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Abstract— Ensuring correctness of a complex distributed and 

mode-rich collaborative satellite system is a challenging task 

that requires formal modeling and verification. In this paper, 

we propose a model of a distributed Attitude and Orbit 

Control System. Mode transitions in such systems are 

governed by a sophisticated synchronization procedure. We 

demonstrate how to model and verify such a procedure in 

order to ensure mode consistency. 

Keywords-distributed mode-rich systems; satellite software; fault 

tolerance; synchronization 

I.  INTRODUCTION 

 Behavior of satellite systems is often structured in terms 
of modes. Modes – mutually exclusive sets of system 
behavior define different functional profiles of the system 
[4,5]. An important problem associated with designing 
mode-rich satellite systems is to ensure correctness of mode 
transitions.  

In this paper, we propose an approach to modeling and 
verification of distributed Attitude and Orbit Control System 
– D-AOCS [1,2]. D-AOCS is a typical example of a mode-
rich collaborative system. It consists of two independent 
mode managers that should negotiate and coordinate their 
actions. Collaboration between mode managers is not trivial 
– faults of components might prevent the mode managers 
from following the agreed course of actions. As a result new 
negotiations would be initialized to achieve synchronization 
under the new conditions.   

The proper synchronization is paramount for ensuring 
mode consistency. In general mode consistency can be seen 
as a high-level guarantee of a proper functioning of a 
distributed system deployed on the space craft. The complex 
collaboration procedure precedes each mode transition step.  

We demonstrate how to model and verify handshaking 
protocol ensuring that modes are changed consistently. An 
important part of our modeling is fault tolerance. We 
demonstrate how to ensure consistency of not only nominal 
but also backward mode transitions, i.e., transitions to the 
degraded modes that are responsible for error recovery. The 
novelty of the proposed approach is in treating fault 
tolerance of collaborative systems as a problem of ensuring 
mode consistency.  

Section II explains the state-of-the-art of AOCS structure. 
Section III presents AOCS architecture covering unit 
manager, mode manager, and fault tolerance. Handshake 

protocol is explained in detail in Section IV and the proposed 
system design using handshake is discussed in Section V. 
Finally, Section VI provides a brief summary of conclusions 
and future work.    

II. STATE-OF-THE-ART STRUCURE 

Attitude and Orbit Control System (AOCS) is extensively 

used in the design and development of modern satellites. The 

major objective of an AOCS is to ensure controlled 

movements of the satellites in order to maintain required 

attitude and remain in the given orbit. As disturbance of the 

atmosphere tends to change orientation of the satellites, there 

is a serious need to continuously control and monitor its 

attitude. A number of sensors are employed to collect data 

for the purpose of controlling attitude. Appropriate corrective 

measures are taken by the actuators to keep the right path 

and orbit whenever there is change detected in the data sent 

by the sensors. This requirement is very essential for 

supporting needs of payload instruments as well as for the 

fulfillment of satellite’s mission. 

The top level schema of an AOCS is shown in Figure 1. 

 

 
 

Figure 1: Top Level Schema of AOCS 

 

The AOCS manager consists of three components (i.e., 

sensor data processing, control computation and actuator 

commanding). Control computation part handles all the data 

and measurements using state-of-the-art control algorithms 

and gives commands to the actuators for ensuring correct 

path and attitude. Different types of controllers are required 

for completion of specific mission stages. Normally, two 
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control algorithms are used during the operational mode of 

the satellites.  

Each unit of the satellite has a unique status (i.e., free, 

reserved, or locked) for its usage while avoiding conflicts 

during reconfiguration [10]. An actuator, payload or sensor 

remains free when it is idle in any mode. The reserved status 

means that a sensor/actuator/payload is to be used shortly but 

it is not yet ready. When any unit is allocated and is being 

used for its required operation, then it is turned into the 

locked status.  

III. ARCHITECTURE 

In this paper, we consider a distributed version of 

Attitude and Orbit Control System. Attitude and Orbit 

Control System (AOCS) [1] is a generic component of a 

spacecraft. Behavior of AOCS is structured using the notion 

of modes – mutually exclusive sets of system behavior.  The 

complexity of designing distributed AOCS lies in the fact 

that mode management is decentralized, i.e., it is performed 

by several mode managers. Distributed AOCS (D-AOCS) 

has a complex architecture. It consists of AOCS Manager, 

Unit Manager, Several Mode Managers and FDIR (Failure 

Detection, Isolation and Recovery) Manager. AOCS 

Manger deals with two controllers -- Control Pointing 

Controller (CPC) and Fine Pointing Controller (FPC).  The 

purposes of CPC and FPC are to direct line of sight as well 

as to provide coarse and fine accuracy. Unit level state 

transitions and mode transitions are managed by Unit 

Manager and Mode Manager respectively. FDIR Manager 

ensures handling of branch state transition errors and 

controller phase transition errors [2]. Two managers -- 

Mode Manager 1 (MM1) and Mode Manager 2 (MM2) are 

responsible for the global mode logic of D-AOCS.  The 

architecture of Unit Manager and Mode Managers is 

described below. 

A. Unit Manager 

The Unit Manager in D-AOCS organizes the internal 
states of the units. The components of Unit Manager are 
supervised by the Mode Manager. The controlled units 
include Earth Sensor (ES), Sun Sensor (SS), Star Tracker 
(STR), Global Positioning System (GPS), Reaction Wheel 
(RW), Thruster (THR) and Payload Instrument (PLI). All 
unit components are responsible for mode synchronization, 
decision making on unit states, performing branch state 
transitions and unit reconfiguration [4,5]. SS, STR, GPS, 
RW and PLI provide data to the AOC Manager. RW and 
THR execute the commands from AOC Manager. These 
units are also responsible for detection and reporting the 
branch state transition errors [1]. 

Every unit consists of two identical branches -- the 

nominal and redundant ones. At any instance of time only 

one branch is active. A unit branch in the ‘on’ state is 

always assigned locked status and the unit branch in ‘off’ 

state has unlocked status. There are six states of unit 

components -- on, off, coarse, fine, standby and science. 

The internal states of ES, SS, STR, RW and THR are either 

‘on’ or ‘off’. Three possible GPS’s operational states are 

‘off’, ‘coarse’ and ‘fine’. PLI’s state can be in ‘off’, 

‘standby’ or ‘science’ [3]. 

B. Mode Managers 

The global mode transitions are managed by the two 
mode managers -- MM1 and MM2.  Each mode manager’s 
controls different units. Each mode manager is responsible 
for checking the preconditions of mode transitions, 
managing the controllers and the units, and initiating and 
completing the mode transitions. The global modes are 
correspondingly Off, Standby, Safe, Nominal, Preparation, 
and Science [10].  Below we give a brief description of each 
mode:  

Off: After the central data management unit completes 

booting of AOCS software, the satellite instantly goes into 

the off mode. 

Standby: The process of separation of the satellite from 

the launcher is monitored during the standby mode. 

Safe: After successful separation from the launcher, the 

satellite switches to the safe mode. The satellite obtains a 

stable attitude and the CPC is activated. 

Nominal: After transition to this mode, FPC is activated, 

while CPC is switched off. PLI is actoviated to provide  

measurements for  FPC. 

Preparation: FPC is achieved in the preparation mode 

and PLI gets ready to perform the necessary tasks. 

Science: PLI carries out the required tasks and stays in 

science mode till the desired tasks are completed. 

 

MM1 and MM2 communicate with each other to 

synchronize on mode transitions that are performed in 

parallel. Let us describe the scenario of mode transitions. 

After a mode transition to off or standby is done, every unit 

branch goes to off state and both controllers are idle. After 

that, both mode managers communicate with each other. If 

there is no error then transition to the next mode is executed. 

When the mode is switched to safe, the selected branches of 

ES, SS and RW are turned to ‘on’ state and only FPC 

remains idle. Both mode managers send messages to inform 

each other that no error occured in the given modes. After a 

handshake, they perform the mode transition to the nominal 

mode. In a mode transition  to the nominal mode, the 

required branches of RW, STR and THR are put to the ‘on’ 

state and GPS is put into the‘coarse’ state. The messages 

sent and received by the mode managers notify each mode 

manager that no unit or controller error has occured. Then 

the preparation mode is reached, the concerned branches of 

RW, STR & THR are in the ‘on’ state and GPS & PLI are in 

the ‘fine’ state and ‘standby’ state respectively. They ensure 

the correctness of the modes in MM1 and MM2 and make a 

transition to the science mode. In case of the science mode, 

the preffered branch of PLI operates with ‘science’ state. All 

other units keep their previous state. When a mode 
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transition goes to nominal, preparation or science mode, 

only CPC remains idle. MM1 and MM2 both inform each 

other regarding success of mode transition. 

C. Fault Tolerance 

Fault tolerance aims at providing the system with the 
means to continue its function in spite of errors of its 
components. In the D-AOCS backward error recovery is 
adopted, i.e., if an error occurs, the system gets back to 
some previous state to handle the error. The roll back error 
recovery is implemented by the backward mode transitions. 
The mode roll-back depends on branch state transition 
errors and phase transition errors.   

There are different aspects relating to the branch state 
transition errors. When a branch state transition error on the 
redundant branch of ES, RW or SS occurs and there is no 
error in the remaining redundant branches, then the mode 
goes back to off mode.  If the redundant branch of GPS, 
STR or THR gets corrupted, it results a mode transition to 
safe. A mode transition to nominal takes place when there is 
a branch state transition error on the redundant branch of 
PLI. 

The important error checks are incorporated to deal with 
the attitude or phase transitions. When the current mode is 
safe and a non-negligible phase error is produced, it results 
in a mode transition to off. If the phase error is generated in 
the nominal, then it goes back to safe. In case the existing 
mode is preparation and a phase error occurs, a mode 
transition to nominal takes place. A mode transition to 
preparation takes place when a phase error occurs in the 
science mode [3]. 

In case of unit reconfiguration, a branch state transition 
error on the nominal branch of any unit causes a unit 
reconfiguration if there is no branch state transition error on 
the redundant branches of that particular unit. 

If the mode task is not completed within a given time 
interval or multiple errors occur in the unit branches and 
controller phases, then timeout signal is produced for safe 
condition.  

IV. HANDSHAKE PROTOCOL 

Handshaking is a process in which connection is 

established among two processes and information is 

transferred from one process to another without the need for 

human involvement to set constraints.  MM1 and MM2 do 

handshake with each other to update the condition of their 

modes. Different scenarios of handshake protocol are 

explained covering the following key points:  

If all conditions of unit states and controller phases 

within each mode of MM1 and MM2 fulfill their 

requirements, then mode managers pass the ‘no error’ 

message to notify that the mode is in the error-free state. It 

results in the forward mode transition, i.e., the mode 

manager switches the current mode to the next mode as 

described in Section III.  

If an error occurs during a mode transition of MM1 and 

there is no error in the mode of MM2, then MM1 sends an 

‘error’ message to MM2. MM1 executes error recovery, i.e., 

starts backward mode transtion according to the Section III. 

Until the error recovery of MM1 is not completed, MM2 

keeps on waiting. After the successful error recovery, both 

mode managers proceed to the next mode. 

When an error occurs only in the mode of MM2, then 

MM1 receives  an ‘error’ message from MM2. MM1 waits 

until error has been recovered in MM2. The mode managers 

switch to next mode after receiving the information from 

MM2 that the error is recoverd.  

Upon receiving an ‘error’ message from MM1 and MM2 

simultaneously, error recovery starts in both mode managers 

as mentioned in Section III. The backward mode transitions 

are executed in MM1 and MM2. After achieving the 

successful  recovery, mode managers move to the next 

mode.  

There are two types of errors -- the unit branch state 

transition errors and controller phase transition errors. 

Handshaking algorithm for handling such type of errors is 

quite complex as specified below: 
 

void handshake(int u_MM1, int u_MM2,int c_MM1,int c_MM2) { 

// ‘u’ denotes unit error flag and ‘c’ denotes controller error flag 

 if (u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==0) { 

 /* The associated code illustrates that no error occurs in the unit 

branchs of ES, SS, RW, GPS, STR, THR or PLI and controller 

phase of CPC or FPC in the given mode of MM1 and MM2. It 

accounts the forward mode transition according to the Section 

III. */} 

elseif(u_MM1==1&&u_MM2==0&&c_MM1==0&&c_MM2==0) { 

 /* The associated code illustrates that an error occurs in the unit 

branch of ES, SS, RW, GPS, STR, THR or PLI in the given 

mode of MM1. It accounts the backward mode transition 

according to the Section III.  MM2 stays on waiting until an 

error is recovered. */} 

elseif(u_MM1==0&&u_MM2==1 &&c_MM1==0&&c_MM2==0) { 

 /* The associated code illustrates that an error occurs in the unit 

branch of ES, SS, RW, GPS, STR, THR or PLI in the given 

mode of MM2. It accounts the backward mode transition 

according to the Section III.  MM1 stays on waiting until an 

error is recovered. */} 

elseif(u_MM1==1&&u_MM2==1&&c_MM1==0&&c_MM2==0) { 

/* The associated code illustrates that an error occurs in the unit 

branch of ES, SS, RW, GPS, STR, THR or PLI in the given 

mode of both mode managers. MM1 and MM2 account the 

backward mode transition according to the Section III. */} 

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==0) { 

/* The associated code illustrates that an error occurs in the 

controller phase of CPC or FPC in the given mode of MM1. It 

accounts the backward mode transition according to the Section 

III.  MM2 stays on waiting until an error is recovered. */} 

elseif(u_MM1==0&&u_MM2==0&&c_MM1==0&&c_MM2==1) { 

/* The associated code illustrates that an error occurs in the 

controller phase of CPC or FPC in the given mode of MM2. It 

accounts the backward mode transition according to the Section 

III.  MM1 stays on waiting until an error is recovered. */} 

elseif(u_MM1==0&&u_MM2==0&&c_MM1==1&&c_MM2==1) { 

/* The associated code illustrates that an error occurs in the 

controller phase of CPC or FPC in the given mode of both mode 
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managers. MM1 and MM2 account the backward mode 

transition according to the Section III. */} 

else { 

/* The associated code describes that it is an invalid condition.       

Program is terminated.*/} }  

V.  PROPOSED SYSTEM DESIGN USING HANDSHAKE 

The proposed system design has been implemented 

using SystemC. SystemC can be used at system level for 

functional verification. The framework also supports event 

driven simulation environments [6]. It offers application 

program interface for transaction based verification, 

handling exceptions and verification tasks [7]. The system 

model consists of six defined modes named as A (Off), B 

(Standby), C (Safe), D (Nominal), E (Preparation) and F 

(Science). Three different operations have been 

implemented (i.e., forward mode transitions, backward 

mode transitions, and unit reconfiguration). The flow chart 

given in Figure 3 describes detailed design structure for only 

one transition from Mode E to Mode F of the system. When 

the system reaches to Mode E, it checks the error in the 

Mode E of both mode managers.  Figure 3 shows the 

operations regarding error condition according to the 

scenarios and backward mode transitions according to the 

error types (Unit branch error (redundant/nominal) and 

controller phase error) they are discussed in Section IV and 

Section III respectively.  

After necessary declarations of modes, units and 

controllers, the verification of the system are described in 

the following sections. 

A. Verification of Forward Mode Transition 

 
 

Figure 2: Forward Mode Transitions 

When all the units are in off state, controller phases are 
in the idle phase, and no unit reconfiguration is in progress, 
then current mode is A in MM1 and MM2. The 
unit/controller error flag is set to low and mode managers 
exchange the information (‘no error’ message) of error-free 
mode status. After this, the mode moves forward to the next 
mode (i.e., Mode B) in MM1 and MM2.  Hence, when all 
conditions of unit states and controller phases within each 
mode of each manager fulfill their requirements, mode 
managers update each other about the error-free mode 
conditions. Then the current mode switches to the next 
mode within each mode manager until it completes its 
operation after Mode F. Figure 2 illustrates the implemented 
procedure that corresponds to the forward mode transition 
for MM1 and MM2. 

B. Verification of the Steps in the Backward Mode 

Transition 

The backward mode transition depends on the two types 
of errors (i.e., unit branch state transition error and 
controller phase transition error). Handshaking procedure 
for handling these errors is given below.  

1) Verification of the Steps in Unit Branch State 

Transition Error 

Following part of the code segment describes the unit 

branch transition error in case of Mode E as shown in 

Figure 2. If there is an error in ES, SS or RW of 

MM1, MM1 switches to Mode A. If an error occurs 

in GPS, THR or STR of MM2, MM2 return to Mode 

C. However, if PLI gets an error in both mode 

managers, MM1 and MM2 both go back to Mode D. 

Before backward transition to the desired mode, the 

messages exchange information between the effected 

mode manager and the error-free mode manager to 

acknowledge the error status. 
// Variable declarations 

int FPC1,CPC1,FPC2,CPC2,u_MM1,c_MM1,u_MM2,c_MM2; 

// unit states 

const int off=0;const int on=1;const int coarse=2; 

const int fine=3;const int unit=0;const int Standby=4; 

const int Science=5;const int idle=0;const int run=1; 

const int A=1;const int B=2;const int C=3; 

const int D=4;const int E=5;const int F=6; 

/* Each unit has two branches i.e., Nominal and Redundant, 

here we deal with redundant branch of the units. */ 

int ES1,SS1,GPS1,STR1,RW1,THR1,PLI1; // MM1 Units 

int ES2,SS2,GPS2,STR2,RW2,THR2,PLI2; // MM2 Units 

 if(mode==E) {// Preparation Mode 

 if((ES1!=off || SS1!=off || RW1!=on) && STR1==on && 

GPS1==fine && THR1==on && PLI1== standby && 

CPC1==idle && FPC1==run && ES2==off && 

SS2==off && RW2==on && STR2==on && 

GPS2==fine && THR2==on && PLI2== standby && 

CPC2==idle && FPC2==run){ 

   u_MM1=1;c_MM1=0; 

   u_MM2=0;c_MM2=0; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else if(ES1==off && SS1==off && RW1==on && 

STR1==on && GPS1==fine && THR1==on && 
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PLI1==standby && CPC1==idle && FPC1==run && 

ES2==off && SS2==off && RW2==on && (STR2!=on || 

GPS2!=fine || THR2!=on) && PLI2==standby && 

CPC2==idle && FPC2==run){ 

   u_MM1=0;c_MM1=0; 

   u_MM2=1;c_MM2=0; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else if(ES1==off && SS1==off && RW1==on && 

STR1==on && GPS1==fine && THR1==on && 

PLI1!=standby && CPC1==idle && FPC1==run && 

ES2==off && SS2==off && RW2==on && STR2==on 

&& GPS2==fine && THR2==on && PLI2!=standby && 

CPC2==idle && FPC2==run){ 

   u_MM1=1;c_MM1=0; 

   u_MM2=1;c_MM2=0; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else{ 

  /* The associated code describes that no transitions 

take place. */ }  } 

 else  cout<<" Program is terminated."; 

 

2) Verification of the Steps in Controller Phase 

Transition Errors 

When CPC and FPC do not fulfill the requirement of 
mode of any mode manager, the error flag is set to 
high and the affected mode manager is downgraded 
to previous mode after utilizing the handshake 
protocol by sending message to error-free mode 
manager. In case the phase of controllers in the given 
mode of both mode managers is corrupted, then both 
managers do the backward mode transition at once 
after acknowledging each other. The following 
portion of the code represents the scenario of phase 
transition for Mode E as illustrated in Figure 2. 

//Variables are declared in the previous section. 

if(mode==E) {// Preparation Mode 

 if(ES1==off && SS1==off && RW1==on && 

STR1==on && GPS1==fine && THR1==on && 

PLI1==standby && CPC1!=idle && FPC1==run && 

ES2==off && SS2==off && RW2==on && STR2==on 

&& GPS2==fine && THR2==on && PLI2==standby && 

CPC2==idle && FPC2==run){ 

   u_MM1=0;c_MM1=1; 

   u_MM2=0;c_MM2=0; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else if(ES1==off && SS1==off && RW1==on && 

STR1==on && GPS1==fine && THR1==on &&  

 PLI1==standby && CPC1==idle && FPC1==run && 

ES2==off && SS2==off && RW2==on && STR2==on 

&& GPS2==fine && THR2==on && PLI2==standby && 

CPC2==idle && FPC2!=run){ 

   u_MM1=0;c_MM1=0; 

   u_MM2=0;c_MM2=1; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else if(ES1==off && SS1==off && RW1==on && 

STR1==on && GPS1==fine && THR1==on && 

 PLI1==standby && CPC1==idle && FPC1!=run && 

ES2==off && SS2==off && RW2==on && STR2==on  

 && GPS2==fine && THR2==on && PLI2==standby && 

CPC2!=idle && FPC2==run){ 

   u_MM1=0;c_MM1=1; 

   u_MM2=0;c_MM2=1; 

  /* The remaining part of the code, by calling the 

handshake protocol function on the basis of unit and 

controller error flag, is mentioned in Section IV.*/} 

 else{ 

  /* The associated code describes that no transitions 

take place. */ }  } 

 else  cout<<" Program is terminated."; 

C. Verification of the Steps in Unit Reconfiguration 

If error exists on nominal unit branch at any mode of 

MM1 or MM2, then it is replaced by redundant unit branch 

in the given mode of mode manager. The unit 

reconfiguration is done to complete the remaining operation 

of the system. Unit reconfiguration is, however, a burden on 

the system and takes some time while switching from 

nominal branch to redundant branch of the unit. In case of 

the nominal unit branch in the given mode of both mode 

managers is corrupted, then unit reconfiguration is done in 

both mode manager after exchanging the information 

between the  mode managers regarding unit reconfiguration. 

The following piece of the code shows the scenario of 
unit reconfiguration for Mode E as shown in Figure 2. 

 
//Variables are declared in the previous section. In reconfiguration  

module, we also deal with nominal branch of the units. So, both 

branches of the unit are declared separately. 

//Nominal branches of MM1 and MM2 

int N_ES1, N_SS1, N_RW1, N_GPS1, N_STR1, N_THR1, N_PLI1; 

int N_ES2, N_SS2, N_RW2, N_GPS2, N_STR2, N_THR2, N_PLI2; 

//Redundant branches of MM1 and MM2 

int R_ES1, R_SS1, R_RW1, R_GPS1, R_STR1, R_THR1, R_PLI1; 

int R_ES2, R_SS2, R_RW2, R_GPS2, R_STR2, R_THR2, R_PLI2; 

if (mode==E) { //  Preparation Mode    

if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off && 

R_SS1==off && R_RW1==on && N_ES2==off && N_SS2==off 

&& N_RW2==on && R_ES2==off && R_SS2==off && 

R_RW2==on ) { 

 u_MM1=1;c_MM1=0; 

                  u_MM2=0;c_MM2=0; 

 /* The remaining part of the code, by calling the handshake 

protocol function on the basis of unit and controller error flag, is 

mentioned in Section IV.*/} 

else if(N_GPS1==fine && N_STR1==on && N_THR1==on && 

N_PLI1==standby && R_GPS1==fine && R_STR1==on && 

R_THR1==on && R_PLI1==standby && (N_GPS2!=fine || 

N_STR2!=on || N_THR2!=on || N_PLI2!=standby) && 

R_GPS2==fine && R_STR2==on && R_THR2==on && 

R_PLI2==standby) { 

 u_MM1=0;c_MM1=0; 

 u_MM2=1;c_MM2=0; 

 /* The remaining part of the code, by calling the handshake 

protocol function on the basis of unit and controller error flag, is 

mentioned in Section IV.*/} 

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off 

&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off 

|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on 

) {    u_MM1=1;c_MM1=0; 

 u_MM2=1;c_MM2=0; 
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Figure 3: System flow chart for Mode E to Mode F 
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 /* The remaining part of the code, by calling the handshake 

protocol function on the basis of unit and controller error flag, is 

mentioned in Section IV.*/} 

else if((N_ES1!=off || N_SS1!=off || N_RW1!=on) && R_ES1==off 

&& R_SS1==off && R_RW1==on && (N_ES2==off || N_SS2!=off 

|| N_RW2!=on) && R_ES2==off && R_SS2==off && R_RW2==on 

) {    u_MM1=1;c_MM1=0; 

 u_MM2=1;c_MM2=0; 

 /* The remaining part of the code, by calling the handshake 

protocol function on the basis of unit and controller error flag, is 

mentioned in Section IV.*/} 

else{ 

/* The associated code describes that no transition takes place. 

*/ } } 
else  cout<<" Program is terminated.";} 
 

Our verification efforts are focused on checking 
correctness of mode syncornization and verification of the 
proposed collaboration scheme. To obtain quantitative 
measures of the performance of the discussed protocol we 
would need to further refine our specification and to 
integrate model of hardware platform in the loop. We are 
planning to perform quantitative evaluation as a part of the 
future work.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we demonstrated how to model and verify 
distributed satellite systems with complex mode transition 
logic. Our approach is validated by a case study – design of 
a distributed Attitude and Orbit Control System. 

The proposed system has been implemented in SystemC 
language. SystemC specification can be easily interfaced 
with various model checking techniques to perform formal 
verification. The work presented in this paper extends our 
previous work done on modeling centralized mode-rich 
system. In the current approach, we have put the main focus 
on mode synchronization aspect and demonstrated how to 
achieve mode consistency via handshaking protocol. 

Our work complements research done on formal 
modeling of mode-rich satellite systems. The formal 
modeling proposed by Iliasov et al. [8,9] focused on proof-
based verification of centralized AOCS. Formal modeling of 
the distributed architecture presented in our paper is a 
completely novel aspect. 

As a future work, we are planning to investigate how to 
interface architectural modeling with our design approach. 
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