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Abstract—With the digital transformation in manufacturing,
Predictive Maintenance (PdM) is increasingly proposed as an
approach to increase the efficiency of manufacturing processes.
However, system complexity increases due to mass customization,
shorter product life cycles, and many component variants within
a manufacturing system. So far, PdM mainly focuses on a single
component or system-level and thus neglects the complexity by
not considering the interdependencies between components. In
a Multi-Component System (MCS) perspective, models covering
interdependencies between components within a complex system
are established and used for the prediction. Even if the predictive
accuracy is superior, modeling interdependencies is a complex
and laborious task that prevents the broad adoption of the MCS
perspective. A potential way to tackle this challenge is using
visualizations to discover and model the interdependencies. This
paper evaluates different visualization approaches for PdM in
the context of MCSs using a crowd-sourced study involving 530
participants. In our study, we ranked these approaches based
on the participant’s performance that aimed to identify the
optimal timing for maintenance within an MCS. Our results
suggest that visualization approaches are suitable to identify
interdependencies and that the stacked-area approach is the most
promising approach in this regard.

Keywords—Multi-Component System; Predictive Maintenance;
Visualization Analytics; Optimization; Stochastic Interdependencies

I. INTRODUCTION

Predictive Maintenance (PdM) focuses on managing mainte-
nance actions based on the prediction of component or system
conditions. Currently, PdM significantly impacts not only the
manufacturing process but also the whole industrial product
life cycle [1]. Hence, high-quality products and more reliable
manufacturing processes are provided. In practice, PdM is
applied either on the level of an entire system or a single
component, thus neglecting the interdependencies between
components within a system [2]–[4]. However, with the digital
transformation in manufacturing, more complex processes,
shorter product life cycles, and a wide variety of product
variants emerged. This transformation not only increases the
complexity of manufacturing systems; it also decreases the
time to interact with the system and to learn and understand

its behavior. Thus, it is more challenging to model the health
indicators accurately and leads to the application of the more
simple single component approaches on the one hand. But on
the other hand, the grown complexity increases the demand
for approaches taking this complexity sufficiently into account,
such as Multi-Component System (MCS) view.

MCS models describe interdependencies between compo-
nents within a system and can be used to improve predictive re-
sults and decision support. In the literature, it has been shown
that the presence of interdependencies between the compo-
nents impacts the deterioration process of the components,
subsystems, and system [4] [2]. For instance, an old worn-out
component will accelerate the wear out of the newly replaced
components that interact with it. Therefore, identifying and
understanding interdependencies between components helps
to extract this additional knowledge, which could contribute
to a better understanding of system performance in terms of
component and system degradation and improve predictive re-
sults. However, this process is not straightforward and requires
incorporating human cognitive reasoning and decision-making.
Hence, more cognitive approaches applicable to such complex
systems with a variety of properties and factors that could
influence the decisions are required [5]. In particular, current
research within the topic of MCS lacks proper methods to
identify interdependencies, thus, failing to build MCS within
complex production systems [1]. A promising way to tackle
these challenges is through using visualization approaches
which provide intuitive and faster ways to understand and
identify interdependencies [6].

Visual Analytics (VA) has been applied in PdM for MCSs,
aiming to show the presence of interdependencies within an
MCS [4] [7] [8]. Nevertheless, the usefulness of visualization
aiming to identify interdependencies within an MCS has not
been evaluated in these studies. Recently, Gashi et al., [6]
evaluated different visualization approaches regarding their
suitability for maintenance scheduling. However, to the best
of our knowledge, visual approaches with respect to optimal
timing were neither analyzed nor ranked so far in the existing
research within the field of PdM.
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This research work evaluates different visualization ap-
proaches based on stochastic interdependencies. In particular,
we rank visualization approaches aiming to identify the op-
timal timing for maintenance, i.e., replace point. Moreover,
we discuss difficulties in integrating such approaches in the
context of MCS. Additionally, factors that motivate users’
decisions for maintenance actions are discussed.

This paper is organised as follows: The second section gives
a brief overview of theoretical background. The third section
describes materials and methods used for the research experi-
ments. Furthermore, the forth section discusses the results and
contribution of this research work, whereas the last section
highlights the conclusions and future work.

II. THEORETICAL BACKGROUND

In the age of big data, PdM is gaining a lot of attention
due to the ability to use predictive models to determine
when maintenance actions are required [3]. PdM application
provides many benefits, such as decreased maintenance costs
and downtime, and increased production performance, sustain-
ability, and quality. In particular, superior predictive results for
maintenance help to improve maintenance decisions, such as
maintenance scheduling or resource optimization [3]. So far,
PdM solutions are acceptable, but in practice, the increased
complexity of manufacturing processes and the products leads
to the need for more precise results. Moreover, PdM is
mainly applied solely on system level or single components,
thus neglecting the interdependencies between components
completely. In the literature, the presence of interdependencies
between components within an MCS can be found [4] [2].
Modeling interdependencies between components could help
improve predictive results and understand the deterioration
behavior of the components and the system.

In literature, MCS interdependencies are analyzed from
different perspectives. Hence, interdependencies are grouped
into four different categories: stochastic, economic, structural,
and resources based interdependencies. Whereby, stochastic
interdependencies analyze the deterioration effect between
components within an MCS. For instance, Assaf et al. [4]
proposed a deterioration model for MCS, which aims to
describe stochastic degradation processes. Economic interde-
pendencies, on the other side, focus on the effect of the costs
that can be assured through performed maintenance within
an MCS [9]. Structural interdependencies, however, take into
account components that are structurally dependent and use
this knowledge to improve maintenance processes [10]. Fi-
nally, resource-based dependencies aim to model dependency
between components and spare parts or other required main-
tenance resources [11]. In general, modeling and presenting
interdependencies within an MCS is a complex and chal-
lenging process, which helps to improve predictive results
and decision-making processes when performing maintenance.
Therefore, presenting and understanding interdependencies to
the end-user is a crucial aspect that could help to improve the
results. However, the process of identifying interdependencies

is not straightforward and requires human cognitive reasoning
and decision-making.

Cognitive computing, in general, aims to develop coher-
ent, suitable, adaptable techniques based and inspired in the
human mind, which can adapt to new situations [12]. More
specifically, cognitive computing is a term used by IBM to
describe techniques that can learn from a wide range of data-
sets, can provide reasons, interact with humans, and learn
over time within the context [13]. In particular, understanding
and extracting knowledge from big data is an important as-
pect of handling new emerging data-based decision problems.
Therefore, in the context of our work, it is crucial to provide
approaches that help facilitate human cognitive reasoning,
which could increase shop floor workers’ performance and
system reliability. One promising approach in this regard is
VA.

Visualizations help to understand and extract knowledge
from data, thus, improving the decision-making process. Data
visualization was applied in various contexts in the manufac-
turing process, e.g., to identify quality derivations and machine
failures in a data-driven way [14], for anomaly detection [15]
or for causal analysis [16]. Moreover, visualization for de-
cision making in the context of PdM has been extensively
applied [17] [18] [19]. Additionally, extensive research works
focusing on PdM for MCSs used visualizations to demonstrate
the existence of interdependencies within an MCS [4] [7] [8].
For instance, Assaf et al. [4] used line charts to present the
interdependencies between components. Whereby, Shahraki et
al. [7] used multi-line to visualize interdependencies within
an MCS. Yet, the usefulness of visualization to identify and
present interdependencies has not been evaluated.

Nevertheless, Gashi et al. [6], evaluated and ranked visu-
alization approaches for MCSs use-cases in terms of func-
tionality using a crowd-sourced study. In this case, the aim
was to identify the best visualization approach that helps users
conduct a successful maintenance strategy, i.e., the system will
not crash. However, various critical systems, along with the
aim to avoid crashes, require to operate at their optimal level.
In this case, optimal timing is crucial and a must requirement.
To the best of our knowledge, this challenge was not evaluated.
Therefore, in this work, we aim to analyze and rank visual
approaches in terms of optimal timing for maintenance.

III. MATERIALS AND METHODS

A. Visualization approaches

Based on a literature review, we first identified candidate
visualization approaches for modeling interdependencies: line-
based approach [4], matrix-based approach [20] [8], multi-
line approach [21], bar-based approach [22], and stacked area
approach [23]. Next, in close collaboration and in multiple it-
erations, we pre-selected the suitable approaches in discussion
sessions with three domain experts. As a result, we defined the
appropriate rule to pre-select the relevant approaches which
are evaluated within this study. A visualization is considered
relevant if it fits the following requirements: First, visualiza-
tion highlights interdependencies over time, emphasizes the
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performed maintenance actions, and space reduction, i.e., less
space is required for visualization, is an important feature.

Multi-line visualizations are suitable approaches for pattern
and relationship analysis of multiple time series data [21].
In a nutshell, deterioration of the components as a physical
parameter evolves over the distance and this is shown in multi-
line visualization on the x-axis (see Fig. 1). The deterioration
rate, on the other side, is shown on the y-axis. Consequently,
1 represents a thoroughly worn-out component and 0 a new
component. Furthermore, each line shows the deterioration
over distance for a specific component, e.g., chain.

Fig. 1. MCS interdependencies are presented using a multi-line visualization
approach. The x-axis represents the distance information in km, and the y-axis
represents the deterioration time.

Heatmap approaches are suitable for cross-examination, pat-
terns, or similarity analysis of multivariate data [20]. Heatmap
visualizations are built using a matrix format and coloring
of cells based on the magnitude of variables. Moreover,
space reduction is a crucial feature of this approach. In the
heatmap visualization, shown in Fig. 2, the deterioration of the
components is encoded visually using a variety of colors for
each cell. A cell over the x-axis represents a specific distance
ride in km. The color within a specific row represents the
corresponding deterioration state of the component. A white
color reveals a new component, whereas a black indicates a
fully worn-out component. Finally, a row represents a single
component’s deterioration and maintenance state.

Fig. 2. MCS interdependencies are presented using the heatmap visualization
approach.

Stacked-area visualizations (shown in Fig. 3) aim to repre-
sent multiple time-series data by stacking filled shapes (single
time-series) on top of each other [24]. This approach is
relevant for pattern, causal, and comparison analysis. The
distance is shown on the x-axis, and the deterioration rate is
shown on the y-axis. For each component, the deterioration
rate of 1 represents a fully worn-out component, respectively
0 a new component. In contrast to the multi-line approach, the
stacked-are approach accumulates the deterioration rate of all
components at every specific distance point.

All these approaches can visualize data over time, e.g., over
distance, are appropriate for pattern recognition or relationship
analysis. Moreover, an advantage of these approaches is the

space reduction feature, thus, increasing the relevance of these
approaches in use cases, such as MCS, where space is an
important aspect due to a large number of components. This
work is an extension of previous research work [6]; therefore,
further details are explained and published in [6].

Fig. 3. MCS interdependencies are presented using the stacked-area visual-
ization approach.

B. Procedure and user study

This design study aims to identify which visualization/-s
is/are the most appropriate ones for visualizing and identifying
the interdependencies of an MCS. For this purpose, a crowd-
sourced study is designed to evaluate different visualization
approaches. The visualizations are evaluated using a bike
example as a common MCS use case that most people are
aware of and understand. In particular, the bike has a small
number of components, and strong interactions between these
components are present; therefore, the bike is an appropriate
MCS. In particular, we focus on two specific components
based on domain experts’ knowledge: chain and chain-ring.
Moreover, we used resorted synthetic data to describe the de-
terioration process and interdependencies between components
based on the mathematical model introduced in [6].

In the design study, each participant had to evaluate only
one specific visualization in detail, which has been assigned
randomly, thus avoiding the presence of biased data [25].
Moreover, the order of answers to all questions within the
design study was randomized. As a first step, a description
and purpose of the study altogether with the information
about confidentiality regarding the data are provided to each
participant. Second, the participant is asked to answer some
demographic questions, such as expertise on visualization or
education level. Further demographic information is collected
directly from the platform used to conduct the study. Third,
the MCS use case and the definition of interdependencies are
presented through short video animation. Next, the participant
performed the task to evaluate the assigned visualization
approach. This task was designed based on the suggestion from
Kittur et al. [26], thus motivating the participants to analyze
the visualizations accurately and prevent random answers.

The task was designed as follows: (1) a short description
of the visualizations was shown to the participant, (2) two
different scenarios of component deterioration over time and
performed maintenance actions using the corresponding vi-
sualization were shown to the participant. Next, the partic-
ipant is asked to analyze these scenarios in detail and try
to identify the interdependencies between components. As
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a next step, the participant is asked to rank the recognized
level of interdependencies. Finally, the participant is asked
to design a maintenance strategy for a distance ride of 10
000 km having a limited budget of 600 e. Whereby chain
costed 20 e and chain-ring 200 e. Next, we performed
a usability evaluation based on the System usability scale
framework [27]. Moreover, the participant is asked to provide
subjective feedback through a post-task questionnaire based on
NASA TLX [28] six dimensions of workload: mental demand,
physical demand, temporal demand, effort, frustration, and
perceived performance. Finally, to each participant, all three
approaches are shown, and the participant is asked to select
the approach that they would use to identify interdependencies
between components.

In total, 704 users participated in the crowd-sourced study.
530 (M=435, F=84, N/A=11) participants, age 18-65 were
approved. The approve rule is built based on the strategies pro-
vided by participants, thus considering only serious attempts.
For instance, strategies containing only random numbers were
rejected. As a result, 72 submissions were rejected. Moreover,
89 users returned their submission, i.e., they interrupted the
participation and did not submit the result. Finally, 13 partici-
pation were rejected from the platform for exceeding the time
limit, which was 45 minutes (m) by default. The participants
had experience with visual- and data analytic tools. Moreover,
all participants had experience in the industry and were well
educated (529 participants with at least a bachelor’s degree).
Participants needed 12 m and 42 seconds (s) on average
to analyze the heatmap approach successfully. Participants
successfully analyzed stacked-area visualization in 13 m and
42 s on average and the multi-line approach in 12 m and 50
s on average.

C. Evaluation of maintenance strategies

For the analysis, all valid strategies (non-crash strategies)
are considered and evaluated based on the mathematical model
introduced in [6]. To estimate the optimal timing (replace-
point detection) for maintenance, we estimated the average
deviation to the optimal replace-point for every maintenance
replacement entry with respect to provided strategies. In
this case, the best point is 0, which indicates no deviation;
respectively, maintenance was performed at optimal timing.
Consequently, positive deviation indicates that participants
replaced the component after the optimal timing exceeded,
thus indicating that the optimal timing was not recognized.
Negative deviation indicates that the participants performed
maintenance before the optimal timing was reached. Bar plots
with confidence intervals are used to visually quantify and
evaluate the results. This helps to easily identify and compare
the distributions’ mean and the confidence intervals. More-
over, the non-parametric Mann-Whitney U test [29] was used
as a statistical approach to estimate the difference between
distributions. Results with p-value < 0.05 are considered as
significant differences.

Fig. 4. Bike Chain: Estimated average deviation to change-point (optimal
timing) overall participants concerning each visualization approach.

Fig. 5. Bike Chainring: Estimated average deviation to change-point (optimal
timing) overall participants concerning each visualization approach.

IV. DISCUSSION OF RESULTS

In Fig. 4 and 5, results concerning optimal timing for both
chain and chain-ring are shown. Whereby 0 represents the
optimal deterioration time. The positive deviation indicates a
defensive approach (replacement performed after optimal tim-
ing), respectively, negative deviation indicates a more offensive
approach (replacements performed before optimal timing). In
this case, all three approaches are compared with each other.
As a result, the multi-line and heatmap approach show similar
behavior with respect to both components, i.e., chain and
chain-ring. Consequently, the stacked-are approach outper-
forms both approaches significantly, see confidence intervals.
Moreover, the Mann-Whitney U test results demonstrate the
significance of this result with p < 0.05. Furthermore, every
participant who analyzed a visualization approach in this
study was asked to provide qualitative feedback regarding
the identification level of interdependencies they manage to
identify as shown in Fig. 6.

The participant ranked the approaches between 0 and 5,
where 0 indicates that no interdependencies were identified
and 5 that strong interdependencies were obvious from the
corresponding approach. Correspondingly, participants who
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analyzed the stacked-area approach seem more confident that
they were able to identify interdependencies. These results
are statistically significant. In general, the results demonstrate
that the stacked-area visualization approach significantly out-
performs the other visualization approaches with respect to
optimal timing. In this regard, stacked-area visualization is a
more offensive approach compared to the other approaches.
Still, it is not clear what contributes to these early decisions,
and more in-depth research is needed. But one possible factor
could be the accumulated deterioration degree showed within
a stacked-area approach. This could trigger early decisions
and thus reaction on time. The stacked-area approach as an
offensive approach could be appropriate in sensitive settings,
where breakdown should be prevented due to safety or cost
demand. However, in the previous study [6], stacked-area
approaches showed the highest error rate (around 44%) with
respect to strategies that lead the system to crash. This
could be related to the background knowledge level of the
participants or the required training; however, there were no
significant results from this study in this regard. In particular,
the accumulated deterioration state shown as staked areas on
top of each other (multiple components) within a staked-
area approach could increase the distortion effects while
interpreting results within stacked-area visualization [30], thus,
leading to a higher error rate. Thus, our study delivered the
first evidence that visualization approaches could be used to
identify interdependencies in the context of PdM. We found
that the visualization approaches perform differently. More
research seems promising to identify the suitability of the
different visualization approaches for different PdM settings
and MCS modeling approaches.

Fig. 6. The results of subjective feedback with respect to interdependencies
are shown.

Predominantly, the evaluation of visualization approaches
for complex systems, such as MCSs is not a trivial process
due to the many factors influencing the process and users’
decisions. Factors, such as domain expertise on maintenance
or visualization approaches could lead to different results.
The results within this study with respect to the background
of participants show a trend, where the more experienced
the users are, the better they perform; however, the results
are not significant, and yet further research in this regard
remains feasible. Moreover, depending on the goal of business

concerning the sensitivity of the manufacturing process that
requires maintenance, different approaches might be suitable.
For instance, Gashi et al., [6] showed that the Multi-line
is a suitable approach to perform maintenance that avoids
downtime but does not necessarily perform at the optimal time.
In contrast, in this work, we showed that the stacked-area ap-
proach is appropriate when aiming for maintenance at optimal
timing. This leads to the conclusion that different perspectives
potentially lead to different results. As Plaisant [31] suggests,
it requires studying and manipulating data repetitively from
multiple perspectives over a long time in order to discover new
knowledge. Similarly, Roberts [32] encourages the analysis
of data from multiple views while using visualization ap-
proaches in order to avoid false conclusions or misinformation.
Therefore, researchers could be encouraged to consider these
results as a further avenue for future research. In general, this
research work demonstrated that simple visualizations could
identify the interdependencies concerning optimal timing. In
the future, we plan to explore more complex visualizations
and xAI approaches in terms of VA, which seem promising in
this regard.

V. CONCLUSION

This research work showed that visualization approaches
are suitable to identify interdependencies in the context of
PdM. Our key finding bases on a design study to analyze
and rank visualization approaches involving 530 participants.
The stacked-area approach turned out to be the best approach
in terms of optimal timing, thus, being a relevant approach
in more sensitive cases, where downtime should be avoided
due to safety or cost reasons. Finally, we discussed that the
context and business goals within a complex MCS impact the
selection of the appropriate visualization approach and that
more research is needed to inform the selection of visualization
approaches.

In this design study, participants had to generate strategies
for the short term, i.e., 10 000 km; therefore, in the future,
it will be interesting to compare these approaches in the long
term (longer than 10 000 km). Moreover, user interviews in
such a study could help understand user behavior regarding
maintenance decisions. Furthermore, we evaluated visualiza-
tion approaches using a simple MCS containing only two
components. In the future, an evaluation of these approaches
against a complex MCS (larger number of components) is
required. Furthermore, synthetic data are used to model the
scenarios for all three approaches; therefore, in the future,
evaluating these approaches using data from a real use case
could provide new insights. For this purpose, we plan to
integrate these approaches within a DSS and evaluate them
in a real industrial use case.
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