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Abstract—The concept of a Cognitive Digital Twin 
(abbreviated CT or CDT) is presented in this paper as an 
extension of Digital Twins (DTs) with cognitive capabilities in 
the context of the process industry. With cognitive capabilities, 
we foresee possibilities for the next level of automation in 
process control systems. This article proposes an architecture 
associated with a CT control system, exemplified in a process 
industry use case. The CT is therefore seen as a more 
comprehensive approach in comparison to a traditional DT. 

Keywords- Digital Twin; Cognitive Digital Twin; Cognitive 
Architecture; Cognitive Services; Process Industry, 
COGNITWIN. 

I.  INTRODUCTION 

DTs are emerging nowadays as a popular technology 
approach in many industries. A DT is generally considered a 
digital replica of a physical system that captures attributes 
and behaviours of that system. The purpose of a DT is to 
enable measurements, simulations, and experimentations 
with the digital replica in order to gain understanding about 
its physical counterpart. A DT is typically materialized as a 
set of multiple isolated models that are either empirical or 
first-principles based. 

In the context of the process industry (including sectors 
such as chemicals, ferrous and non-ferrous, ceramics, etc.), 
the existing automated systems, while performing well in 
predictable environments, require substantial human 
intervention when faced with unanticipated situations for 
which they weren’t designed to handle. Such situations 
require perception, reasoning, decision making, learning – 
aspects usually associated with cognition and addressed in 
the area of cognitive computing. 

Cognitive computing is the ability of machines to mimic 
human ability to sense, think, and make optimal decisions in 
a given situation. Although the journey to reaching fully 
cognitive systems is still in its infancy, there are several 
application areas where the technology has already been 
implemented (e.g., the use of chatbots by the service industry 
to provide optimal answers to customer feedback). The 
genesis of such cognitive systems in the process industry 

would be DTs where physical systems are represented by 
mathematical models. CTs can be seen as extensions of DTs 
where the semantic and cognitive aspects are also featured in 
the DTs.  

For realizing CTs in the process industry, an essential 
aspect is to devise the architectural building blocks that can 
serve as a foundation for cognitive systems in this domain. In 
this paper, we present an architectural framework for CTs in 
the context of process industry. This work contributes to one 
of the fundamental challenges for building intelligent 
systems, where cognition plays an important role in the 
underlying infrastructure of such a system. A cognitive 
architecture should provide a blueprint, supporting a wide 
range of abilities similarly to human capabilities [9]. Indeed, 
the architecture proposed in this paper can be seen as a 
cognitive architecture for building CTs. 

The rest of the paper is organized as follows. In Section 
II, we review the various definitions of the emerging concept 
of CTs. In Section III, we present our proposal for an 
architecture for CTs, including cognitive services and 
challenges for implementing the identified cognition 
services. In Section IV, we discuss a concrete use case from 
the process industry and the role of cognitive services in that 
particular use case. Section V summarizes the paper and 
outlines possible future work. 

II. DEFINITIONS OF COGNITIVE DIGITAL TWIN 

The concept of “Cognitive Digital Twin”, often used in 
its shorter form “Cognitive Twin”, has recently emerged in 
the context of DTs as a mean to expand their scope by 
encompassing cognitive capabilities.  

The concept appears to be first introduced in the industry 
context. For example, El Adl [5] defined CT in 2016 as a 
“digital representation, augmentation, and intelligent 
companion of its physical twin as a whole, including its 
subsystems and across all of its life cycles and evolution 
phases” [5]. The “Cognitive Digital Twins” LinkedIn group, 
established in 2016, and administered by the same person, 
defined CTs as “highly interconnected distributed cognitive 
systems and in specific cases very large complex systems. 
They live in the digital space, span physical and virtual 
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systems and will evolve over time as the Things they 
represent evolve. They should represent all the life cycle 
phases of Things. CTs should be able to interact and 
collaborate across domains, physical and virtual worlds, as 
well as evolve to be able to autonomously take smarter 
contextual decisions and execute complex tasks on behalf of 
the physical things or humans. In many cases, they will 
replace physical components with intelligent software 
components” [10]. Furthermore, the group identifies aspects 
needed in the definition and realization of CTs, such as 
categories of CTs, reference architectures, actions and 
interactions of CTs, artificial intelligence (AI) & machine 
learning (ML)/deep learning (DL) in the context of CTs, real 
world applications, CTs interaction to its physical body 
(machines), and cyber and physical security of CTs.  

IBM has been active in the CT domain. In this context, 
Saračević [17] presented the CT concept in 2017 as a “virtual 
representation of a physical object or system across its 
lifecycle (design, build, operate) using real time data from 
IoT sensors and other sources to enable learning, reasoning 
and automatically adjusting for improved decision making” 
[14]. A similar definition is presented by Eran Gery who also 
presented a CDT architecture based on IBM technologies in 
the area of Cognitive Computing and Cognitive Sensing: 
“The Cognitive Digital Twin is the virtual, state-full 
representation of a physical object or system across its life-
cycle (design, build, operate) using operational real-time data 
and other sources to enable understanding, learning, 
reasoning, and dynamically recalibrating for improved 
decision making” [7]. Mikell and Clark [12] discussed about 
the use of cognitive computing techniques such as natural 
language processing (NLP), ML, object/visual recognition, 
acoustic analytics, and signal processing in the context of 
DT: “using cognitive to improve testing a digital twin can 
determine which product tests should be run more frequently 
and which should be retired. Or cognitive sensing can 
improve what/when data from sensors is relevant for deeper 
analysis. Cognitive digital twins can take us beyond human 
intuition to design and refine future machines” [12].  

Furthermore, in 2018, Miskinis [13] discussed about the 
possibility to manufacture DTs that have cognitive functions 
(together with the hidden dangers of CTs). CTs are 
introduced as DTs that execute conscious actions, for 
example, “by having the ability to execute cognitive tasks, a 
digital twin of a service fulfillment or product manufacturing 
process will be able to examine the current structure of a 
system or a process and give recommendations regarding 
what can be improved at the current moment” [13].  

The CT concept also appeared in specific sectors. For 
example in the telemetry sector CT is introduced as an 
“artificially intelligent Digital Twin that has the potential to 
serve as an 'autonomous maintenance engineer'” [1]. 

More recently, the CT concept got traction in the 
scientific literature. For example, Fernández et al. [6] 
consider CT as a “digital expert or copilot, which can learn 
and evolve, and that integrates different sources of 
information for the considered purpose. The structure of a 
CT partially emulates the structure of the corresponding 
human mental models” and define an architecture for 

“Associative Cognitive Digital Twin”. Lu et al. [11] consider 
CTs as “Digital Twins (DT) with augmented semantic 
capabilities for identifying the dynamics of virtual model 
evolution, promoting the understanding of interrelationships 
between virtual models and enhancing the decision-making 
based on DT”. In our recent work [2], we introduced a 
layered framework of twins, consisting of three layers: DTs, 
Hybrid Twins (HTs), CTs, in which each higher layer is 
defined in terms of extensions to the lower levels. We thus 
defined a CT as “an extension of HT incorporating cognitive 
features that enable sensing complex and unpredicted 
behaviour and reason about dynamic strategies for process 
optimization, leading to a system that continuously evolve its 
own digital structure as well as its behaviour”. Furthermore, 
Eirinakis et al. [4] proposed the concept of “Enhanced 
Cognitive Twin” (ECT) in the context of process industries, 
as a way to “introduce advanced cognitive capabilities to the 
DT artefact that enable supporting decisions, with the end 
goal to enable DTs to react to inner or outer stimuli. The 
ECT can be deployed at different hierarchical levels of the 
production process, i.e., at sensor-, machine-, process-, 
employee- or even factory-level, aggregated to allow both 
horizontal and vertical interplay” [4]. 

Finally, it is worth mentioning the CT concept appears 
also in non-engineering contexts. For example, Somers et al. 
discuss CT as a  “digital reflection of the user, intended to 
make decisions and carry out tasks on the user's behalf”, to 
“highlight the key role that cognitive mechanisms play in 
modeling human decision making in the IoT digital space” 
[16]. CT was applied to professional education, where a CT 
is “used by applications owned by an individual to identify 
knowledge obsolescence and gaps” [15]. Du et al. [3] 
introduces a personal DT model of information-driven 
cognition (Cog-DT). Cog-DT is a “digital replica of a 
person’s cognitive process in relation to information 
processing”, including a VR platform that collects 
information preference data during training, contains the 
modelling and optimization algorithm of DT modelling of 
human cognitions, and an adaptive UI design based on real-
time cognitive load measures and Cog-DT models.  

As can be seen from the above review of existing CT 
definitions, a common agreement appears to be that a CT is a 
DT extended with some forms of cognitive capabilities, 
however there is no widespread consensus on what kind of 
cognitive capabilities a CT should encompass. This is 
probably partly because the CT concept is still an emerging 
concept, and that various sectors may require various types 
of cognitive capabilities. 

III. COGNITIVE DIGITAL TWIN ARCHITECTURE 

In this section, we provide the conceptualization of the 
cognition services, which are the main concept used for 
realizing human-like cognition on the top of DTs. As 
illustrated in Fig. 1, to cope with challenging industrial cases, 
we designed a hierarchy of twins (DT/HT/CT), whereas each 
layer provides a set of services required for realizing various 
operations on data and models, resulting in a cognition-based 
replica of a physical system. As presented in the figure, the 
architecture enables a control loop that supports a continuous 
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adaptation of the real industry system (e.g. settings, 
reconfiguration). In this paper, we focus on the CT layer. 
Further details on the components of the DT and HT layers 
can be found in [2].  

In order to facilitate the creation of such solutions for the 
industry, in the context of the H2020 COGNITWIN project 
we are currently developing the COGNITWIN Toolbox 
(CTT), which represents a set of technological components 
that can be used to build DTs, HTs, and CTs. Fig. 1 
represents the conceptual architecture of a solution created 
by the application of the CTT. 

A. Cognitive Twin Layer 

There are many definitions of the cognition, but for this 
paper, we focus on that derived from the cognitive 
computing domain, which is related to reasoning and 
understanding at a higher level, in a manner that is analogous 
to human cognition [8]. We specialize this view for the 
complex cases where there are many uncertainties inherent in 
the available data and models. We expect that a human-
cognition-like approach will enable a broader, as well as a 

more connected view on the data and models. The key 
advantage is the introduction of new knowledge that should 
provide missing insights for resolving original cases, as 
illustrated in Fig. 2. 

 
As presented in the figure, we assume that “intelligent  

methods”, which can be a part of Hybrid Twin (see [9]), 
supports the  development of a solution that “maps” inputs 
into outputs. However, the solution might be missing a high 
accuracy, due to not having enough data in the training set. 
As illustrated, cognition supports augmenting the input data, 
as well as intelligent methods with new knowledge (gathered 
directly from experts or other sources), with the goal to 
generate new outputs (with a higher accuracy). Therefore, we 
argue that the uncertainty inherited in the problem (e.g., 
missing data or models) can be resolved by augmenting data 
and intelligent methods to compensate missing information. 
Notice that this process is not about getting new data, but 
rather new insights about existing data (through cognition). 

Therefore, the main role of cognition services is to enable 
understanding of the behaviour of the monitored system 
under various types of uncertainties/unknowns, to support 
reliable decision making (by human experts) or control (in 
autonomous systems). Uncertainties can be of different 
types, but we focus on two most important types from the 
DT point of view: lack of data and unavailability of models 
regarding the current system behavior. Other types of 
uncertainty can be related to the uncertainty in the data 
values and the precision of available models. For our 

 
Figure 1. Conceptual architecture for CTs (based on [2]). 

Figure 2. Cognition extending HT solution. 
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approach, it means that the current system behaviour cannot 
be understood neither by analysing past data, since the 
relevant data is missing, nor by simulations of numerical 
models, since these do not exist (or are not accurate enough). 
In such cases, it is important to compensate these unknowns 
by introducing new processing steps that will gradually 
improve the understanding of the system behaviour, until this 
understanding is enough for the desired action. This process 
we consider as cognition, where the processing steps are part 
of cognition services.  

The main challenge is that real-time data is not enough 
for understanding the current situation (regarding the 
underlying problem). The main goal of the cognition service 
is to enable resolution of the original problem by introducing 
new knowledge that provides new insights for the model 
learning/creation processes, e.g., introduction of some 
constraints in the interpretation of originally collected data. 
Therefore, cognition is working on the top of existing 
models, which can be derived using AI methods, extending 
the intelligence with deep understanding and reasoning 
strategies.  

We can materialize this general process through 
following four steps: 
1. Inserting new knowledge (relevant for the problem). 
2. Learning models that are more accurate by applying new 

knowledge. 
3. Better situational understanding (e.g., lower 

interpretation uncertainty), by applying new models. 
4. Planning actions for resolving the problem, based on 

improved situational understanding. We describe these 
steps as follows: 
a. Knowledge extraction and knowledge acquisition, for 

gathering knowledge from the existing data sources 
(e.g., unstructured and semi-structured content) and 
from experts, respectively. The goal is to collect 
knowledge, which is related to the uncertainties in 
data and models. Since the process is related to 
supporting human-like understanding, it is important 
that the process is driven by well-defined knowledge 
structures (like knowledge graphs) which provide a 
general description of the domain. Indeed, one of the 
main characteristics of the human cognition is a very 
fast discovery of hidden connections between 
arbitrary information items, which is based on large 
memory maps. 

b. Learning, which encompasses applying new 
knowledge on the existing data, models, and methods, 
with the goal of learning more accurate models (from 
existing datasets). There are three main activities:  
• Transforming existing datasets into anomaly free 

ones, which can be used for learning models that 
are more accurate. 

• Improving used learning methods by introducing 
some knowledge-driven constraints in the learning 
process. 

• Adding new methods that can complement existing 
ones in the context of the above-mentioned 
uncertainties. 

c. Understanding, which is related to applying new 
models on real-time data for getting a better 
interpretation of the situations of interests (e.g., 
problem/anomaly detection). We assume that, as in 
the human-like cognition, this process can be 
iterative, i.e., understanding a process can generate 
data, which can be used for improving the learning 
process (like in reinforcement learning). 

d. Planning, for defining optimal actions based on 
system behaviour understanding. 

B. Challenges for Cognition 

There are several challenges to be addressed in order to 
realize the vision of CTs, with the most important ones 
discussed in the following. 

1) Knowledge representation challenge 
The first question to be clarified is how knowledge can 

be formally represented to enable the fact that a DT learns 
from experience and behaves intelligently, like a human. All 
cognitive services mentioned above heavily depend on this 
decision.  

The more complex the representation of knowledge, the 
more difficult it is to acquire this knowledge automatically. 
However, more advanced reasoning services can be offered. 
Our goal is not only to support the decision-making process, 
but also to increase its accuracy and human-acceptance. 
Thus, both declarative and procedural knowledge is needed, 
as questions such as ‘what?’, ‘how?’, ‘when?’, ‘in what 
context?’, ‘what-if?’, etc., should be answered. 

Several knowledge representation formalisms seem to be 
suitable for CTs. To clearly separate general knowledge 
from specific knowledge, it makes sense to structure the 
knowledge into two parts: ontologies for representing the 
domain knowledge and rules for representing the problem-
solving knowledge.  

To better understand a current situation (i.e., the asset 
itself, the context in which it is used, its environment, etc.), 
we consider using ontologies. They are a knowledge 
representation method that is on one hand expressive 
enough and on the other hand extensible. They could be 
used to: 
• Represent the domain knowledge which includes the 

vocabulary domain-experts apply (e.g., brick wall, types 
of bricks like red shale or clay bricks, the features of 
bricks like thermal shock resistance or mechanical 
strength, etc.) as well as the constraints (e.g., 
temperature threshold at which the stone is unusable). 

• Take into account existing standards for the domain 
(e.g., standards from the steel process industry for the 
use case described in Section IV). 

• Support collaboration between DTs, e.g., for cooperative 
execution of complex tasks. 
Although simple constraints (e.g., temperature of a ladle 

must not exceed a certain threshold) can be modelled by 
using ontologies, there are many scenarios where complex 
(functional or behavioural) constraints should be considered 
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(e.g., calculations that include results of different physics-
based/AI/statistic-based models).  

To mimic the reasoning of human expert in solving 
knowledge intensive problems, there is a need to use rules 
(e.g., event condition action rules). Rules should be used 
even in the present of incomplete  and/or uncertain 
information to (i) focus the attention to the most  important 
aspects and (ii) collect additional, goal-oriented information 
relevant for a given context. This can be done by mapping 
of raw sensor data and/or outputs of different DT models to 
actions (such as control decisions or recommendations for 
human operators).  

2) Knowledge acquisition challenge 
The second challenge is collecting knowledge which is 

not only spread in different documents (e.g., excel tables) 
and software systems (e.g., error reports in MES systems), 
but could be also implicit as it is based on personal 
experience that is even more difficult to express. To make 
the tacit knowledge explicit and machine-understandable 
and machine-processable, different cognitive technologies 
could be used such as NLP, speech recognition, etc. For 
example, one possibility is to apply a speech-to-knowledge 
approach, as speech is relevant for the shop floor workers 
for short information interchange allowing hands-free 
conversations. Since in recent years the multilingual speech 
functionality has become a commodity available on smart 
speakers, mobile phones, and computers, the pre-existing 
solutions could be reused and added to the CT to enable 
speech communication channels with human operators. 
Ontologies can help achieving higher accuracy of resulting 
rules, as synonyms, multilingual aspects, context, etc., can 
be taken into account. In this way, the domain and problem-
solving knowledge will be connected. 

3) Knowledge update challenge 
In addition to collecting knowledge, the ability to learn, 

to unlearn and continuously update knowledge is crucial for 
CTs to create competitive advantage. Knowledge update is 
however a complex process, which includes knowledge 
extension (e.g., adding a new entity in the ontology for new 
types of bricks), knowledge forgetting (removing an 
ontology entity representing material not used anymore for 
bricks) and knowledge evolution (e.g., changing a max 
temperature of a ladle). The similar strategies can be applied 
on the problem-solving rules. The challenge lies not only in 
ensuring the consistency after applying a change, but also 
more importantly in discovering the need for a change. This 
can be done by applying usage-driven strategies (e.g., by 
monitoring whether the proposed decisions were accepted 
by domain experts) or by using structure-driven methods 
(e.g., by using ontology-based reasoning to discover 
conflicting rules or generalized/specialized rules). 

IV. COGNITIVE DIGITAL TWIN USE CASE FROM THE 

PROCESS INDUSTRY 

To illustrate the concept and role of CTs in process 
industry, a discussion on an application of such an approach 

to a real-world problem from steel production process 
industry is presented in this section. The use case shows how 
various hurdles concerning asset maintenance and predictive 
controls from the process industry can be further improved 
from its current state.  

The steel production process typically has three stages. 
First, the scrap steel is collected and melted in an electric arc 
furnace. In the second stage, the molten melt is transferred to 
the ladles for secondary metallurgy. In the third and final 
step, the casting process, the molten steel is moulded to a 
desired shape. In the secondary metallurgy process, the 
molten metal is mixed with several substances (or impurities 
are removed) to produce the specific grades of steel 
depending upon the customer requirements. This process is 
carried out in specially developed ladles that are designed to 
withstand such extreme temperatures and condition for a 
sustained period. The inner walls of the ladles are lined with 
magnesium oxide bricks and carbon, which is worn out little 
by little with every heat. After a certain number of heats, 
typically ranging anywhere from 50 to 100 heats, these brick 
walls are so thinned down that the brick lining needs to be 
completely demolished, and a fresh batch of bricks are 
placed along the inner walls. The challenge here is that the 
decision about when/whether or not the bricks need to 
replaced is taken by a technician or an engineer by visually 
inspecting the brick conditions and also taking a look at the 
process parameters. If the brick linings are not sufficiently 
thick enough, molten steel in the ladle can leak from the 
ladle and flow into the factory floor potentially causing 
accidents. Due to the enormous risk to the health and safety 
of the workers in the production plant, the technician usually 
makes the decision about whether or not to re-line with fresh 
batch of bricks based on the "better safe than sorry" 
philosophy. The drawback of this approach is that if the 
bricks are replaced even if they really do not need to be 
replaced, it results in increased production overheads and 
costs for the company.  

If one were to address this problem using DTs, a 
mathematical model that simulates the behaviour and 
degradation mechanism of the bricks in the ladle would be 
an obvious starting point. By developing advanced ML 
algorithms, it may be possible to develop programs that can 
predict when the bricks need to be replaced. In addition, it is 
possible to develop physics-based models that simulate the 
brick wall conditions when subjected to severe mechanical 
and thermal stresses, which can further improve the ML-
based models to create a HT of the process. The CTs on the 
other hand will include the human intelligence factor in the 
models to deal with the uncertainty inherent in the process. 
One of the main challenges for resolving this problem is the 
lack of sufficient data, given that the process is rather 
complex. Ideally, it would help to detect false negatives; 
meaning decisions to replace the brick lining were taken 
even if it was not required. This however is not always 
available due to practical reasons. The models in the CTs 
would include instances that were exceptional and rare 
scenarios and decisions taken by the manual intervention to 
best suggest whether the bricks in the ladle will need be 
replaced or repaired. 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced the concept of CTs in the 
context of the process industry and proposed a CT 
architecture a baseline for building CTs. Despite recent 
attempts in defining CTs, the concept is still emerging; with 
various aspects and perspectives presented in the literature 
and no shared agreement on the scope of CT, other than 
extension of DTs with cognition elements. We reviewed the 
relevant definitions in the literature and provided our 
architectural perspective on the type of cognitive services 
needed for CTs in the context of process industry, identified 
the challenges for realizing the proposed cognitive services, 
and discussed their role in the context of a concrete use case 
in the process industry. Progress on cognitive architectures is 
seen through the development of hybrid representations that 
combine symbolic and numeric content, mechanisms for 
learning procedural and control knowledge, incorporation of 
large-scale knowledge structures, construction of embodied 
and interactive agents, and support for both declarative and 
episodic memories [9]. 

Less progress has been made in areas such as abductive 
understanding, dynamic memories that acquire new 
conceptual structures, creative aspects of problem solving, 
emotional processing, agent personality, along with plausibly 
related topics of metacognition and goal reasoning [9]. 

We plan to apply the CT approach in a set of use cases as 
follows:  
• Operational optimization of gas treatment centre (GTC) 

in aluminium production, where CT of the GTC 
recommends optimal operating parameters for adsorption 
based on real-time data gathered about conditions such as 
the pressure, temperature, humidity, etc., from sensors. 

• Minimize health & safety risks and maximize the 
metallic yield in Silicon (Si) production to provide best 
estimates of when the furnace can be emptied to the ladle 
for further operations. 

• Real-time monitoring of finished steel products for 
operational efficiency with an ability to react on its own 
to situations requiring an intervention, thus stabilizing the 
production process further. 

• Improving heat exchanger efficiency by predicting the 
deposition of unburnt fuel mixtures, ash and other 
particles on the heat-exchanger tubes based on both 
historical practices and real-time process. 
 
As part of future work, we plan to validate the proposed 

cognitive services architecture in all these use cases. 
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