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Abstract—Although chip clock rates seem to have plateaued,
the inexorable rise of computing power in accordance with
Moore’s law continues. We can easily measure the increase in
performance using a portfolio of metrics or a Pareto surface
across them, including clock rate, memory latency, bus speeds
and so on. In this paper, we address two questions. The first
of these is what it would mean to scale a human brain, in the
way that the primate brain has been getting steadily bigger and
more powerful in the lead up to homo sapiens. The second is
whether, if we could scale the human brain at the same rate as
computer power, human algorithms and computational processes
would continue to dominate in the domains where humans still
reign supreme. To consider these questions we will phrase much of
our practical considerations in terms of board games, particularly
the games of Go and Chess.
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I. INTRODUCTION

The last couple of decades have seen a steady erosion of
the superiority of human cognition over that of computers. A
decade ago, humans were vastly superior at face recognition.
Now computer face recognition is a routine technology, albeit
with people still better in poor light, or with distorted or
corrupted images. CAPTCHAs have to be made increasingly
difficult for people to avoid their interpretation by web bots.

The key questions of this paper surround whether the
computational strategies of the human brain would scale if the
brain were to become more powerful. Put another way, were
we able to build computers of the power of the human brain,
to what extent would we want to adopt the brain’s strategies
for these powerful computers? To provide some definite focus,
we consider expertise in games, particularly Go, where humans
still reign supreme.

A key dimension of such questions, particularly with
respect to problem solving in the broad sense (finding food,
finding a mate, playing the best move in a Go position) is that
of pattern recognition and search [1], [2]. Pattern recognition
makes it possible to solve problems by quickly recognising
important and often frequently occurring pieces of informa-
tion that elicit good-enough actions. Search is the systematic

exploration of the space of possible solutions, possibly those
that have been prompted by pattern recognition [3].

The human cognitive architecture excels at pattern recog-
nition. This makes sense from an evolutionary point of view:
it is more important to react quickly to a threat with an action,
one that might not be optimal, but is good enough, than it is
to find the optimal solution. By contrast, the architecture of
most computers (Von Neumann serial architecture) offers an
excellent support for search.

Although computers are catching up, they frequently are
doing so by using different routes to humans, typically involv-
ing much more search. Take the case of Deep Blue, the IBM
Chess computer which beat world champion Gary Kasparov in
1997. Deep Blue did incorporate some heuristics derived from
human play, but its fundamental approach to the game was
different – pruning and search of the game tree, carried out far,
far faster than any human could ever achieve [4]. There is no
reason why advanced computation should track the strategies
of the human brain. Aircraft were inspired by birds, but they
are now much bigger, faster and don’t flap their wings.

A successor to Deep Blue attacks a different game, this
time with a focus on natural language processing and un-
derstanding. IBM’s Watson [5] played the TV game show
“Jeopardy!” against two of the most successful players of
all time and defeated them quite readily. The importance
in this outcome lies in the nature of the game Jeopardy!
Contestants are provided the answer to a question and they
have to provide the question. The answers are notoriously
ambiguous and typically require very subtle contextualisation
of the clues in order to play successfully. Watson consists of
90 substantial computer servers with 15 terabytes of RAM and
2,880 processor cores. It operates through massively parallel
search of documents without any understanding in a human
sense.

We show that increases in the power of the brain will
enhance pattern recognition, but not necessarily search. Evo-
lution has produced a human brain that is massively parallel
at the neural level and has only limited serial capacity at the
cognitive level. The latter can be seen in the limited capacity
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of short-term memory and the narrow focus of attention. Most
people can recall only about 7±2 digits when they are rapidly
dictated [6], and people are surprisingly bad at identifying
the difference between two alternating pictures that are nearly
the same – a phenomenon called change blindness [7]. The
bottleneck of attention also affects learning, including a large
part of implicit learning, as it is unlikely that unattended
stimuli will be learnt.

Will then humans be increasingly good at pattern recogni-
tion, without improving significantly their search behaviour?
Compared to computers, will they continue to excel at Go but
be weak in games where pattern recognition is hard? More
generally, the human brain has evolved a specific path in the
space of possible cognitive architectures. This means that, if
one does not modify the basic architecture of the human brain,
there are things that are very difficult for the human brain to
do. Search behaviour is one example.

Watson fills a big room and uses 200KW, 10,000 times the
brains of the human contestants at a mere 20W. We argue that
some aspects of human expertise are extremely energy efficient
and some recent brain imaging results reinforce this point.
Considerations such as energy consumption as well neural
architecture, conductance speed and total numbers of neurons
will be considered in terms of what is currently understood
regarding human expertise.

II. COMPLEX GAMES AND GO

Go, one of the most popular and well studied recreational
board games in the world, originated in China sometime before
400 BC. Since that time, it has spread throughout Asia and the
rest of the world.

Perhaps the most striking aspect of Go is that it combines
three characteristics that are not commonly found in a single
game: relatively simple rules; combinatorically large search
space for moves; and gameplay that is incredibly engaging
for human players. Games with simple rules and large search
spaces are almost trivial to generate, but they are very rarely
interesting enough for people to want to play them at length,
and certainly it is rare for any game to survive for 2,500 years.

Current research interest in Go comes from two particular
communities: artificial intelligence (AI) and cognitive psychol-
ogy. The psychological community’s interest in Go has been
similar in nature to that of Chess in that these games are a
fascinating and contrasting source of data on both the extent
and the limits of trained and untrained human abilities. On the
other hand, for the AI community Go has replaced Chess as a
grand challenge since Deep Blue’s success against Kasparov.

A. Comparing Go with Chess

Serious Go players can rapidly acquire some competency
within a year but understanding the game to any significant
depth can take a lifetime. In technical terms, the search space
of moves is considerably more vast than Chess, as is the
number of possible games that can be played.

The success of Deep Blue in Chess has stimulated recent
attempts to achieve the same result for Go. Deep Blue relied
extensively on brute force search of many different lines
of play and a relatively weak evaluation function of 8,000

features [4], compared to the tens of thousands of chunks
in human expertise [8]. The weak evaluation function was
compensated for by the extremely large size of the move tree
Deep Blue was able to search.

In the case of Go, there is no accurate, explicit evaluation
function for intermediate positions, i.e., positions that are not
at the end of the game. Instead, a new and very efficient
tree search algorithm, called UCT Monte Carlo, has recently
been introduced. It has been very successful on small boards
and is the leading contender for algorithms in current Go AI
Research [9]). The pattern recognition strategies of human
players do not dominate the current best AIs.

B. The Nature of Human Game Expertise

A popular explanation for expertise in general and in board
games in particular is that players acquire a large number of
chunks, patterns that become increasingly large with practice
and that not only encode perceptual information, such as the
location of pieces on a Go board, but also provide information
about what kind of actions could be profitably carried out given
the presence of a given pattern [8] Pattern recognition works in
most board games because features tend to be correlated. For
example, the pawn structure in Chess provides a considerable
amount of information about the likely placement of pieces.

Simon, Gobet and others [10], [8] studied how skilled
practitioners in games such as Chess are able to overcome
limitations such as working memory. Subsequently these re-
sults were incorporated and extensively discussed in Chess
simulation software.

High-levels of expertise implicate a number of brain areas,
well illustrated by board games, since a Go or Chess player
has to recognise patterns, look-ahead for tactical opportunities,
plan ahead at a higher level of abstraction, remember standard
tactics and strategies, to mention just some of the cognitive
processes involved [8].

Several studies have attempted to identify the location of
chunks in the brain. For example, comparing the memory for
Chess positions having actually occurred in masters’ game
and random positions, as well as memory for visual scenes
unrelated to Chess, Campitelli et al. [11] showed that the
fusiform gyrus and parahippocampal gyrus, both located in
the temporal lobe regions were engaged. Bilalić et al. [12]
found that Chess experts used temporal and parietal object-
recognition areas bilaterally in an identification task with
Chess stimuli, but only in the left hemisphere in a control
task involving geometrical shapes. Wan et al. [13], using
shogi (Japanese Chess), have identified a neural circuit that
implements the idea that experts recognize patterns giving
access to information on the type of action to take. Pattern
recognition would be in the precuneus (part of the parietal
lobe), while information on possible action would be stored in
a more central and older part of the brain, the caudate nucleus,
one of the basal ganglia.

However, some of the patterns of Go expertise are low-
level perceptual templates [14], akin to the eyes, nose, mouth
features which make up a face. Such patterns are likely to
occur lower down, in visual areas or infero-temporal cortex.
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1) Patterns and their Frequency of Occurrence in Go:
Like Chess, Go throws up a huge range of positional pat-
terns but these are not uniformly likely. The distribution of
contextual patterns follows in such games a Zipf-like power
law [15]. A useful form of Zipf’s law for the kth most
frequently occurring element from a set of elements is given
by: freq(kth ranked item) = c(k+ b)−ρ where c, b and ρ are
constants to be estimated from the data. These distributions are
typically associated with ‘complex systems’ where there are
many strongly interacting components giving rise to surprising
patterns and dynamics.

Such a power law appears in Go. Liu et al. [15] extracted
patterns from 9,447 professional games, featuring over 2
million moves. In terms of the above equation expressed in
logs, log(freq) = c′−ρ log(k+b) we have c′ = log(50, 000),
k ∈ {1, 2, . . . , 20}, ρ = 0.91 and b = 0.5.

Given these frequencies, it is interesting to note some of the
previous results of pattern chunking. Simon and collaborators
have estimated the number of such patterns needed to be
learned to be in the order of 50,000 to 100,000 in order to attain
the level of ‘master’ or above (see Figure 2). Using the equa-
tion for the frequency of pattern occurrences and the parameter
estimates, we can solve for the frequency of occurrence of
patterns of the 50,000 most frequently occurring pattern. All
patterns that occur more frequently than the fifty thousandth
are presumably more easily learned as they occurred more
often. The equation we are left to solve is: log(freq) =
log(50, 000) − 0.91 × log(50, 000 + 0.5), i.e., freq = 2.65.
This is significant in that if the frequency were less than 1
then the fifty thousandth pattern is unlikely to be seen during
the play of 10,000 games. Note that the log(50, 000) term
comes from the parameter estimation whereas the 50,000 in
this term: 0.91 × log(50, 000 + 0.5) comes from the need to
find the frequency of the fifty thousandth pattern.

This is an important result combining the empirical dis-
tribution of pattern frequencies and the number of pattern
necessary to be learned in order for a level of expertise to
be attained: to become an expert you will have seen the fifty
thousandth chunk in your repertoire somewhere between 2 and
3 times. At an estimate of one game per day, this would take
over a decade, consistent with the ball park of the 10,000
hours or 10 years required to become an expert that has been
suggested in the literature on expertise [16].

If a player has seen significantly less than 10,000 games,
then the frequency of patterns seen will drop and a player will
not observe a pattern often enough in order to have placed it
in memory. For example, if a player has only seen the most
frequently occurring pattern in the game 10,000 times (i.e.,
k = 1, all other parameters remain the same), then the pattern
that has been observed on average about 2.5 times is the pattern
k = 9, 084, i.e., if 2.5 observations is the frequency required to
learn a pattern, then if you reduce the number of games played
by a factor of 5 (the k = 1 frequency drops from 50,000 to
10,000) then the highest ranked pattern that you can expect to
observe 2.5 times is about the nine thousandth most frequently
occurring pattern. 9,084 patterns is a significant reduction in
the numberof patterns that a player can have acquired given
their reduced experience of the game. Considered in the light
of Figure 2, it can be seen that such a reduction in the count of
acquired patterns, such a player could only expect to achieve

Fig. 1. A stylised log transformed plot of the ranked order of pattern
occurrence against the frequency with which each pattern occurs, adapted
after [15].

the rank of ‘expert’ rather than ‘master’. Figure 1 shows four
different instances of fat-tailed curves (straight lines on a log-
log plot) for the frequency of contextual patterns in Go [15].
The CT line is the comprehension threshold, so called because
it represents the minimum number of observations required
before a player is able to remember a given pattern (2.5
observations based on the calculations above). In terms of
Gobet et al’s work [8], this is the threshold regular patterns
of play have been learned sufficiently to be understood as
unitary chunks of information. We assume this threshold is
fixed, although in practice it is likely influenced by multiple
factors. The ∆i,i+1 terms represent the count of extra patterns
that have been observed often enough to breach the CT barrier
between ranks i and i + 1. Note that for linear increases in
rank, i.e., skill level si+1 is reasonably approximated as a
fixed multiple of skill level si, ∆i,i+1 is exponential in i due
to the logarithmic scale of the x-axis. This approximation is
accurate if skill level si corresponds to player rank and patterns
above the comprehension threshold correspond to chunks as in
Figure 2.

Recent work by Gobet and Lane has shown that the number
of chunks increases exponentially with rank (Figure 2). As
players increase in skill they master more and more patterns,
but each new pattern is likely to be less common than its
predecessors. So in a game or tournament, which is a roughly
constant number of patterns, then to have a good chance of
being aware of a pattern unseen by the opponent, requires an
exponential increase in known patterns.

Humans have essentially an infinite capacity for remember-
ing patterns or chunks of data [17]. The decreasing frequency
with which rarer patterns are observed puts an upper bound
on how much can be stored in practice. To see this, note that
the number of patterns that needs to be observed frequently
enough to be turned into chunks (i.e., above the comprehension
threshold in Figure 1) increases exponentially with increasing
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Fig. 2. Graph showing the number of chunks needed with expertise and
corresponding model predictions. (courtesy of Gobet and Lane)

rank, i.e., the ∆i,i+1 terms in Figure 1 increase exponentially.
Thus, players need to improve in some other aspect of play
and we argue that this improvement occurs in refining the
relationships between the patterns learned rather than learning
more patterns.

But technology has led to players being able to gain
experience faster. In 2009, Joe Cada set the record for the
youngest ever Poker World Series Champion at just 21. It is
now possible to play many more hands in a given time online
than at the table. In Chess, the career peak was around 35 years
of age. Recently, this peak went down and it is more like 25
years of age, although Anand, the current world champion, is
40. Thus, the limit of expertise might be set by age. In the
absence of dementia or trauma, is it brain size or the slow
loss of neurons with age which is limiting?

2) Information Content in Human Decisions: As skill
levels increase in Go, the entropy, a measure of the diversity
of strategies used, decreases to a point where it plateaus.
This is where the players have been able to acquire as much
information as is extractable from the local configuration of
the board, (grey curve in Figure 3).

The difference between strong players and weak players
lies in the degree to which the local information on the board
interacts with the global information, i.e., expertise past a
certain point is mediated not by a repertoire of patterns, but
by the relationships (correlations) between those patterns (see
figure 3). We conjecture that this implies simultaneous grasp of
these global properties, or in psychology terminology, holding
them in working memory (§II-B3).

Figure 3 also shows a phase transition in expertise, mea-
sured by a peak in mutual information [18]. Here, there is some
reorganisation of patterns and relationships, necessary before
advancing in expertise.

3) Working Memory in Games: At the time of writing
(late 2012), computer Go programs have reached professional
dan levels on 19x19 boards [19]. However as the handicaps
(in terms of speed and board positioning) that favour the
computer decreases, human players rapidly gain dominance.
In other words, humans have a much better grasp of the
interaction between local and global positional elements. In
most positions, a maximum of around five live masses can

Fig. 3. A stylised plot of the two principal results in [18]. The entropy
linearly decreases with rank indicating that certain moves are preferentially
chosen more often as skill increases (grey curve). The red curve shows the
mutual information between position and move as a function of skill

exist on the Go equivalent of 19x19 board. Given that there
may be more candidates for ultimate survival, this number is
about the order of working memory.

Consistent with a possible relationship with working mem-
ory is that the board size for almost all (human) competition
play evolved to 19x19 and locked in at this figure. Now, with
any game, there is always a lock-in factor for tournaments
and rankings to remain coherent. Nevertheless, moving to a
21x21 board would create a greater number of global chunks
to be manipulated, making an increase in working memory
necessary. On the other hand, tree search scales exponentially
with board size.

III. SCALING THE BRAIN’S PERFORMANCE

Despite its impressive performance, the human brain is
far from perfect. Gary Marcus in his book [20] catalogues
numerous ways in which the brain is biased, gets confused
and is prone to all sorts of extraneous influences. He argues
that the brain is non-optimal because evolution is a tinkerer,
only able to use what is at hand, even though better designs are
possible. Thus, some improvements in our cognitive abilities
are beyond the space of possible human brain architectures.

An important aspect of expertise in board games is that
pattern recognition and search are interleaved [8], [21]. When
exploring the space of possible moves, players generate a
search tree, albeit much smaller than computers. When trying
to find a move in a given position, possibly after having
already generated several moves, players tend to use pattern
recognition to generate moves automatically [8], [21]. When
evaluating a position at the end of branch in their search
tree, players also tend to use pattern recognition, rather than
a systematic and conscious combination of features of the
position on the board. A consequence of this interleaving
between pattern recognition and search is that it is likely that
the effect of increasing neural efficiency, which is likely to
benefit pattern recognition, will be mitigated because of the
relative slow speed with which search can be carried out with
a human brain.
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A. Evolution of Brain Architecture

Brain architecture has been relatively constant since the
appearance of mammals, but the neocortex has got bigger.
Obviously there might be new transitions in brain evolution,
which will create entirely new capabilities, but for the purpose
of this article, the primary concern is further increases along
alreeady established directions, such as that of size (§III-A1).

The one aspect of architecture that could change is the
overarching connectivity. The brain has small world network
characteristics and this seems to be important on energetic
grounds [22]. But increasing the number of connections per
neuron will have an energy penalty, but could increase working
memory (§III-B). Could higher levels of connectivity make it
any better? But a big new wave is building of sophisticated
computation at the sub-neuron level, computation on the
dendritic tree (§III-C). The potential here is enormous, but it
is intricately tied up with synaptic noise.

Where the human brain is orders of magnitude ahead of its
silicon counterpart in terms of energy use, some of the possible
wetware enhancements, such as increase in connections per
neuron, come at an energy cost (§III-D).

1) The Neocortex and its Recent Evolutionary Enlarge-
ment: There are a great many different explanations as to why
the human neocortex is as relatively large as it is, but perhaps
the most influential has been the demands of living in large,
complex groups [23]. Such drivers would also have contributed
to good play in complex games.

The relative size of major brain components scales with
total brain size across a large number of species [24]. The
relative size of the neocortex to whole brain volume scales
with the size of a species’ typical social group size. It is the
neocortex size, which is of interest here, since overall brain
size is strongly correlated with body size.

2) Impulse Conduction Speed: If we discount the need to
respond in real-time, then conduction speed and age are to
first order reciprocally related. However, there could be other
considerations. Maintaining synchronised activity across the
brain has been advocated for solving the binding problem in
perception through to the emergence of consciousness itself.
Thus, increasing conduction speed within a given brain, may
allow a greater level of synchonisation, since impulses may
then arrive before small synaptic activities have decayed away.

B. Connections per Neuron

Increasing the number of dendrites, synapses and links
to other neurons offers several advantages. It will likely to
increase the, already huge, number of patterns that the brain
can discriminate [17]. The number of connections also con-
strains working memory. Roudi et al. [25], using a detailed
biologically realistic neural network simulation, show that
working memory depends strongly on the average number
of connections made per neuron and, at most weakly, on the
number of brains cells. The number of connections imposes
an energy penalty, however (§III-D). The energy penalty
arises because the Excitatory Post Synaptic Potentials (EPSPs),
where the spike is converted to activity in the neurons to
which it is connected, require slightly more energy than spike
generation in human cortex, so increasing connectivity will
increase energy requirements [26], [27].

C. Computation on the Dendritic Tree

Over two decades of research in artificial neural networks
and a great deal of computational neuroscience has assumed
that the inputs to a neuron from other neurons arrive at a
single point (effectively the soma). The dendritic tree has often
been considered as an anatomical detail, of little computational
importance.

But no longer are dendrites viewed as passive players
in neural networks. Both the passive and active properties
of dendrites endow them with a range of computational
abilities [28], such as OR and AND-NOT logic operations
(passive), and powerful mechanisms for temporal integration
and co-incidence detection (active) [29]. Indeed, it has now
been suggested that individual dendritic branchlets should be
considered computational units in their own right.

Enhancements in dendritic processing might arise through
increased complexity in the morphology of the dendritic tree;
more complex patterning of synaptic inputs; alterations in
the amount and pattern of expression of active conductances;
alterations in the biochemical signalling within dendrites [30];
and increases in hippocampal dependent learning and memory
in mice [31].

The computational potential is huge and so far not clearly
understood, or at least, its real-world significance has not yet
been demonstrated. Furthermore, using the models of neuronal
energy use discussed in section III-D, since the dendritic
computation is neither part of the axonal or EPSP costs of
the cell, it would seem to be exceptionally efficient compared
to computation at the network level.

D. Energy Issues

Laughlin and Ruderman found that transferring one bit of
information at a synapse needs about 104 ATP molecules,
the energy transfer mechanism used throughout the animal
kingdom [22]. So the brain is operating around 105 times
above the absolute theoretical limit. Current computers, such
as Watson, are at least 104 worse.

A later study by Lennie [27] revealed that not only is the
human brain relatively efficient compared to computers, its rate
of glucose metabolism, the brain’s only energy source, is three
times lower than in rat and 1.5 times lower than in monkey. He
concludes that far fewer neurons are active in human cortex.
This would seem to fit the pattern model of expertise rather
well. The human brain is much more diverse than rat, storing,
and being able to do, many more things. Since these are not all
happening at the same time, its average energy use is lower.

The wave of connectionist thinking, which began in the mid
80s, emphasised distributed representations. Recent evidence
suggests, however, that individual neurons may be extremely
specific, such as having a response just to the concept of
Bill Clinton, regardless of whether this is a picture, his
voice, or some ideas or events with which he is strongly
associated [32].Clearly such representations engender very low
average cortical activity. Thus, if increasing expertise involves
laying down more and more increasingly rare patterns, then
energy costs may not go up. Where the human brain might
seem to score would be in retrieval of a rare, little used
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pattern with very little additional latency over something used
everyday.

Recalling that the biggest consumer of the energy in the
neural activity in the brain is in the delivery of the spikes
(III-B), the EPSPs. The more synapses a neuron makes (i.e.,
the higher the number of connections), the greater the energy
cost. Thus working memory, which depends on number of
connections according to simulations carried out by Roudi et
al [25] will demand an energy increase approximately linear
in the number of connections.

IV. CONCLUSIONS

Human expertise relies strongly on pattern recognition and
the building of very large pattern libraries over time. Since pat-
terns themselves do not occur with equal frequency, and often
follow a power law in probability of occurrence, this strategy
has excellent scaling properties for energy consumption.

The use of the patterns requires some sort of addressing
mechanism and this probably occurs through working memory.
The best simulations to date suggest that working memory
scales linearly with the average number of connections made
by a neuron, and, in turn, energy consumption is approximately
linear in number of synapses. Thus, although we do not at
present know how to calculate the address space (i.e., total
possible number of patterns one can store/access), it seems
likely that the energy penalty will be logarithmic in number
of patterns.

Thus, our view would be that the pattern recognition
strategies of human expertise would scale exceptionally well
for feasible enhancements in neural architecture. However, it
would be significantly harder to improve search. We are left to
conclude that neural enhancements to the brain would likely
enhance that which it is already good at.
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