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Abstract—This paper proposes an intelligent formation control 

method of the leader and follower agents with nonlinear 

dynamics. In the proposed method, agents can exchange only 

information of positions of available agents and the follower 

agents follow the leader, taking a predefined formation. In the 

real world, the method that doesn’t need a lot of information to 

make cooperative behaviors is very useful for the case of 

environments existing communication delay and weak 

communication. In addition, each agent will be controlled by 

the linear and terminal combined sliding mode control method. 

Furthermore, to adapt the change of the environment, the 

Auto-Structuring Fuzzy Neural Control System (ASFNCS) is 

introduced to provide appropriate control inputs while coping 

well with disturbance and nonlinear dynamics. In the 

simulation, it is verified that the proposed method is useful in 

the point of performance of the leader-following formation 

control. 

Keywords-formation control; linear sliding mode control; 

terminal sliding mode control; auto-structuring fuzzy neural 

network 

I.  INTRODUCTION  

Recently, formation problems have attracted more 
researchers as their importance and necessity are known 
widely. For example, Hou et al. [1] proposed a robust 
adaptive control approach to solve a consensus problem of 
Multi Agent Systems (MAS), Song et al. [2] and Cheng et al. 
[3] dealt with leader-follower consensus problem. Defoort et 
al. [4], Morbidi et al. [5] proposed a formation following 
control using sliding mode control, a kind of representative 
robust control methods. Cui et al, [6] dealt with leader-
follower formation control of underactuated autonomous 
underwater vehicles. Yu et al. [7] dealt with time-varying 
velocity cases of a distributed leader-follower flocking 
control for multi-agent dynamical systems. In the view point 
of controllers using soft computing tools, Chang et al. [8] 
used fuzzy, Lin [9] used fuzzy basis function network, Chen 
et al. [10] used neural networks, Lin et al. [11] used 
reinforcement Q learning method, for formation control. 
However, designed controller structures for these formation 
or consensus problems are fixed, therefore, their methods are 
no flexible for changes of environments and they have 
possibility of useless computation load. Many of the control 
methods mentioned above are using linear sliding mode 

control method. Recently, terminal sliding mode control 
method has been used for constructing the following 
controller because of its superiority on fast finite time 
convergence and less steady state errors to objective states of 
the agents, Yu et al. [12], Zou et al. [13], Chang et al. [14].  

We have already proposed the leader-following 
formation control method, Obayashi et al. [15] that had the 
following three features; use of linear sliding mode control, 
and the controller had the optimal structure, named ASFNCS, 
using self-structuring algorithm adapting to change of 
environments making use of the concept of Cheng et al. [16] 
and then introducing of making only use of the positions of 
agents without velocities of them.   

In this paper, we consider to apply the superior point of 
the terminal sliding mode control to our previous work, 
Obayashi et al. [15], that is, to switch the linear sliding mode 
control and terminal one appropriately. 

The rest of the paper is as follows: in Section II 
preparation to be required to follow the paper. The structure 
of the proposed system are described in Section III. The 
controller design is described in Section IV.  In Sections V, 
VI, and VII, learning algorithm, following control problem 
and computer simulation are described, respectively. We 
have a conclusion in Section VIII. 

II. PREPARATION 

The dynamics of each agent consisting of MAS is 

described as following the thn  order nonlinear differential 

equation, 
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where nTn Rxxx   ][ )1(x : observable states of 

the agent, )(xf : unknown continuous function, h  : a 

predefined constant, ASFNSu  : control input, 1 : term 

including the indefinite term ),( ASFNSuf x  of the agent and 

the disturbance. 1  is assumed that 
11 D .

 
Here, 

1D is a 

predefined positive constant. 
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III. STRUCTURE OF THE PROPOSED SYSTEM 

 
The proposed system in this paper is shown in Figure 1.  
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Figure 1. Structure of the proposed multi agent control system. 

 
The objective of the control: The derivation of the control 

law which makes the orbit x  of the states of the agent  

follow the reference orbit vx accurately. We define the 

following error vector ],,,[ )1(  neee e  as  

 

xxe  v ,                              (2) 

 

where vx : the reference vector, that is, their virtual agent 

state vector followed by its own agent. The virtual agent has 
its position and velocity decided by observing the position of 
the leader (see Section VI). 

      

IV. CONTROLLER DESIGN 

Figure 2 shows the ASFNCS. The ASFNCS consists of 
the fuzzy neural network controller with function of node 
adding/pruning (Auto-structuring FNNC) and the robust 
controller. 
A    Fuzzy neural network controller (FNNC) 

Figure 3 shows the structure of the FNNC. k , output of 

k th node of the hidden layer, means the fitness of rule k . 
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where    knkkikknkkik mmm  ,,,,,,, 22   σm  are 

center and width vectors of the thk rule output function, 

respectively. R  is the number of the rule nodes. asfnnu is the 

output of the FNNC. k  is the weight between the k th rule 

node and the output of the FNNC. 
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Figure 2. Structure of theASFNCS. 

 

 
    Figure 3. Structure of the FNNC. 

 
The output       of ideal controller is like that,  
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However,      would not be used for controller design actually 

(see Sectiuon IV B).       

The estimated value            of the optimal FNNC           is 

as follows, 
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where 
k̂  is the estimate value of the optimal 



k . 

 
B. Auto structuring mechanism of FNNC 

 
 Node adding:  Nodes adding process is as follows, 
 

)(,,2,1),max(max tRkk  ,            (7) 

 
where )(tR  is the number of the node at time t. When the 

next relation exits, 
 

thmax  ,                                            (8) 

 

where  ]1,0[
th

is a pre-defined threshold and given by 

trial and error, a new node c  is added and the center and 

width of the node are like this, 
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where c is a predefined positive constant and the 

weight
aR  between the new node and the output is set as 

caR    ,                                             (10) 

where aR  is number of the added node.  

  
 Node pruning:  Nodes pruning process is as follows, 

the cost function for measuring the important index 
k of the 

node k  is defined as, 
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using the Taylor series expansion, where the parameter falls 

intou the local minimum, the sensitivity of 1E for  

k
̂

becomes next equation,  
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Here, we define the important index of the node as 
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and ][  function to decide whether make k decrease is 

defined as   
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This means that if the rule k  is not activated enough, that 

is, 0)ˆ(1  kth EE 


, then, k  decreases. If thk   , the node 

k  is considered as unnecessary node and it is deleted. Here 

th  is a predefined positive constant and given by trial and 

error. The number of deleted nodes is presented as pR̂ .The 

output asfnnu  of the FNNC introducing the auto-structuring 

mechanism is as follows,  
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where Ru is the output after adding new nodes and, pu is the 

output after pruning nodes. With (15), we get  
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where  ˆ~
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C. Stability analysis 
 

The structure of the auto-structuring fuzzy neural control 

system (ASFNCS) is shown in Figure 2. The output ASFNSu  

of the ASFNCS is as follows, Cheng et al. [16],  

sasfnnASFNS uuu  ,                                             (17) 

asfnnu is described by  (15), and 
su is the output of the robust 

controller. To derive an adaptive controller, we define the 
sliding variable s as 
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where each of all the cofficients


k is pre-defined positive 

constant, )10(   is a parameter. When 0.1,0.0  , 

sliding variable (18) can be regarded as LSM, TSM, 
respectively. In this paper,  changes  nonlinearly  from 0.1  

to 0.0
 
during the controller working. 

The  p  and q  are positive odd integers, which satisfy the 

following condition: 
                     qp  .                                           (19) 

 
Then, a sliding mode controller can be designed as follows : 

,HESMC uuu                                                (20) 

 An equivalent controller E
u is expressed as  
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Using (1), (2),(18) and (21), we get  
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Using Eq. (16), Eq. (23) can be rewritten as  
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In this paper, the robust controller is used to eliminate the 

effect of error . Consider the Lyapunov function candidate 

in the following form: 
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Take the derivative of Eq.(25) and using Eq.(24), it is 

concluded that 
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For achieving 0V , the adaptation law and the robust 

controller are chosen as 
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where  and  are positive constants. Then Eq. (26) can 

be rewritten as 
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If   , 0V holds. By Barbalat’s Lemma, 0s  as 

t , then the stability is guaranteed. 

                         

V. LEARNING ALGORITHM 

We introduce the online learning algorithm to adjust the 
parameters of ASFNS, Cheng et al. [16]. We derive the 
algorithm the gradient-decent method. First, the adaptive law 
shown in (27) can be written as  

   kk s 
̂

.                                          (31) 

According to the gradient-decent algorithm, the 

adaptive law of  ̂  also can be represented as  
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where 
2

2 )(21 xxE v  is defined as the cost function. 

From Figure 3, (3), and (4),   
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2 is obtained through observation of (31) 

and (32). Thus, the adaptive law for the estimation terms of 

means kim̂ , and variance  kî  can be derived as 
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where m ,   
are positive constants. 

 

A. The algorithm of ASFNCS 

Step 1 Initialize the parameters of ASFNCS. 
Step 2 Calculate s using  (18).  

Step 3 Calculate 
asfnnu using  (15) and update  

   ˆ,ˆ,ˆ m  using  (32)-(34). 

Step 4 Calculate 
su using  (28) and adjust ̂   

     using  (29). 

Step 5 Calculate  ASFNSu using  (17) and input  

   it to the agent. 
Step 6 If the controlling time is over, the simulation  
   ends, else go to Step 2. 
 

VI. LEADER-FOLLOWING FORMATION CONTROL 

PROBLEM 

 The dynamics  (1) of the thi agent in multi agents is 

rewritten as  
 

ASFNCiiiii udtxtxtftx ,))(),(,()(   ,            (35) 

 

where t : time, T

iii xxx ),( 21 ,
 

T

iii xxx ),( 21
  : the position, 

velocity of the agent, respectively. 2))(),(,( Rtxtxtf ii  : a 

term including the 

nonlinearity
2T

21 ),( Ruuu iiASFNS  ,

2

21, ),( Ruuu T

iiASFNCi  : control input to the thi  agent,
 

2Rd i   : disturbance. In this paper, we consider the 

following control method that make the agents follow and 
catch the leader keeping the formation by the group, Cui et al. 
[6]. We assume that agents could exchange only positions 
information of the agents each other. Observing only the 
position of the leader, each agent constructs the virtual orbit 
to the leader. Realizing this virtual orbit by the virtual agent, 
and the agent follows its own agent. The following describes 
the method of following the leader by the virtual agent. 
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 The following error of the thi virtual agent is expressed 

as    

 
 iNj
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where vie :consensus error, ,ii xz  )( ivii xx  , 2Rxt   : 

the position of the leader in a 2-dimension space.  

The following error  eix  of the thi  virtual agent 

considering the integral term to reduce the steady state error 
is expressed as  


t
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where T

iii ],[ 21    , the derivative of i with respect to 

time is defined as 

         eiiii Kx )(1   ,                            (38) 

 

where ,)]tanh(),tanh([)( 22111

T

iiii    

[diagK  ], 21 vv kk , 0)0( i .  

 The velocity vix  of the thi virtual agent is  defined as  
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where T
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 ,k are positive constants. 

VII. COMPUTER SIMULATION 

We demonstrate the effectiveness of our proposed 
method by trying to following the leader (target) by the multi 
agent constructing by four agents.  

 The horizontal and vertical direction of velocity of the 

leader are )05.0cos(02.01 txt  , )03.0sin(015.02 txt   , 

respectively, and the initial position of the leader is given 

as T

tx ]0,0[ . The initial horizontal and vertical positions of 

the agents are both given randomly in the range of ]5,5[ , 

and the initial velocities of all the four agents are equal to 0. 
The parameters used in the simulation are shown in Tables I 
and II. The dynamics and disturbances of the each agent are 
given as   
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Figure 4.  Network structure of multi agents. 

 
The information exchanges among agents each other are 

carried out according to Figure 4. Each agent behaves 
dispersive and cooperatively through information exchanges 
and follows the leader, taking the predefined formation. In 
this simulation, from Figure 4, only agent 1 and 2 can 
observe the position of the leader and the agent 4 can 
observe the positions of the agent 1 and 3, and so on. 
Sampling time is ][01.0 s and total controlling time is 50 

[sec].  
  Each of Figures 5-11 has 5 orbits; red is for target 

(leader), other 4 orbits are for follower agebts. The orbits of 
the target and follower agents in the case of the conventional 
method, LSM, are shown in Figure 5. Figure 6 is the 
enlarged figure of the transient (initial part of) positons of the 
leader and follower agents. The orbits of the leader and 
agents in the case of the conventional method, LSM, are 
shown in Figure 7. Figure 8 is the enlarged figure of the 
transient (initial part of) positons of the agents and the leader. 
Comparing these four figures, TSM method is superior to the 
LSM method in the point of consensus error of the positions 
of transient states of the leader and follower agents. However, 
the consensus error of them in the point of the steady state by 
LSM method is smaller than those of TSM method.  

 
TABLE I. PARAMETERS OF THE VIRTUAL AGENT.  

    
 
 
   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Setting value 

21 ,
 

0.015 

21, vv kk
 

0.025 

 

TABLE II. PARAMETERS OF THE  ASFNCS.  

     

Parameter Setting value 

1k  2
 

2k  3
 

th  0.3
 

c  2
 

c  0
 

c  0.5
 

thE  0.00001
 

  0.002
 

th  0.05
 

  1
 

  0.02
 

 ,m  0.0015
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Figure 5. Trajectories of all the agents using LSM ( 0 in (18)) . 

 

 
Figure 6. Transient trajectories of all the agents using LSM ( 0 ).  

 
Figure 7. Trajectories of all the agents using TSM( 1 in (18)) . 

 
\   Figure 8. Transient  trajectories of all the agents using TSM  ( 1  ). 

 

 

 
Figure 9. Trajectories of all the agents using TLSM. 

 

 
Figure 10. Transient trajectories of all the agents using T LSM.  

 
Figure 11. Trends in distances error between a leader and all follower agents. 

 

Figures 9-10 show the results using our proposed LSM 

and TSM combined control, changing  in (18)  from 1.0 to 

0.0 nonlinearly. Figure 11 shows trends in the consensus 

error between a leader and all follower agents for LSM and 

TLSM. From Figure 11, it can be found that consensus error 

by our proposed method is smaller than that of the 

conventional LSM method.  

In order to confirm that our method is superior to the 

LSM method, we adopted the next performance index J, 

average error area; 
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where T means controlling time,  ],[ llL xxx  , 

],[ llL yyy  mean position and velocity vectors in x  

direction and y direction of the leader, respectively. 
Fix  and 

Fix  mean those of the ith follower agent. Je, mean sum of 

consensus errors of between the leader and all the follower 

agents at time t, average consensus error area, respectively. 

Table 3 shows comparison of the control performances, that 

is, transient consensus error and average error area. Table 3 

shows our proposed method is superior to the conventional 

LSM method 

VIII. CONCLUSION 

In this paper, we proposed the simple and useful method, 
that is, an adaptive LSM and TSM combined formation 
controller design method with auto- structuring fuzzy neural 
network. Additionaly, feature of  the proposed method is that 
all the agents can exchange only information of positions 
according to the network structure of multi agents like Figure 
4, making velocities of their virtual agents, and it has the 
variable structure to adapt for changes of the environment.  

 
 
TABLE III. PERFORMANCE COMPARISONS OF 

BOTH METHODS. 
 

Transient consensus error 

agent a_1 a_2 a_3 a_4 Total 

LSM 0.148 0.161 0.234 0.24 0.78 

TLSM 

(Proposed) 
0.14 0.145 0.226 0.237 0.748 

Average consensus error area 

agent a_1 a_2 a_3 a_4 Total 

LSM 0.356 0.368 0.535 0.541 1.8 

TLSM 

(Proposed) 
0.316 0.321 0.478 0.489 1.604 
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