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Abstract—Psychological studies explore visual complexity as per-
ceived by humans. Image complexity is studied extensively in the
mathematical, computational sciences. The two disciplines often
define visual complexity differently and are thus disjointed. This
is manifested in differences between subjective human-perceived
complexity, and computer vision algorithms’ performance in
visual tasks. Our study investigates this discrepancy in the context
of cognitive tests that employ visual stimuli to assess a subject’s
primal cognitive functions. A database of cognitive tests including
visual recognition tasks and the performance of 403 subjects
in terms of response times was used. Computer vision and
information theory features were extracted from the images in
these tasks. Inspired by cognitive psychology studies, the features
were categorized into whole-image and object-specific features. A
random forest classifier was used to map the computed features
into three complexity labels in the tasks, labelled according to the
subjects’ performance. The classifier computationally captured
the significant features for the human-perceived task complexity
by mapping the occurrence of these features to the complexity
labels of the subjects’ performance. The whole-image features
demonstrated greater visual significance than the object-specific
features. The features’ importance values could provide insights
into the links between mathematical visual complexity definitions
and visual complexity as perceived by humans.

Keywords– Visual complexity; Cognitive assessments; Computer
vision; Binary images.

I. INTRODUCTION

Human visual perception is the processing and interpreting
of a visual environment, transmitted from the eyes via neural
paths to the brain. The image properties extracted in this
activity culminate in a decision or action [1]. The details of the
translation or encoding entailed in this process are, however,
unknown.

Cognitive tests are designed to challenge this brain process.
These tests display visual stimuli, pose a task associated with
these stimuli, and require a response or decision from the tested
subject. The performance of cognitively intact individuals in
these tests could thus provide insights into the characteristics
of the process involved in visual perception. Specifically, the
differences between different tasks in terms of complexity
could be assessed.

Understanding task complexity allows us to better engineer
the interface of these cognitive tests. Having a predefined
complexity scale offers a platform for dynamic adaptation to
a user’s cognitive capabilities by adjusting the complexity of
the set of tasks presented based on their previous task response
times. This ensures that the subject is presented with a task of
an appropriate difficulty level for them, rather than something

that is too easy or too difficult, which could cause frustration
or boredom, and limit the usefulness of the assessment. An
evaluation of performance which takes into account response
times can also be refined by considering the complexity of the
task as a weighting component in the test score.

Visual perception and the complexity of images were
studied in cognitive psychology [2]. Witkin et al. [3] pro-
posed a field dependence concept, explaining how people
assess their visual field by either separating and organising
the visual information into clear-cut groupings, or assessing
their visual field as a whole. Attneave et al. [4] studied the
different ways in which the perceived visual complexity of an
image is affected by the information distribution in the image.
Equivalently, computer vision studies employed mathematical
image processing to extract information from an image [5]. The
complexity of visual stimuli or images can thus be computed
using mathematical metrics and computer algorithms.

Both disciplines share similar concepts conceptually on
visual attributes on the information of a full image and/or
part of image. Both strive to define visual complexity. The
relevance of computer features and metrics to the way hu-
mans perceived complexity according to the aforementioned
psychological theories is, however, rarely assessed.

Computerised cognitive tests are a context where visual
stimuli in the form of computer generated images and a large
cohort of human subjects performance can be studied. This
study employs computerised cognitive tests data and aims to
find a set of computed attributes, or features, which could help
explain the complexity of a task associated with visual stimuli.

This paper first presents a short background on the test
data provided for this study, with the details of the subsequent
algorithm development and implementation in Section 2. It
is then followed by the feature results in Section 3, and a
concluding analysis and discussion in Section 4.

II. METHODS

Test data from previously conducted cognitive tasks was
made available for this study. This was used to find a set of
computed visual attributes which could correlate to the tasks’
perceived complexity based on the task results in the provided
data. This Section presents the details of this process.

A. The Data: Visual Stimuli and Human Performance Data
The cognitive tasks and users’ performance data were taken

from NexSig’s computerised cognitive testing studies [6]. The
visual part of this dataset involves stimuli in the form of
simple, black and white, four-by-four square images that can
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be described as 16-bit binary arrays, as illustrated in Figure 1.
In this study, we focused on one type of visual task from this
test battery: a recognition task. An example recognition task
is illustrated in Figure 1: three images are presented on the
screen, and the subject is required to recognise which of the
three images is different.

Figure 1. An example of a recognition task.

The computerized tests recorded and logged both response
time and correctness of the subjects’ responses for each of the
tasks presented. All subjects in the studies were assessed by
healthcare professionals prior to taking the cognitive tests. The
database used in our study included tests of cognitively intact
subjects only, who had no motor or vision impairment.

There were 5087 recognition tasks in the dataset. The data
was stored in a table, where each row represented a task
instance. The images presented in the tasks were coded as
16 bit arrays where a white square in the image is represented
by a 0 and a black square by a 1. A binary array encodes
the image starting at the top left and downwards row-by-row.
For example, the first image in Figure 1 would be encoded as
0011000101011011. Following the 3 binary vectors of the 3
images presented in the task, each row contains the subject’s
response and response time in milliseconds. A separate table
contains the demographics of the subjects: age, gender and
computer proficiency.

B. Algorithm Implementation
Figure 2 depicts a flow diagram of the methodology

employed in the study.

Figure 2. A flow diagram of the algorithm implementation

Each response time in the dataset was represented by a
label corresponding to a human-perceived complexity. Con-
currently, visual features of the cognitive tasks were extracted.
The human perceived complexity labels and the features were
the inputs to a random forest learner. The machine-learned
selection process indicated which of the features were relevant
in the human-perceived visual complexity prediction. The
implementations of the blocks in Figure 2 are described below.

1) Human Visual Complexity Level Representation: An
inherent assumption in this study, corroborated by the admin-
istrating neuropsychologists, was that the subjects’ response
times were associated with, or reflected in, the tasks difficulty
level or complexity. Subject demographics - age, gender and
computer proficiency - were examined to ensure that these
factors did not distort the response-times distribution. Initial

examination of the dataset response times yielded that their
distributions were similar, and had a Gaussian shape with a
longer right-hand tail, for all age groups, for male and female
subjects and for groups of proficiency levels. The response-
times’ continuum was segmented into K segments from which
a complexity labels scale was constructed, from “easy” to
“hard,” corresponding to the segments of short response times
to the segments of long response times, respectively. Different
segmentation paradigms, as well as different K values were
applied and evaluated in different experiments, as labels for
the random forest learner.

2) Computer-Vision Complexity Attributes: The algorithm
was developed to discover which visual features could define
the visual complexity in a recognition task. The study was
performed on the pair of the 2 different images from the
3 images presented in the task. This choice was based on
the assumption that the third image, identical to one of the
images in the pair, does not significantly impact on the visual
comparison.

3) Feature Extraction from the Image Pair: The features
were either adapted from earlier image processing and com-
puter vision studies, or were conceptually based on Attneave
[4] and Witkin’s [3] psychological theories on visual percep-
tion.

a) Object Type Definitions: The following visual object
types are referred to in the subsequent feature descriptions. All
object types are defined for both black and white blocks:

• Adjacent Path: Consecutive adjoining blocks of the same
colour (directly next to each other, against one of the four
sides) to form a path of its own. Black adjacent paths
outlined in red in the example image (Figure 3).

• Diagonal Path: Consecutive blocks of the same colour
diagonal to each other (against one of the four corners)
to form a path of its own. Black diagonal path outlined
in green in the example image (Figure 3).

• Single block: a block that is not part of an adjacent path
or diagonal path. Black single block outlined in blue in
the example image (Figure 3).

By these definitions, the image in Figure 3 has a white
adjacent path, and a white single block as well.

Figure 3. Example image to illustrate the object types.

b) Feature Extraction Paradigm: Quantifying a recog-
nition task’s complexity entails a consideration of a relative
visual complexity of a pair of images, i.e., if one image is
visually complex, while the other is simple, the recognition
task will be relatively easy.

All features were computed for each image in the pair, and
inserted into the machine learning model as two independent
features. Additionally, features that pertain to a comparative
nature were computed for the pair of the images and were
used as a single feature. The latter, relative type of features
are marked in the list below with a “(relative)” next to the
feature name.
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Inspired by the cognitive theories of Attneave [4] and
Witkin [3], two categories of features were calculated: object-
specific features, and whole-image features. Examples and
illustrations for these features are described further.

c) Object-Specific Features:

• Number of objects: This feature is a count of the
number of adjacent paths, diagonal paths, and single
blocks respectively within each image, for both black and
white objects. Table I presents an example of this count,
computed for the image pair presented in Figure 4.

Image 1: Image 2:

Figure 4. Example image pair to illustrate number of objects, object path
lengths, different objects present, and similar objects within an image

TABLE I. NUMBER OF OBJECTS FOR THE IMAGE PAIR IN FIGURE 4

Image 1 Image 2
Black White Black White

Adjacent Paths 2 1 1 1
Diagonal Paths 0 0 1 0
Single Blocks 1 1 0 1

• Object path lengths: This feature is the total lengths
of the adjacent paths and the diagonal paths, for both
black and white objects, in an image. Table II presents
an example for this feature, computed for the images of
Figure 4.

TABLE II. OBJECT PATH LENGTHS FOR THE IMAGE PAIR IN
FIGURE 4

Object Path Lengths
Image 1 Image 2

Black White Black White
Adjacent Paths 6 8 4 8
Diagonal Paths 0 0 3 0

• Objects with similar angles (relative): This is the
number of black or white objects that have either the
same angle, or the inverse angle in a pair of two images,
measured from the horizontal axis.

• Objects with similar locations (relative): This feature
indicates the number of objects that have similar loca-
tions. The locations are calculated as a centroid midpoint
and points within half a square of each other are consid-
ered as similarly located objects. Only objects of identical
type and colour, i.e., black adjacent paths, are checked for
location similarity. Figure 5 illustrates similar locations
for a pair black adjacent paths, a pair of white adjacent
paths, and a pair of white single blocks in the two images.

Image 1: Image 2:

Figure 5. Example image pair to illustrate objects with similar locations

• Different object types present (relative): This binary
feature returns a one if any of the previous object types
exists in one image, but not in the other. For example in
Figure 4, Image 2 has a black diagonal path while Image
1 does not, while Image 1 has a black single block while
Image 2 does not, which will produce a value of one.

• Similar objects within an image: This feature indicates
the number of objects that have similar shape and size,
regardless of angle, within an image. In Figure 4, for
example, image 1 has two similar objects, while Image 2
has none.

• Similar objects in an image pair (relative): This feature
counts the number of objects that have similar shape and
size, regardless of angle, in both images of the pair. For
example, there is one similar object in the two images of
Figure 6.

Image 1: Image 2:

Figure 6. Example illustrating similar objects found in an image pair

d) Whole-Image Features:

• Whole-image object spacing: This feature is an average
of the distances between objects of one colour in an
image. In the example of Figure 7, the average distance
for the black objects in Image 2 is larger than in Image 1.

Image 1: Image 2:

Figure 7. Example image pair showing the various object distances
calculated for whole-image object spacing

• Whole-image squares comparison (relative): This fea-
ture is a direct comparison of an image pair, where
each square in the image is referred to as a bit; black
represented by 1 and white by 0. The computation entails
an XOR on the 16-bit array representations of the images
and a summation of the resulting array.

• Relaxed image symmetry: This is a binary feature that
indicates symmetry, defined across the horizontal axis,
the vertical axis, and the two diagonals, including inverse
colour symmetry as illustrated in Figure 8.

(a) (b) (c) (d)

Figure 8. Example images which display the various definitions of symmetry

‘Relaxed’ symmetry, defined as one-block difference
within the symmetrical image, is also considered as an
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occurrence of symmetry due to the low prevalence of
exact symmetry in these images.

• Features from Gabor filters: Gabor filters are made up
by sinusoidal planes modulated by a Gaussian envelope
[7]. A ‘filter bank’ of Gabor filters models the first
stage of the brain’s visual processing (V1) [8]. In our
implementation, a filter bank of Gabor filters at various
orientations and frequencies was applied to each image
in the pair, resulting in an output feature vector for each
image. The features were the sum and standard deviation
of the vector.

• Fractal dimension features: The ratio that indicates the
level of visual detail in a fractal pattern at different levels
of magnification was calculated using the box counting
technique [9]. This technique estimates the number of
boxes required to cover the non-zero parts of an image at
different box sizes, and computes the fractal dimension
as the slope between number of boxes and box sizes
[10]. Two additional features were calculated: The range
of the fractal dimension values across the total number
of measurements taken, and the standard deviation of
the different fractal dimension values across the various
measurements taken.

All the above features were extracted for the image pairs
in the recognition tasks from the dataset. These were then to
be entered into the machine learning (random forest) classifier.

C. Random Forest Learner and Classifier
A random forest learner was implemented, with a 3-fold

cross validation, to map the feature sets to the human-perceived
complexity labels.

An important characteristic of the random forest method is
that it yields feature importance information. The importance
values were generated for each feature in Matlab as part of
the TreeBagger function. Each value was calculated using
the out of bag permuted predictor delta error, where a larger
error corresponds to a more important feature for the mapping
performance, in our case, to the complexity labels [11].

III. RESULTS

The subsequent results, obtained from following the above
methodology, are presented in this section through an analysis
on the data provided, and the importance levels of the features
extracted from the images.

The response-times distributions change with subjects’ age,
gender and computer skills are illustrated in Figures 9, 10,
and 11, respectively. The graphs demonstrate that while the
response time volumes vary within the factors, the distributions
are similar across the age groups, between the genders, and
across the computer skills. The response times could thus
be assumed as an un-biased representation of the perceived
complexity of the tasks performed by the subjects.

A. Feature Importance
The importance values of the features that provided the

most insight are provided in Table III.
Table III implies that object-specific features have lower

importance values compared to the whole-image features. The
highest importance values of the whole-image features are
those from the Gabor filter and fractal dimension calculations,

Figure 9. Frequency plot of the response times segmented by age

Figure 10. Frequency plot of the response times segmented by gender

Figure 11. Frequency plot of the response times segmented by computer
skill from 100 as computer illiterate to 104 as computer literate

as well as the white spacing feature and the symmetry. The
strongest feature is the standard deviation of the Gabor filter.
The smallest importance value for the whole image feature set,
and one of the smallest in the entire feature set is the direct
square comparison.

To illustrate the feature importance results of Table III,
examples of recognition tasks from the dataset for which the
complexity labels were correctly predicted by the algorithm
are presented in Table IV. Three examples are given for each
predefined complexity label: 1, 2 and 3.

1) Object-Specific Feature Importance: The black adjacent
path/s length/s yielded the highest importance value among
these features. This can be explained by examples 2 and 3 of
Table IV, where only one of the two different images has one
long black adjacent path, with no other black objects. This
makes it easily distinguishable from the other image in the
task, and justifies the “easy,” label 1 mapping. The number of
adjacent paths, which got low importance ranking, however,
displays no specific trend in all tasks in Table IV across the
three complexity labels. This visual trend can also be related
to the relatively high importance value of the “Different black
objects presence” feature: When one image in a pair has only
one long black adjacent path and the other image has a variety
of black features, the task was labelled as “easy” - label 1.
The different white objects presence feature, however, does
not display the same characteristic. Different white objects are
present in several image pair examples of Table IV and across
the various complexity labels, with no specific trend.

The importance values of the features for the objects’
presence and locations are all relatively small. The only object
type whose location yielded a positive importance value was
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TABLE III. PROMINENT FEATURE IMPORTANCE RESULTS

Whole-Image Features Object-Specific Features

Feature
Import-

ance
Value

Feature
Import-

ance
Value

Gabor
filter
std. dev

1.00
Black
adjacent
path length/s

0.73

Gabor
filter sum 0.95

Different
black objects
present

0.73

Fractal
dimension
range

0.92

Similar
black
adjacent
path location

0.61

White object
spacing 0.86

Black similar
objects
within an
image

0.57

Relaxed
symmetry 0.86

White similar
objects
within an
image

0.55

Fractal
dimension 0.76

Number of
black
adjacent paths

0.41

Fractal
dimension
std. dev.

0.56
Number of
white
adjacent paths

0.39

Black object
spacing 0.53

Similar
white
diagonal
path location

0.08

Black similar
objects in
an image
pair

0.42
Different
white objects
present

0.00

White similar
objects in
an image
pair

0.26

Direct
squares
comparison

0.23

the black adjacent path. In examples 5, 6 and 9 of Table IV,
the presence of a similarly located black adjacent path in
both images could have made them harder to distinguish
between, thus increasing the perceived complexity in some
way. Similarly, features related to similar shapes within an
image yielded small importance values.

2) Whole-Image Feature Importance: The white object
spacing feature had a much larger importance value compared
to the black object spacing feature. In example 2 of Table IV,
the average distance between the white objects of image 1,
and image 3, is greater than that of image 2: There is only one
long black adjacent path in the middle of image 1, whereas
there are smaller black objects dispersed around image 2. This
noticeable difference in the white spacing could have justified

TABLE IV. EXAMPLES WITH CORRECT COMPLEXITY LABEL
PREDICTIONS

# Image 1 Image 2 Image 3 Complexity
Label

1 1

2 1

3 1

4 2

5 2

6 2

7 3

8 3

9 3

the ‘easy’, label 1, mapping.
The relaxed symmetry feature had relatively high impor-

tance value. In example 1 of Table IV, for instance, image 1 is
symmetrical across the x axis, as well as the y axis, in inverted
colours. This symmetry can explain the image as perceptually
easy to discriminate in the recognition task, and could justify
the “easy”, label 1, mapping for that task.

The feature of the direct squares comparison had no
importance in the complexity predictions. This feature had
no correlation to the human complexity labels with values
randomly ranging from 4 to 12 for the tasks in Table IV.

The mathematical models - Gabor filters and fractal dimen-
sions yielded the largest importance values. In the recognition
tasks of Table IV, the values of all five features associated with
these models: fractal dimension, range of the fractal dimension,
standard deviation of the fractal dimension, sum of the Gabor
filters and standard deviation of this sum, consistently decrease
with increasing complexity.

IV. DISCUSSION

The feature importance analysis implies that whole-image
features had greater significance than object-specific features.
As per Witkin’s [3] field dependence concept, individuals
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may assess their visual fields as a whole, making only loose
partitions of an image. This observed trend in our data may,
however, be also related to the small size and simplicity of the
images used, where individuals may not need to look for finer
details.

The high importance of the number of black adjacent paths
is in line with Attneave’s [4] theories on visual redundancy,
where long strings of adjoining pixels of the same colour could
constitute for a level of visual redundancy, thus simplifying the
visual-field’s perceived complexity.

The small size of the images may also explain the result
that the black spacing feature had a small importance value:
The probability of having only one black object in these images
is large - a fact that was assessed by the square counting
feature. In this case, the average black object spacing feature is
reduced to zero, which may produce a bias in the image pairs’
black object spacing calculations. The higher importance of the
average spacing of the white objects may be explained by the
presence of more white objects in the image and is illustrated in
the examples of Table IV, in the higher perceived complexity.

All white object-specific features demonstrated low impor-
tance values. The highest importance value related to white
objects was the white object average distance feature, which
was similar in strength to the black object average distance.
This may be explained by associating the white objects dis-
tances with the black objects placements. These findings may
imply that the white objects are perceived as background space.

The only whole-image feature that showed no importance
in the complexity mapping was the direct squares comparison.
This suggests that this typical computer process of scanning
an image and comparing images is alien to human perception.

The significant importance of image symmetry in the
complexity predictions, is in line with Attneave’s [4] premise
on image symmetry representing another form of visual redun-
dancy, thus reducing the visual observation’s perceived com-
plexity. It indicates that when subjects observe an image that
has symmetry, the mirroring makes it simpler to distinguish
against other, non-symmetrical images.

Finally, the positive importance values of the mathematical
Gabor filter and fractal dimension features imply their relation
to visual perception. These importance values, and the trends
showed that the smaller the difference in the values of these
features for each of the two images in the pair, the greater the
perceived complexity. This is also in line with the assumption
in this study, that the smaller the difference between the images
in the task, the harder it is to recognise the odd one. The feature
importance trends found in the study thus suggest a potential
of linking human visual perception to computational models
of complexity.

While one might argue that the feature importance results
have been obtained for images that are too small or simple,
the motivation behind this chosen image set is that the lack
of colour, and size of the images would allow for a more
objective visual analysis by the subject. The disadvantage with
presenting elaborate and natural visual stimuli, is that objects
in the images, or the images themselves, are likely to visually
trigger past memories or associations for a subject. These
triggers could distract their focus off the required objective
comparison of the images, thus skewing the human results
that the algorithm is trying to mimic. It could, however, be
worthwhile to explore designing stimuli that apply to real-
world situations while preventing distractions in the future.

Additionally, many of these feature observations have
touched on either Attneave [4] or Witkin’s [3] theories at
a high-level to demonstrate correlation to psychological re-
search. This was only done at a high-level since the primary
scope of this study was in trying to understand how computa-
tional or mathematical aspects of these images could be used
in defining their visual complexity. However, in future work, it
could be useful to conduct further research into psychological
studies that have relevance to this topic. Given this, there is
also potential for collaboration with psychologists to try link
these results to human psychological perception mechanisms,
and gain some insight to contribute to psychological research.

V. CONCLUSION

A method for the computation of visual tasks complexity
combining information theory, machine vision and human
perception measures was developed and assessed by its rel-
evance to human perception. The computational complexity
features could explain human visual complexity perception in
the context of cognitive tests where this complexity perception
is assumed to be represented by subjects’ response times
to visual tasks. The feature importance values corroborated
psychological studies of human visual perception. These find-
ings indicate a potential to link computer-extracted features to
human perception in their definition of complexity of visual
tasks.
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