
Modelling a Fault-Tolerant Distributed Satellite System

Kashif Javed

Turku Centre for Computer Science (TUCS)

Department of Information Technologies

Abo Akademi University

Turku, FIN-20520, Finland

Kashif.Javed@abo.fi

Elena Troubitsyna

Department of Information Technologies

Abo Akademi University

Turku, FIN-20520, Finland
Elena.Troubitsyna@abo.fi

Abstract— Ensuring correctness of a complex distributed and

mode-rich collaborative satellite system is a challenging task

that requires formal modeling and verification. In this paper,

we propose a model of a distributed Attitude and Orbit

Control System. Mode transitions in such systems are

governed by a sophisticated synchronization procedure. We

demonstrate how to model and verify such a procedure in

order to ensure mode consistency.

Keywords-distributed mode-rich systems; satellite software; fault

tolerance; synchronization

I. INTRODUCTION

 Behavior of satellite systems is often structured in terms
of modes. Modes – mutually exclusive sets of system
behavior define different functional profiles of the system
[4,5]. An important problem associated with designing
mode-rich satellite systems is to ensure correctness of mode
transitions.

In this paper, we propose an approach to modeling and
verification of distributed Attitude and Orbit Control System
– D-AOCS [1,2]. D-AOCS is a typical example of a mode-
rich collaborative system. It consists of two independent
mode managers that should negotiate and coordinate their
actions. Collaboration between mode managers is not trivial
– faults of components might prevent the mode managers
from following the agreed course of actions. As a result new
negotiations would be initialized to achieve synchronization
under the new conditions.

The proper synchronization is paramount for ensuring
mode consistency. In general mode consistency can be seen
as a high-level guarantee of a proper functioning of a
distributed system deployed on the space craft. The complex
collaboration procedure precedes each mode transition step.

We demonstrate how to model and verify handshaking
protocol ensuring that modes are changed consistently. An
important part of our modeling is fault tolerance. We
demonstrate how to ensure consistency of not only nominal
but also backward mode transitions, i.e., transitions to the
degraded modes that are responsible for error recovery. The
novelty of the proposed approach is in treating fault
tolerance of collaborative systems as a problem of ensuring
mode consistency.

Section II explains the state-of-the-art of AOCS structure.
Section III presents AOCS architecture covering unit
manager, mode manager, and fault tolerance. Handshake

protocol is explained in detail in Section IV and the proposed
system design using handshake is discussed in Section V.
Finally, Section VI provides a brief summary of conclusions
and future work.

II. STATE-OF-THE-ART STRUCURE

Attitude and Orbit Control System (AOCS) is extensively

used in the design and development of modern satellites. The

major objective of an AOCS is to ensure controlled

movements of the satellites in order to maintain required

attitude and remain in the given orbit. As disturbance of the

atmosphere tends to change orientation of the satellites, there

is a serious need to continuously control and monitor its

attitude. A number of sensors are employed to collect data

for the purpose of controlling attitude. Appropriate corrective

measures are taken by the actuators to keep the right path

and orbit whenever there is change detected in the data sent

by the sensors. This requirement is very essential for

supporting needs of payload instruments as well as for the

fulfillment of satellite’s mission.

The top level schema of an AOCS is shown in Figure 1.

Figure 1: Top Level Schema of AOCS

The AOCS manager consists of three components (i.e.,

sensor data processing, control computation and actuator

commanding). Control computation part handles all the data

and measurements using state-of-the-art control algorithms

and gives commands to the actuators for ensuring correct

path and attitude. Different types of controllers are required

for completion of specific mission stages. Normally, two

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

control algorithms are used during the operational mode of

the satellites.

Each unit of the satellite has a unique status (i.e., free,

reserved, or locked) for its usage while avoiding conflicts

during reconfiguration [10]. An actuator, payload or sensor

remains free when it is idle in any mode. The reserved status

means that a sensor/actuator/payload is to be used shortly but

it is not yet ready. When any unit is allocated and is being

used for its required operation, then it is turned into the

locked status.

III. ARCHITECTURE

In this paper, we consider a distributed version of

Attitude and Orbit Control System. Attitude and Orbit

Control System (AOCS) [1] is a generic component of a

spacecraft. Behavior of AOCS is structured using the notion

of modes – mutually exclusive sets of system behavior. The

complexity of designing distributed AOCS lies in the fact

that mode management is decentralized, i.e., it is performed

by several mode managers. Distributed AOCS (D-AOCS)

has a complex architecture. It consists of AOCS Manager,

Unit Manager, Several Mode Managers and FDIR (Failure

Detection, Isolation and Recovery) Manager. AOCS

Manger deals with two controllers -- Control Pointing

Controller (CPC) and Fine Pointing Controller (FPC). The

purposes of CPC and FPC are to direct line of sight as well

as to provide coarse and fine accuracy. Unit level state

transitions and mode transitions are managed by Unit

Manager and Mode Manager respectively. FDIR Manager

ensures handling of branch state transition errors and

controller phase transition errors [2]. Two managers --

Mode Manager 1 (MM1) and Mode Manager 2 (MM2) are

responsible for the global mode logic of D-AOCS. The

architecture of Unit Manager and Mode Managers is

described below.

A. Unit Manager

The Unit Manager in D-AOCS organizes the internal
states of the units. The components of Unit Manager are
supervised by the Mode Manager. The controlled units
include Earth Sensor (ES), Sun Sensor (SS), Star Tracker
(STR), Global Positioning System (GPS), Reaction Wheel
(RW), Thruster (THR) and Payload Instrument (PLI). All
unit components are responsible for mode synchronization,
decision making on unit states, performing branch state
transitions and unit reconfiguration [4,5]. SS, STR, GPS,
RW and PLI provide data to the AOC Manager. RW and
THR execute the commands from AOC Manager. These
units are also responsible for detection and reporting the
branch state transition errors [1].

Every unit consists of two identical branches -- the

nominal and redundant ones. At any instance of time only

one branch is active. A unit branch in the ‘on’ state is

always assigned locked status and the unit branch in ‘off’

state has unlocked status. There are six states of unit

components -- on, off, coarse, fine, standby and science.

The internal states of ES, SS, STR, RW and THR are either

‘on’ or ‘off’. Three possible GPS’s operational states are

‘off’, ‘coarse’ and ‘fine’. PLI’s state can be in ‘off’,

‘standby’ or ‘science’ [3].

B. Mode Managers

The global mode transitions are managed by the two
mode managers -- MM1 and MM2. Each mode manager’s
controls different units. Each mode manager is responsible
for checking the preconditions of mode transitions,
managing the controllers and the units, and initiating and
completing the mode transitions. The global modes are
correspondingly Off, Standby, Safe, Nominal, Preparation,
and Science [10]. Below we give a brief description of each
mode:

Off: After the central data management unit completes

booting of AOCS software, the satellite instantly goes into

the off mode.

Standby: The process of separation of the satellite from

the launcher is monitored during the standby mode.

Safe: After successful separation from the launcher, the

satellite switches to the safe mode. The satellite obtains a

stable attitude and the CPC is activated.

Nominal: After transition to this mode, FPC is activated,

while CPC is switched off. PLI is actoviated to provide

measurements for FPC.

Preparation: FPC is achieved in the preparation mode

and PLI gets ready to perform the necessary tasks.

Science: PLI carries out the required tasks and stays in

science mode till the desired tasks are completed.

MM1 and MM2 communicate with each other to

synchronize on mode transitions that are performed in

parallel. Let us describe the scenario of mode transitions.

After a mode transition to off or standby is done, every unit

branch goes to off state and both controllers are idle. After

that, both mode managers communicate with each other. If

there is no error then transition to the next mode is executed.

When the mode is switched to safe, the selected branches of

ES, SS and RW are turned to ‘on’ state and only FPC

remains idle. Both mode managers send messages to inform

each other that no error occured in the given modes. After a

handshake, they perform the mode transition to the nominal

mode. In a mode transition to the nominal mode, the

required branches of RW, STR and THR are put to the ‘on’

state and GPS is put into the‘coarse’ state. The messages

sent and received by the mode managers notify each mode

manager that no unit or controller error has occured. Then

the preparation mode is reached, the concerned branches of

RW, STR & THR are in the ‘on’ state and GPS & PLI are in

the ‘fine’ state and ‘standby’ state respectively. They ensure

the correctness of the modes in MM1 and MM2 and make a

transition to the science mode. In case of the science mode,

the preffered branch of PLI operates with ‘science’ state. All

other units keep their previous state. When a mode

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

transition goes to nominal, preparation or science mode,

only CPC remains idle. MM1 and MM2 both inform each

other regarding success of mode transition.

C. Fault Tolerance

Fault tolerance aims at providing the system with the
means to continue its function in spite of errors of its
components. In the D-AOCS backward error recovery is
adopted, i.e., if an error occurs, the system gets back to
some previous state to handle the error. The roll back error
recovery is implemented by the backward mode transitions.
The mode roll-back depends on branch state transition
errors and phase transition errors.

There are different aspects relating to the branch state
transition errors. When a branch state transition error on the
redundant branch of ES, RW or SS occurs and there is no
error in the remaining redundant branches, then the mode
goes back to off mode. If the redundant branch of GPS,
STR or THR gets corrupted, it results a mode transition to
safe. A mode transition to nominal takes place when there is
a branch state transition error on the redundant branch of
PLI.

The important error checks are incorporated to deal with
the attitude or phase transitions. When the current mode is
safe and a non-negligible phase error is produced, it results
in a mode transition to off. If the phase error is generated in
the nominal, then it goes back to safe. In case the existing
mode is preparation and a phase error occurs, a mode
transition to nominal takes place. A mode transition to
preparation takes place when a phase error occurs in the
science mode [3].

In case of unit reconfiguration, a branch state transition
error on the nominal branch of any unit causes a unit
reconfiguration if there is no branch state transition error on
the redundant branches of that particular unit.

If the mode task is not completed within a given time
interval or multiple errors occur in the unit branches and
controller phases, then timeout signal is produced for safe
condition.

IV. HANDSHAKE PROTOCOL

Handshaking is a process in which connection is

established among two processes and information is

transferred from one process to another without the need for

human involvement to set constraints. MM1 and MM2 do

handshake with each other to update the condition of their

modes. Different scenarios of handshake protocol are

explained covering the following key points:

If all conditions of unit states and controller phases

within each mode of MM1 and MM2 fulfill their

requirements, then mode managers pass the ‘no error’

message to notify that the mode is in the error-free state. It

results in the forward mode transition, i.e., the mode

manager switches the current mode to the next mode as

described in Section III.

If an error occurs during a mode transition of MM1 and

there is no error in the mode of MM2, then MM1 sends an

‘error’ message to MM2. MM1 executes error recovery, i.e.,

starts backward mode transtion according to the Section III.

Until the error recovery of MM1 is not completed, MM2

keeps on waiting. After the successful error recovery, both

mode managers proceed to the next mode.

When an error occurs only in the mode of MM2, then

MM1 receives an ‘error’ message from MM2. MM1 waits

until error has been recovered in MM2. The mode managers

switch to next mode after receiving the information from

MM2 that the error is recoverd.

Upon receiving an ‘error’ message from MM1 and MM2

simultaneously, error recovery starts in both mode managers

as mentioned in Section III. The backward mode transitions

are executed in MM1 and MM2. After achieving the

successful recovery, mode managers move to the next

mode.

There are two types of errors -- the unit branch state

transition errors and controller phase transition errors.

Handshaking algorithm for handling such type of errors is

quite complex as specified below:

void handshake(int u_MM1, int u_MM2,int c_MM1,int c_MM2) {

// ‘u’ denotes unit error flag and ‘c’ denotes controller error flag

 if (u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==0) {

 /* The associated code illustrates that no error occurs in the unit

branchs of ES, SS, RW, GPS, STR, THR or PLI and controller

phase of CPC or FPC in the given mode of MM1 and MM2. It

accounts the forward mode transition according to the Section

III. */}

elseif(u_MM1==1&&u_MM2==0&&c_MM1==0&&c_MM2==0) {

 /* The associated code illustrates that an error occurs in the unit

branch of ES, SS, RW, GPS, STR, THR or PLI in the given

mode of MM1. It accounts the backward mode transition

according to the Section III. MM2 stays on waiting until an

error is recovered. */}

elseif(u_MM1==0&&u_MM2==1 &&c_MM1==0&&c_MM2==0) {

 /* The associated code illustrates that an error occurs in the unit

branch of ES, SS, RW, GPS, STR, THR or PLI in the given

mode of MM2. It accounts the backward mode transition

according to the Section III. MM1 stays on waiting until an

error is recovered. */}

elseif(u_MM1==1&&u_MM2==1&&c_MM1==0&&c_MM2==0) {

/* The associated code illustrates that an error occurs in the unit

branch of ES, SS, RW, GPS, STR, THR or PLI in the given

mode of both mode managers. MM1 and MM2 account the

backward mode transition according to the Section III. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==0) {

/* The associated code illustrates that an error occurs in the

controller phase of CPC or FPC in the given mode of MM1. It

accounts the backward mode transition according to the Section

III. MM2 stays on waiting until an error is recovered. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==1) {

/* The associated code illustrates that an error occurs in the

controller phase of CPC or FPC in the given mode of MM2. It

accounts the backward mode transition according to the Section

III. MM1 stays on waiting until an error is recovered. */}

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==1) {

/* The associated code illustrates that an error occurs in the

controller phase of CPC or FPC in the given mode of both mode

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

managers. MM1 and MM2 account the backward mode

transition according to the Section III. */}

else {

/* The associated code describes that it is an invalid condition.

Program is terminated.*/} }

V. PROPOSED SYSTEM DESIGN USING HANDSHAKE

The proposed system design has been implemented

using SystemC. SystemC can be used at system level for

functional verification. The framework also supports event

driven simulation environments [6]. It offers application

program interface for transaction based verification,

handling exceptions and verification tasks [7]. The system

model consists of six defined modes named as A (Off), B

(Standby), C (Safe), D (Nominal), E (Preparation) and F

(Science). Three different operations have been

implemented (i.e., forward mode transitions, backward

mode transitions, and unit reconfiguration). The flow chart

given in Figure 3 describes detailed design structure for only

one transition from Mode E to Mode F of the system. When

the system reaches to Mode E, it checks the error in the

Mode E of both mode managers. Figure 3 shows the

operations regarding error condition according to the

scenarios and backward mode transitions according to the

error types (Unit branch error (redundant/nominal) and

controller phase error) they are discussed in Section IV and

Section III respectively.

After necessary declarations of modes, units and

controllers, the verification of the system are described in

the following sections.

A. Verification of Forward Mode Transition

Figure 2: Forward Mode Transitions

When all the units are in off state, controller phases are
in the idle phase, and no unit reconfiguration is in progress,
then current mode is A in MM1 and MM2. The
unit/controller error flag is set to low and mode managers
exchange the information (‘no error’ message) of error-free
mode status. After this, the mode moves forward to the next
mode (i.e., Mode B) in MM1 and MM2. Hence, when all
conditions of unit states and controller phases within each
mode of each manager fulfill their requirements, mode
managers update each other about the error-free mode
conditions. Then the current mode switches to the next
mode within each mode manager until it completes its
operation after Mode F. Figure 2 illustrates the implemented
procedure that corresponds to the forward mode transition
for MM1 and MM2.

B. Verification of the Steps in the Backward Mode

Transition

The backward mode transition depends on the two types
of errors (i.e., unit branch state transition error and
controller phase transition error). Handshaking procedure
for handling these errors is given below.

1) Verification of the Steps in Unit Branch State

Transition Error

Following part of the code segment describes the unit

branch transition error in case of Mode E as shown in

Figure 2. If there is an error in ES, SS or RW of

MM1, MM1 switches to Mode A. If an error occurs

in GPS, THR or STR of MM2, MM2 return to Mode

C. However, if PLI gets an error in both mode

managers, MM1 and MM2 both go back to Mode D.

Before backward transition to the desired mode, the

messages exchange information between the effected

mode manager and the error-free mode manager to

acknowledge the error status.
// Variable declarations

int FPC1,CPC1,FPC2,CPC2,u_MM1,c_MM1,u_MM2,c_MM2;

// unit states

const int off=0;const int on=1;const int coarse=2;

const int fine=3;const int unit=0;const int Standby=4;

const int Science=5;const int idle=0;const int run=1;

const int A=1;const int B=2;const int C=3;

const int D=4;const int E=5;const int F=6;

/* Each unit has two branches i.e., Nominal and Redundant,

here we deal with redundant branch of the units. */

int ES1,SS1,GPS1,STR1,RW1,THR1,PLI1; // MM1 Units

int ES2,SS2,GPS2,STR2,RW2,THR2,PLI2; // MM2 Units

 if(mode==E) {// Preparation Mode

 if((ES1!=off || SS1!=off || RW1!=on) && STR1==on &&

GPS1==fine && THR1==on && PLI1== standby &&

CPC1==idle && FPC1==run && ES2==off &&

SS2==off && RW2==on && STR2==on &&

GPS2==fine && THR2==on && PLI2== standby &&

CPC2==idle && FPC2==run){

 u_MM1=1;c_MM1=0;

 u_MM2=0;c_MM2=0;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else if(ES1==off && SS1==off && RW1==on &&

STR1==on && GPS1==fine && THR1==on &&

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

PLI1==standby && CPC1==idle && FPC1==run &&

ES2==off && SS2==off && RW2==on && (STR2!=on ||

GPS2!=fine || THR2!=on) && PLI2==standby &&

CPC2==idle && FPC2==run){

 u_MM1=0;c_MM1=0;

 u_MM2=1;c_MM2=0;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else if(ES1==off && SS1==off && RW1==on &&

STR1==on && GPS1==fine && THR1==on &&

PLI1!=standby && CPC1==idle && FPC1==run &&

ES2==off && SS2==off && RW2==on && STR2==on

&& GPS2==fine && THR2==on && PLI2!=standby &&

CPC2==idle && FPC2==run){

 u_MM1=1;c_MM1=0;

 u_MM2=1;c_MM2=0;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else{

 /* The associated code describes that no transitions

take place. */ } }

 else cout<<" Program is terminated.";

2) Verification of the Steps in Controller Phase

Transition Errors

When CPC and FPC do not fulfill the requirement of
mode of any mode manager, the error flag is set to
high and the affected mode manager is downgraded
to previous mode after utilizing the handshake
protocol by sending message to error-free mode
manager. In case the phase of controllers in the given
mode of both mode managers is corrupted, then both
managers do the backward mode transition at once
after acknowledging each other. The following
portion of the code represents the scenario of phase
transition for Mode E as illustrated in Figure 2.

//Variables are declared in the previous section.

if(mode==E) {// Preparation Mode

 if(ES1==off && SS1==off && RW1==on &&

STR1==on && GPS1==fine && THR1==on &&

PLI1==standby && CPC1!=idle && FPC1==run &&

ES2==off && SS2==off && RW2==on && STR2==on

&& GPS2==fine && THR2==on && PLI2==standby &&

CPC2==idle && FPC2==run){

 u_MM1=0;c_MM1=1;

 u_MM2=0;c_MM2=0;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else if(ES1==off && SS1==off && RW1==on &&

STR1==on && GPS1==fine && THR1==on &&

 PLI1==standby && CPC1==idle && FPC1==run &&

ES2==off && SS2==off && RW2==on && STR2==on

&& GPS2==fine && THR2==on && PLI2==standby &&

CPC2==idle && FPC2!=run){

 u_MM1=0;c_MM1=0;

 u_MM2=0;c_MM2=1;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else if(ES1==off && SS1==off && RW1==on &&

STR1==on && GPS1==fine && THR1==on &&

 PLI1==standby && CPC1==idle && FPC1!=run &&

ES2==off && SS2==off && RW2==on && STR2==on

 && GPS2==fine && THR2==on && PLI2==standby &&

CPC2!=idle && FPC2==run){

 u_MM1=0;c_MM1=1;

 u_MM2=0;c_MM2=1;

 /* The remaining part of the code, by calling the

handshake protocol function on the basis of unit and

controller error flag, is mentioned in Section IV.*/}

 else{

 /* The associated code describes that no transitions

take place. */ } }

 else cout<<" Program is terminated.";

C. Verification of the Steps in Unit Reconfiguration

If error exists on nominal unit branch at any mode of

MM1 or MM2, then it is replaced by redundant unit branch

in the given mode of mode manager. The unit

reconfiguration is done to complete the remaining operation

of the system. Unit reconfiguration is, however, a burden on

the system and takes some time while switching from

nominal branch to redundant branch of the unit. In case of

the nominal unit branch in the given mode of both mode

managers is corrupted, then unit reconfiguration is done in

both mode manager after exchanging the information

between the mode managers regarding unit reconfiguration.

The following piece of the code shows the scenario of
unit reconfiguration for Mode E as shown in Figure 2.

//Variables are declared in the previous section. In reconfiguration

module, we also deal with nominal branch of the units. So, both

branches of the unit are declared separately.

//Nominal branches of MM1 and MM2

int N_ES1, N_SS1, N_RW1, N_GPS1, N_STR1, N_THR1, N_PLI1;

int N_ES2, N_SS2, N_RW2, N_GPS2, N_STR2, N_THR2, N_PLI2;

//Redundant branches of MM1 and MM2

int R_ES1, R_SS1, R_RW1, R_GPS1, R_STR1, R_THR1, R_PLI1;

int R_ES2, R_SS2, R_RW2, R_GPS2, R_STR2, R_THR2, R_PLI2;

if (mode==E) { // Preparation Mode

if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off &&

R_SS1==off && R_RW1==on && N_ES2==off && N_SS2==off

&& N_RW2==on && R_ES2==off && R_SS2==off &&

R_RW2==on) {

 u_MM1=1;c_MM1=0;

 u_MM2=0;c_MM2=0;

 /* The remaining part of the code, by calling the handshake

protocol function on the basis of unit and controller error flag, is

mentioned in Section IV.*/}

else if(N_GPS1==fine && N_STR1==on && N_THR1==on &&

N_PLI1==standby && R_GPS1==fine && R_STR1==on &&

R_THR1==on && R_PLI1==standby && (N_GPS2!=fine ||

N_STR2!=on || N_THR2!=on || N_PLI2!=standby) &&

R_GPS2==fine && R_STR2==on && R_THR2==on &&

R_PLI2==standby) {

 u_MM1=0;c_MM1=0;

 u_MM2=1;c_MM2=0;

 /* The remaining part of the code, by calling the handshake

protocol function on the basis of unit and controller error flag, is

mentioned in Section IV.*/}

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off

&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off

|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on

) { u_MM1=1;c_MM1=0;

 u_MM2=1;c_MM2=0;

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

Figure 3: System flow chart for Mode E to Mode F

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

 /* The remaining part of the code, by calling the handshake

protocol function on the basis of unit and controller error flag, is

mentioned in Section IV.*/}

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off

&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off

|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on

) { u_MM1=1;c_MM1=0;

 u_MM2=1;c_MM2=0;

 /* The remaining part of the code, by calling the handshake

protocol function on the basis of unit and controller error flag, is

mentioned in Section IV.*/}

else{

/* The associated code describes that no transition takes place.

*/ } }
else cout<<" Program is terminated.";}

Our verification efforts are focused on checking
correctness of mode syncornization and verification of the
proposed collaboration scheme. To obtain quantitative
measures of the performance of the discussed protocol we
would need to further refine our specification and to
integrate model of hardware platform in the loop. We are
planning to perform quantitative evaluation as a part of the
future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated how to model and verify
distributed satellite systems with complex mode transition
logic. Our approach is validated by a case study – design of
a distributed Attitude and Orbit Control System.

The proposed system has been implemented in SystemC
language. SystemC specification can be easily interfaced
with various model checking techniques to perform formal
verification. The work presented in this paper extends our
previous work done on modeling centralized mode-rich
system. In the current approach, we have put the main focus
on mode synchronization aspect and demonstrated how to
achieve mode consistency via handshaking protocol.

Our work complements research done on formal
modeling of mode-rich satellite systems. The formal
modeling proposed by Iliasov et al. [8,9] focused on proof-
based verification of centralized AOCS. Formal modeling of
the distributed architecture presented in our paper is a
completely novel aspect.

As a future work, we are planning to investigate how to
interface architectural modeling with our design approach.

REFERENCES

[1] “DEPLOY Work Package 3 - Software Requirements Document for
Distributed System for Attitude and Orbit Control for a Single
Spacecraft”, Space Systems Finland, Ltd., June 2011[retrieved:
November, 2011].

[2] “DEPLOY Work Package 3 - Attitude and Orbit Control System
Software Requirements Document”, Space Systems Finland, Ltd.,
December 2010 [retrieved: January, 2012].

[3] J. Kashif, and E. Troubitsyna, "Designing a Fault-Tolerant Satellite
System in SystemC", ICONS 2012, The Seventh International
Conference on Systems, XPS Press,
pp. 49-54, March 2012.

[4] M. Heimdahl, and N. Leveson, “Completeness and Consistency in
Hierarchical State-Based Requirements”, IEEE Transactions on
Software Engineering, Vol.22, No. 6, pp. 363-377, June 1996.

[5] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese,
“Analyzing Software Specifications for Mode Confusion Potential”,
Proceedings of Workshop on Human Error and System Development,
C.W. Johnson, Editor, Glasgow, Scotland, pp. 132-146, March 1997.

[6] N. Blanc, D. Kroening, and N. Sharygina, “Scoot: A Tool for the
Analysis of SystemC Models”. TACAS'08/ETAPS'08 Proceedings of
the Theory and practice of software, 14th international conference on
Tools and algorithms for the Construction and Analysis of Systems,
Springer-Verlag, Berlin, Heidelberg, pp. 467–470, 2008.

[7] L. Singh, and L. Drucker, “Advanced Verification Techniques: A
SystemC Based Approach for Successful Tapeout”, Kluwer
Academic Publishers, Springer, 2004.

[8] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, D. Ilic, and T. Latvala, “Developing Mode-Rich
Satellite Software by Refinement in Event B”. In: Proc.of FMICS
2010, the 15th International Workshop on Formal Methods for
Industrial Critical Systems, Lecture Notes for Computer Science,
Springer, 2010.

[9] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K.
Varpaaniemi, P. Väisänen, D. Ilic, and T. Latvala, “Verifying Mode
Consistency for On-Board Satellite Software”. In Proc. of
SAFECOMP 2010, The 29th International Conference on Computer
Safety, Reliability and Security, September 14-17, Vienna, Austria,
Lecture Notes for Computer Science, Springer, September 2010.

[10] “DEPLOY deliverable D20 – Pilot Deployment in the Space Sector”,
Space Systems Finland, Ltd., January 2010 [retrieved: March, 2012].

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-206-6

COLLA 2012 : The Second International Conference on Advanced Collaborative Networks, Systems and Applications

