach to test different adaptive methods in an
online setting with a learning user, we propose the use of
a simulation method, that allows to simulate online BCI
sessions with an adaptive user under different environments
with different parameters in a fast and cost-efficient way.

In the following, we will explain, how the simulation
works, what parameters are available to adjust the user’s
behaviour, and the environmental influences and we will
demonstrate the influence of parameter changes. Based on an
adaptive BCI classifier, we will show how the simulations
can be used to evaluate the mutual influence between the
user and the BCI, and under which conditions the user
benefits from an adaptive BCI classifier or which conditions
lead to decreasing BCI performance.

In addition, we will show, that this simulation approach
can also be used to answer other questions like: can the user
learn to control an adaptive BCI, if neither the user nor the
BCI have any prior knowledge?
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II. METHODS

To simulate the interaction between an (adaptive) BCI
and the user, a genetic algorithm was used to simulate the
learning user and the BCI classifier was used as a fitness
function for the genetic algorithm. An overview of the
general concept is depicted in Figure 1. A motor imagery
BCI, where the BCI was controlled by left hand motor
imagery and right hand motor imagery was used as archetype
for the simulated BCI.

Figure 1. Overview of the simulation of two adaptive systems

The genetic algorithm consists of two populations: pop-
ulation PL belonging to left hand motor imagery and pop-
ulation PR belonging to right hand motor imagery. Both
populations are filled with individuals, which can be seen as
representations of the specific state of brain activity. Each
individual IN = (iN , fN ) consists of a vector iN ∈ Rn and
a fitness value fN ∈ R.

To control the BCI, a new individual IN is created for
each trial. Depending on the target class for this trial, the IN
is either created out of PL if the target is the class associated
with left hand motor imagery or vice versa. For the creation
of a new individual, two parent individuals (I1, I2) are drawn
randomly from the population, with individuals with higher
fitness having a higher probability to be chosen. For the
creation of the new vector iN , it is chosen randomly, which
parts are filled from i1 and which from i2. On average, i1
and i2 fill half of iN . Depending on the parameter settings
for the mutation rate, a noise vector is added to iN to
introduce mutations. The amplitude of the noise vector also
depends on the mutation rate. Since IN will be added to
the population later, a random ID is selected out of the
population, from which the parents of IN were drawn,
and removed. Individuals with lower fitness have a higher
probability to be drawn.
IN is then used to generate an artificial EEG signal

according to iN . The EEG signal is then preprocessed and
classified by the BCI classifier. The BCI classifier outputs
cN ∈ R with cN ≥ 0 when left hand motor imagery is
classified and cN < 0 when right hand motor imagery is
classified. The BCI classifier then serves as a fitness function
for the genetic algorithm with fN = cN being the fitness
value if the individual stems from PL and fN = −cN
when the individual stems from PR. At last the individual
IN = (iN , fN ) is added to its population.

A. Simulation of EEG data and preprocessing

For the generation of the EEG data, the vector iN ∈ R20

is used as current state of brain activity. For the simulation
of the EEG data a samplingrate of 100 Hz is used and
the two electrodes C3 (located over the left motor cortex)
and C4 (located over the right motor cortex) are simulated.
The values iNx, x = {1, 3, 5, . . . , n − 1} represent the
brain activity in the left motor cortex, while the values
iNx, x = {2, 4, 6, . . . , n} represent the brain activity in the
right motor cortex.

The brain activity in the left motor cortex is used for
generation of EEG data for C3 and the activity in the right
motor cortex for the generation of EEG data for C4. The 10
values are used to modulate the frequency spectrum in the
range from 3 to 30 Hz. To simulate background activity and
noise as it is typically present in real EEG recordings, pink
(1/f ) noise and white noise are added with amplitudes that
can be predefined in the settings. Also the noise can change
over time to simulate a covariate shift [10].

After generation of the EEG signal, the frequency spec-
trum for both electrodes is extracted by an autoregressive
model with order 10. The power spectrum in the range from
1 to 50 Hz in bins with width of 1 Hz are used as features
for the classification.

An example for the different steps of simulation of the
EEG data and preprocessing is visualized in Figure 2.

B. BCI classifier

In the following, the two methods are introduced, that
have been used for classification in the simulated BCI.

1) SimpleMu: SimpleMu is a very simple classifier that
was used to test the parameters settings of the genetic
algorithm with a simple non-adaptive classifier. It outputs
the difference in the power spectrum between C3 and C4 in
the Mu range (7 to 12 Hz). Assume Ai,b is the power for
channel i at frequency bin b, with i = 1 for C3 and i = 2
for C4, the output of the classifier is calculated as follows:

cN =

12∑
b=7

A1,b −A2,b (1)

2) K-means: K-means clustering [11] was chosen as an
algorithm that allows an unsupervised adaption of the BCI,
as well as an unsupervised calibration.

Given a k ∈ N\{0, 1} and n datapoints (x1, x2, . . . , xn)
with xi ∈ Rd, k-means tries to partition the n datapoints
into k (k ≤ n) cluster or sets S = {S1, S2, . . . , Sk}, while
minimizing the within-cluster sum of squares:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖
2 (2)

µi represent the mean of all datapoints in cluster Si. For
the initialisation of k-means an initial set of k means
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Figure 2. Simulation of EEG data: A) Vector for one individual of population for left hand imagery (top) and right hand imagery (bottom) B) Corresponding
EEG-signal at electrodes C3 and C4 C) Corresponding frequency spectrum at electrodes C3 and C4

(m
(1)
1 ,m

(1)
2 , . . . ,m

(1)
k ) has to be given. When a new data-

point xn+1 is added to adapt the classifier, it has to be
ensured, that the mean of the existing clusters are adapted
and no new clusters are created from scratch. Therefore the
means (µ

(n)
1 , µ

(n)
2 , . . . , µ

(n)
k ) from the previous result of k-

means are used as initial set (m(n+1)
1 ,m

(n+1)
2 , . . . ,m

(n+1)
k ).

In the following, k = 2 is used, since the BCI control is
simulated with only 2 classes.

For the unsupervised calibration, the initial means are
chosen randomly. Due to the fact, that k-means is a pure
clustering approach without any knowledge of the true class
labels, the clusters can represent the classes correctly, but
the clusters can be associated with the wrong class label.
In this case the BCI would always choose the wrong class
and do exactly the opposite of what the user is intending
to. Since a human user would recognize this fact and just
correct the mistake of the BCI by switching the two imagery
classes himself, such a behaviour had to be implemented
into the genetic algorithm. Therefore, the individuals of the
two populations PL and PR were completely switched if
the accuracy fell below a threshold of 30 %, which should
mimic the behaviour of the human user switching his mental
imagery classes.

Although k-means does not offer a supervised calibration
of the BCI by default, k-means can be performed on all
individuals in PL and PR. The initial means m

(1)
1 and

m
(1)
2 are set to the mean of all individuals of PL and PR,

respectively, and the clusters can be associated with the
correct class labels, to simulate a supervised calibration of
the BCI.

A new trial xt is then classified by calculating

cN = ‖xt − µL‖ − ‖xt − µR‖ (3)

where µL is the mean of the cluster for left hand motor
imagery and µR the mean of the cluster for right hand motor
imagery.

III. PARAMETER CHANGES AND THEIR EFFECT

Different parameters can be used to test different settings
and adjust the behaviour of the genetic algorithm. In the
following, the important parameters are presented and their
effect is demonstrated with the non-adaptive simpleMu
classifier. It is assumed that the genetic algorithm has prior
knowledge how to control the BCI, since it is also explained
to BCI users, that they should control the BCI by motor
imagery.

If not stated otherwise, a BCI session with 2000 trials
was simulated, where both classes were evenly distributed.
10 sessions were simulated resulting in a vector for each
session, where the outcome of each trial was marked with
1 if correct and 0 if wrong. The accuracy for one time
point during this session was calculated by sliding a Hanning
window with length 251 over the result-vector.

A. Learning rate

One parameter that strongly influences the behaviour of
the genetic algorithm is the so called learning rate. It is
one parameter, to be set ≥ 0, which is proportional to the
mutation rate and to the weighting of the fitness function,
when individuals with the highest or lowest fitness are
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randomly selected either for reproduction or elimination.
While the algorithm will not learn at all with a learning
rate of 0, it should learn faster and adapt faster to the BCI
with a higher learning rate.

The effect of two exemplary learning rates is displayed in
Figure 3.

Figure 3. Result of a simulation with two different learning rates of 2 (A)
and 0.5 (B). The thin colored lines represent different simulated sessions
and the thick black line represents the average accuracy over all simulation
runs.

A comparison of different learning rates with values
ranging from 0.01 to 2 is shown in Figure 4. It is clear
that the simulated user learns and adapts to the BCI and
that it adapts faster to the BCI with a higher learning rate.

Figure 4. Average accuracy during simulations with different learning
rates.

B. Initial performance

Another parameter that can be changed for the simulations
is the initial performance of the BCI user. The initial per-
formance is modeled by drawing the initial individuals for
the populations PL and PR from two different distributions.
Each distribution has 20 dimensions and for 18 dimensions
the mean and standard deviation of these dimensions is
equal across both distributions. For 2 dimensions, which
roughly correspond to the alpha-band in the left or right
motor cortex, the mean of the distributions differs by dx

times the standard deviation. The higher the dx, the higher
is the initial performance.

Figure 5. Average accuracy during simulations with different distance dx
between the two populations PK and PR, which results in different initial
performance. Learning rate was set to 1.

Figure 5 shows results from simulations with learning
rate 1 and different values for dx. For each parameter
combination 50 sessions were simulated and the average is
displayed.

C. Signal-to-noise ratio

One problem when recording EEG for controlling a BCI,
is the amount of noise and background activity, that is
picked up by the EEG. Therefore EEG has a bad signal-to-
noise ratio. To evaluate the adaption of the simulated user
under different signal-to-noise ratios, signal-to-noise ratio
was introduced as another parameter that affected how well
the genetic algorithm was able to modulate the brain activity
compared to the amplitude of the noise in the EEG signal.
The result of simulations with different signal-to-noise ratios
is shown in Figure 6. Due to these results, a value of 0.2
was chosen as a realistic value to be used for all following
simulations.

Figure 6. Results of simulations with different signal-to-noise ratios. For
each value 50 sessions have been simulated and the average is displayed.

D. Covariate shift

To simulate the effect of non-stationarity in EEG signals, a
covariate shift [10] of the data was introduced by increasing
the amount of pink noise every trial by a specified value.
To test how well the simulated user adjusts to the covariate
shift, different extents of covariate shift were tested with
50 simulated sessions per value and a learning rate of 1. To
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simulate the effect of a covariate shift on BCI users with low
initial performance and high initial performance, simulations
were conducted with dx = 0.8 and dx = 5. The results for
this simulations are shown in Figure 7.

Figure 7. Results of simulations with different values for the amount
of covariate shift and a learning rate of 1. A) for users with low initial
performance B) for users with high initial performance

It can be seen that a higher covariate shift makes it harder
for the BCI user to adapt to the changes and if the covariate-
shift is too large, the user can’t adapt and the BCI perfor-
mance drops. This drop in BCI performance is especially
visible for BCI users with high initial performance.

IV. RESULTS

A. Adaptive vs. non-adaptive classifier

To simulate the effect of classifier adaption on the BCI
performance, k-means was used as a classifier and a super-
vised calibration was simulated. For the adaptive case, the
classifier was adapted in an unsupervised manner, while the
classifier was static for the non-adaptive case.

To evaluate the benefit of adaptive classification, 500
sessions were simulated each with different values dx and
different learning rates whereas the mean accuracy over
the whole session was taken as performance measure. The
average performance difference between the adaptive clas-
sifier and the non-adaptive one, is shown in Table I. While
the performance gets worse for low dx with low learning
rate and high dx with high learning rate, the user benefits
from the adaptive classifier when dx is high with a low
learning rate or with a high dx and a low learning rate.
To check if there is a significant difference between the
results for the adaptive classifier and the results for the non-
adaptive classifier, Wilcoxon’s ranksum test was performed
for each combination of dx and learning rate. The parameter
combinations with significant effects (p < 0.01) are marked
in bold in Table I.

A 3-way ANOVA was applied to the values and shows,
that the use of the adaptive classifier significantly (p <
0.0001) increases the total average performance by 1.41 %.
The 3-way ANOVA also shows, that there are significant
interactions between the factors learning rate and adaption
(p < 0.0001), as well as a significant interaction between
the factors dx and adaption (p < 0.0001).

learning rate
dx 0.1 0.25 0.5 1 2 4 8
0.8 -0.020 -0.021 -0.021 0.000 0.029 0.085 0.192
1.5 -0.001 0.031 0.021 0.020 0.011 0.026 0.085
3 0.014 0.018 0.020 -0.002 -0.014 -0.043 0.006
5 0.026 0.020 0.016 0.005 -0.025 -0.074 -0.005

Table I
DIFFERENCE BETWEEN ADAPTIVE AND NON-ADAPTIVE BCI

CLASSIFIER. POSITIVE DIFFERENCE MEANS A HIGHER ACCURACY WITH
THE ADAPTIVE CLASSIFIER. IF THERE IS A SIGNIFICANT DIFFERENCE
(p < 0.01) BETWEEN THE RESULTS FOR THE ADAPTIVE CLASSIFIER

AND THE RESULTS WITH THE NON-ADAPTIVE CLASSIFIER, THE VALUE
HAS BEEN MARKED BOLD.

B. Influence of covariate shift

To evaluate the effect of covariate shift on the benefit of
adaptive classification, simulations were run with different
amounts of covariate shift. For different combinations of dx
and learning rates 100 sessions were simulated each with a
covariate shift ranging from 0 to 0.1. Since a 4-way ANOVA
shows no significant (p > 0.05) interaction between learning
rate and adaption, when considering different amounts of
covariate shift, the results were averaged over the learning
rates. Figure 8 shows the average performance improvement
by adaptive classification with different amounts of covariate
shift. It can be seen that it depends on the learning rate and
the amount of covariate shift if BCI performance is increased
by adaption of the classifier.

Figure 8. Results from simulations with different amounts of covariate
shift with different initial performance.

C. Co-adaptivity without prior knowledge

There still is the question to be answered, if BCI control
can be achieved if neither the user nor the BCI have any
prior knowledge on how control might work or how the two
classes can be differentiated. Therefore, simulations were
run, in which the individuals for both populations PL and PR

were drawn from the same distribution (dx = 0) simulating
that the user has no prior knowledge on how to control the
BCI. Since the k-means classifier is initialized randomly,
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Figure 9. Co-adaptivity without prior knowledge. Performance during the first 10000 trials with a learning rate of A: 0.5 B: 1 C: 2 D: 4. Colored lines
show the result of one session, while the black line shows the average performance.

the classifier has also no prior knowledge on what data to
expect.

For different learning rates 20 sessions were simulated,
with one session having 10000 trials. The results show, that
regardless of the learning rate, performance can be achieved,
but with a higher learning rate BCI control is achieved
earlier. While with the same learning rate in some sessions
BCI control was achieved very fast, it took longer in other
sessions. At the end of the session significant BCI control
was achieved in 45 % of the sessions with learning rate
0.25, 80 % with learning rate 0.5, 90 % with a learning rate
of 1 and 100 % with learning rates of 2 and 4. Although
BCI control was not achieved in all sessions with lower
learning rate, the results show that the simulated user would
still gain BCI control if more trials were performed i.e., for
longer BCI sessions. The results from the simulations with
different learning rates are displayed in Figure 9.

V. DISCUSSION

At first it needs to be discussed, why we used the
presented approach and think of it to be an appropriate
model for a learning user. The approach by using a genetic
algorithm does not try to resemble the biological processes
involved in learning, but tries to model the behavioural
processes and aspects involved in human learning. Learning
to control a BCI is skill learning [12], which is learned by
a human through reinforcement [13]. So, a human learns
to control a BCI by trying different strategies and keeping
those strategies that maximize the reward, which is a high
BCI accuracy. Slight variations in the human’s actions are
introduced either voluntarily or involuntarily. If these varia-

tions lead to higher reward they are positively reinforced and
thereby used more often, while variations which decrease the
reward are negatively reinforced and thereby used less often.
The genetic algorithm essentially does the same [14]; slight
variations are introduced through mutation. Individuals with
lower fitness are removed, which negatively reinforces be-
haviour that leads to poor BCI control and individuals with
higher fitness are allowed to reproduce, whereby behaviour
that leads to good BCI control is positively reinforced.

With this simulation approach we have presented a
method that allows to simulate a BCI user that learns to
control the BCI and adapts. By changing the parameters
of the simulation it allows to adjust the simulations closer
to real-life conditions. While a learning rate of 0.1 to 0.25
seems to be suitable to simulate learning of EEG-based BCI
control [15], ECoG allows for faster learning of BCI control
[16] and learning rates of 0.5 to 1 could be used to simulate
ECoG-based BCIs.

The parameter dx can be used to adjust the initial perfor-
mance and 1.5 ≤ dx ≤ 5.0 can be used to set the initial BCI
accuracy to a value that resembles the average performance
reached by most users [17], [18].

Comparing simulation results for an adaptive and a non-
adaptive classifier shows that most users will benefit from
an adaptive classifier. But for user with low initial BCI
performance (dx = 0.8, respectively a BCI accuracy < 65%)
an unsupervised adaption does not increase or even decrease
the BCI performance, which is in line with the findings by
Vidaurre et al. [9].

Regarding the use of unsupervised adaption as a means to
alleviate non-stationaries and thereby improve BCI accuracy
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under a covariate shift, the simulations show that adaption
of the classifier can be used to alleviate non-stationarity
and thereby improve BCI performance. But unsupervised
adaption can also have a negative effect depending on the
amount of covariate shift and the initial BCI performance
of the user. The simulations also show that BCI control can
be achieved if neither the BCI nor the user has any prior
knowledge.

VI. CONCLUSION

In this paper, we have proposed a method that uses genetic
algorithms to simulate the mutual interaction between a
learning user and an adaptive BCI. We have shown the
presented approach to be a viable method to study the
interaction of 2 learning systems, namely the adaptive BCI
and the learning user. It can be used to test and evaluate
new adaptive classification methods in a co-adaptive envi-
ronment and test if the use of a specific adaptive method
is always beneficial or under which conditions a specific
adaptive method should not be used. Due to the rather
simple approach of generating artificial EEG data, it cannot
replace an offline analysis on real human EEG data. But,
simulations can be used in addition to an offline analysis, to
investigate the behaviour of a specific adaptive algorithm in
a co-adaptive environment and optimize adaptive algorithms
to perform better in cooperation with a learning BCI user.
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