
Powwow: A tool for collaborative software jam sessions

Paul Muntean, Damir Ismailović, Sebastian Paetzold and Bernd Bruegge

Department of Computer Science

Technische Universitaet Muenchen

Muenchen, Germany

{ paul.muntean | damir.ismailovic | sebastian.paetzold | bernd.bruegge }@cs.tum.edu

Abstract—The increasing time, complexity and cost of today
video game development projects demand for new software
tools capable to support the development of fast runnable

video game prototypes. This paper presents our conceptual
solution for building runnable video game prototypes. For
editing video game levels we added editing capabilities in a

mobile software tool. We present a mobile software tool which
supports editing video game levels. Furthermore, the tool
supports testing of previously designed levels with the help of

design recognition mechanisms that facilitate loading and
simulating of games. The tool supports distributed,
collaborative design sessions as it is based on a client server

software architecture. Game designers collaborate by sharing
their designs on a file server from where the files can be pulled
by other users for further editing. This tool is used for software

jam sessions in order to support local collaborative game level
design. In addition to the tool we present a tool evaluation in
this paper. We introduce software jam sessions in order to be

able to support local collaborative game level design. In the last
part of the paper, we evaluated our tool. The goal is to find out
if the working efficiency increases when developing video game

levels from scratch with our tool.

Keywords-Collaborative tool; map based video game; fast

prototyping; software jam sessions

I. INTRODUCTION

The usage of the paper and pencil to capture
requirements in the video game industry is causing delays
and engineering overhead during the development process
[1]. Thus, shifting deadlines and increasing costs negatively
influence the software development process.

When conceiving new game ideas, game designers
should not stick to traditional methods of capturing
requirements and then develop costly prototypes. We
foresee that game designers should have an easy to use tool
that they can carry easily around and that helps to test ideas
in a matter of minutes. Such kind of tool can link the
requirements elicitation phase to the implementation of fast
runnable video games. Users with no programming
experience should be able to use the tool right away.

When developing mobile applications and addressing
user experience there is a great need for creating many user
interfaces [11]. Every video frame of a game can be
abstracted to a single user interface. We think that a software
tool should have game editing features and an integrated
simulator that help to build fast runnable games at a fair cost
of time and effort.

 Nowadays, it does not exist a specialized process model
for mobile applications but it can be observed that large
development projects have moved away from a process-
intensive approach toward a more agile approach, with the
Scrum approach and other agile techniques, e.g., test driven
development, finding widespread acceptance [11].

With the emergence of new mobile devices and the
begining of the post-PC era [12] new posibilities arrise that
can help to speed up the development of runnable video
game prototypes. During a project requirements meeting
with the customer a software tool should facilitate not only
requirements elicitation support but also the development of
a runnable game prototypes. With such a tool we want to
close the gap between requirements elicitation and the
implementation by being able to develop fast runnable game
prototypes that help to get fast feedback from the customer.
In this regard, our solution is thought to be focused on a
specialized tool deployed on a mobile device accompanied
with the corresponding development technique.

We have identified three main aspects regarding our
conceptual solution:

Editing: The user should be able to place different
objects and elements on a grid map and immediate feedback
should be provided by the user interface.

We think that a grid is needed to help the user place the
game elements on predefined places on the grid. This
represents in our opinion the framework for other game
genres because a plane is common to: FPS, Soccer, car races
games, etc.

Collaborative design: Firstly it should be possible to
work collaboratively in near real time and in an asynchron
manner where designers collaborate and share ideas over a
file server. We call this approach distributed collaborative
design.

Secondly it should be possible for designers to work
collaboratively on the same prototype in real time. The users
should get instant feedback from others. By tailoring tasks
and profiting from shared team knowledge. We think that the
process of collaborative video game editing can be
performed more efficiently. We call this local collaborative
design.

Thirdly a development technique should be defined that
contains a set of rules and guidelines which do not constrain
the participants but rather help them to profit from the setting
type in which they are working. This technique should help
to achieve real time collaborative work. The second and third

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

aspects remain currently work in progress and we will
present only the achievements that our research has produced
until the moment of writing this paper.

Design recognition: The collaboratively designed levels
can be interpreted in different ways. We want to be able to
load them into the integrated game simulator and recognize
all previously designed game elements consistently. The goal
is to test the game playability.

The paper is structured as follows. The section 1 contains
the problems related to development of video games on
mobile devices and the description of our solution used to
achieve fast collaborative video game development. Related
work is presented in section 2. In section 3 we analyze the
development method and tools used in the Battlefield Wars
case study and in section 4 we present our developed tool.
Section 5 contains work in progress about software jam
sessions. In section 6 we evaluate the Powwow tool. Section
7 contains our conclusions and future work.

II. RELATED WORK

 At the moment of writing this paper there were only a

few apps in the App Store that support fast video game

prototype development.

 The Codea app, [2] offers the possibility to modify code

of the already deployed video game app. This approach

provides deep level control on how the app behaves during

user interaction with it. The PGC app, [3] is based on

predefined prototypes of video games. Haladjian et al. [5]

present a quick prototyping tool that is based on code

generation that can be used by users with no programming

experience to develop physics based game levels. The Battle

Map 2, [4] app is designed for building map based games

levels. This approach is interesting since it wants to be a

replacement for pencil and pen when conceiving new game

ideas.

 These tools lack collaborative work capabilities and

demand programming experience. Furthermore, they restrict

the user by providing a fixed number of game templates.

 Game designers that have no programming experience

should have the possibility to use a tool right away.

Limiting game designers with predefined game templates

constrains game creativity in our opinion. In order to

develop complex games, collaboration mechanisms should

be incorporated also in an app.
 The overall video game development is not suited for
typical software life cycle methods, such as the waterfall
model [6]. The stages of development are done in a serial
manner linking the project phases rigidly together
maintaining a high project risk during the whole project.
Thus, requirements updates are difficult to be performed. To
close the gap between user model and design model [9]
specialized tools that support informal communication are
needed [7]. We believe that a video game development
technique supported by tools can speed up the development
process of video games.
 The design at run time concept described in [8] is used in

the context of reconfigurable ubiquitous software systems.

The design at run time concept can be extended for

developing video games using an iterative developing

technique.

 In our approach we have assumed that the designers have

no programming experience so we choose not to expose

code-editing features as in the previously mentioned

example.

III. CASE STUDY: BATTLEFIELD WARS PROJECT

 The Battlefield Wars project had the goal of producing a

framework that allows light interaction between users and

map-based games and supporting development of multiuser

map-based video games.

 The goal of our Battlefield Wars case study was to find

out how real video game projects are developed by an

experienced team of video game developers from the point

of view of software tools used and development methods.

The first research question was, RQ1: Do developers use

specialized tools for developing map based video games? If

yes which ones? The second research question is the

following, RQ2: Which development technique or process

model do developers use? Is this adapted to the special

needs of video game projects?

 We have observed the team of developers during their

four weeks development work. We were for two days per

week with the developers and wrote down every detail

regarding tools and development methods used. Firstly we

have focused on how project tasks were addressed and

solved. Secondly we were concerned with inter-team

communication during the project and how this has

influenced the project outcome.

 The results of the case study revealed that at the

beginning of the project until the end the developers have

worked independently and without using specialized tools.

Figure 1. Battlefield Wars game

 Co-located Collaborative work was not possible since the

developers did not use any specialized tools that support

collaboration. The development team has used the waterfall

development model being forced to stick to a sequential

development style. The developers reported that it was

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

difficult to add new requirements to the product backlog and

that creativity was “damped” because of the incapacity of

team members to efficiently communicate and test their

ideas. The developers agreed to use in the future agile

development methods and they suggested that they need an

iterative and adaptive development technique tailored to

their needs.

IV. THE POWWOW TOOL

The Powwow tool prototype that we have developed is
based on our conceptual solution. It is available for iOS and
can be deployed on the iPad.

The editing features are available in hidden pop up
menus that appear by tapping on the buttons placed on the
two tab bars located in the upper and lower part of the
screen. The main aspects of the tool are highlighted with
numbers (1-7). Not to clutter the UI we have chosen to have
two fixed tool bars in the upper and lower part of the screen.

The editing, persisting, sharing and simulation features
are available by tapping on the buttons present on the two
toolbars. The number (1) indicates an initial map where
every tile of the map represents a second freely editable map.
In Fig. 2 we have a red dot, near number (1), representing a
house. Tapping the red house tile the user opens a second
“endless map view” where all the previously saved map
elements can be further on edited. The user has the
possibility to zoom in and out when editing so that the tiles
do not appear too small as in Fig 2. After pressing one of the
buttons located above the number (2) the user has the
possibility to select different layers of the map, to save,
delete, position, undo/redo and to center the map on the
screen.

After the saving process is done all previously added
elements are saved in a TMX meta-format file which can be
easily parsed and shared with other designers.

Figure 2. Powwow tool prototype

During the saving process a second file format is saved
representing the same game level. This file contains all game
elements, which are objects, in a serialized form. We used
this second format because of performance reasons, mainly
because it can be loaded and saved faster then the TMX file

format, which has to be parsed. We also use the second
object files for presentation reasons on the first map view
indicated with number (1).

After successfully loading the game level we observe that
all game elements from the TMX file are present on the
level. The level can be further on edited on other iPads that
run the Powwow app or with the help of the desktop program
Tiled [10]. Successful design recognition consists in the
TMX file parsing and the game objects instantiation.

Number (3) indicates the play button which triggers a sub
view when pressed, where we can select a previously saved
game level and play on it in order to find out if the game
logic fits our needs and decide if further editing is necessary.

The Powwow users indicated in Fig. 3 can push all
locally available game levels on the distributed server and
pull all the remote available levels on their iPad. The user
also has the possibility to erase every locally and remote
available file. The users can be located in different locations
and can collaborate by sharing these files. The files can be
further on edited and pushed on the distributed file server.
Every user has the possibility to play on the level that he is
currently editing. The only restriction is that the level has to
be previously stored on the iPad.

Number (4) represents a button with a cloud. When
pressing this button, a sub view appears which asks the user
if he wants to connect the Powwow tool with a distributed
file server, which offers file services. After accepting this
option another sub view appears offering the options of
pushing, pulling, local deletion, remote deletion and
disconnecting from the distributed server. At this stage of
development we have added all our options for collaboration
in this submenu.

The File Server, Fig. 3, files can be synchronized with
local file folders distributed on desktop PCs. This offers the
possibility to edit the prototype files on the PC by using the
program called Tiled [10]. In order to be able to collaborate
locally in real time without having to use a distributed file
server we want to add real time capabilities to the Powwow
tool. This issue will be addressed in section 5.

Figure 3. Distributed collaboration infrastructure

Number (5) labels indicate the current editing layer; the
current selected drawing mode and the number of FPS
(Frames per Second) available are also indicated. These
labels can by hidden if needed.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

Number (6) indicates several buttons that contain pop up
menus with objects that can be added in order to edit our
game level. The assets are at this stage of development
restricted to only several types of objects. We also have a
brush with different brush sizes that can be selected during
editing.

Number (7) indicates a black area where the user cannot
add tiles. The initial map can be dragged around on the black
area by performing sweep gestures. This is handy when
positioning and zooming the initial map and the second
“endless map”.

Design recognition is achieved by parsing the TMX file
and then instantiating game objects. These are used
afterwards to populate the game level.

V. COLLABORATIVE SOFTWARE JAM SESSIONS

This section represents work in progress and addresses
the local collaborative design aspect presented in the
introduction. We want to address the collaborative design not
only from the tool point of view but also from the process
development technique perspective. Our collaborative
software jam sessions concept aims at porting the concept of
musical jam sessions to quick games prototyping. The whole
concept relies on the idea of jamming together, Fig. 4, in a
group when developing a video game level.

The video game level artifacts represent the components
that compose the game level. We want to design software
instruments capable to build these artifacts. In order to
design these instruments we need to identify the type of
relations between instruments and artifacts.

The Fig. 5 contains the JAMInstrument class with which
we modeled a software tool capable to produce different
types of game artifacts represented by the Artefact class.
These artifacts represent game level logic and level design
assets. The produced artifacts compose our video game level.

Figure 4. Local collaborative jam session concept

Figure 5. Jam session meta model

The Fig. 8 represents a high level view on the jam
session technique. It illustrates our software jam session
concept that we think it is superior in this context to the
waterfall development process. Collaborative work increases
communication and encourages knowledge sharing between
participants that have different backgrounds. The jam session

technique relates to the agile methods because it is an
iterative and incremental activity that supposes that team
members can organize themselves. As we perform research
on this topic we think that this diagram will suffer further
modifications.

The four swim lanes represent our main project
stakeholders: user/player, customer, designer and tester.
Looking at the Fig. 8 from left to right we have in the
beginning of a jam session the requirements elicitation
activity.

The first activity is the kick-off meeting where one user
story is selected from the backlog and the working strategy is
discussed with all stakeholders. After this phase the software
jam session starts and we observe here work done in parallel
and collaboratively.

In the second activity game designer designs game assets,
the developer develops game logic code, the user plays/tests
the current runnable prototype. Every stakeholder has the
possibility to review the game level prototype at any instant
in time. After the first iteration we have a wrap-up discussion
where the participants analyze how the tasks were
accomplished and further on feedback goes in the continuous
development activity.

After several iterations we have the review product
activity. At the end of each iteration we have a potential
shippable product increment. Again feedback goes directly
to each participant and to the continuous development
activity. This helps to reduce the risk of ill-defined
requirements and helps to update the product backlog. It
provides a mechanism for collaborative knowledge sharing
that helps the participants to improve themselves for the next
jam sessions. In the end of the process the result is a
potential shippable product.

We think that the software jam session technique can
help to improve collaborative work by allowing 7+/-2
participants to design together in the same location a video
game. We believe that software jam sessions will encourage
knowledge sharing between participants and enforce
creativity.

Currently, we are capable to create collaboratively a
playable video game level in a matter of minutes with the
help of the Powwow tool. Without having real time
capabilities built in the tool yet.

We think that collaborative design with the support of the
jam sessions technique can speed up the development of
complex game levels where workload has to be tailored
between participants.

VI. PRELIMINARY EVALUATION

 We conducted a quasi-experimental study where we

measured the time needed for developing a video game

prototype with the Powwow tool.

 First we describe how we tested and then show the

results together with our framework current limitations. In

Fig. 6 the X axis represent the five users and the Y axis the

time measured in minutes. The blue, red and green color

represents the three runs each user made. In Fig. 7 the X axis

represents questions and the Y axis points.

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

 We wanted to find out if the working efficiency is

increasing when using the Powwow tool instead of writing

code and if the tool is usable for developing runnable video

game levels.

 The quasi-experimental study was performed with 5

testers. The testers had never used the Powwow tool

previously. We used shadowing to observe the testers

during the experiment. The description of the task was

provided to the testers at the beginning of the experiment.

The time needed to complete the task was measured.

 The study contained two parts. First the tester was

introduced to the Powwow tool, which took around 5

minutes, the task was given to the tester, after finishing

reading the task the time keeping was started, the tester

finished the task, the time was stopped, the results were

evaluated. The total time for each user was around 20

minutes.

 The testers got on a sheet of paper the following task.

Please design a prototype having: one player, one enemy,

one friend, one live item, one house, one tree and a five by

five squared plane. Save the prototype. Simulate the

prototype. Share the prototype onto the distributed file

server.

 After each tester finished the task, they got a

questionnaire, Table I., with five qualitative questions. All

the questions had to be answered by checking a checkbox

associated to each question. The possible answers were

presented on a scale: 1 point (unsatisfactory), 2 points

(satisfactory), 3 points (fair), 4 points (good), 5 points (very

good).

 The results show that one Powwow tester needs around

three minutes to complete the task and the other 4 testers

need between 5 and 10 minutes. Afterwards four users

wanted to try the tool again.

TABLE I. THE SAMPLE QUESTIONAIRE

Questions 1 2 3 4 5

Q1:How do you find the usability?

Q2:Are the tools implemented usefull?

Q3:Did you had dificulties during prototype design?

Q4:Are the pictures used for the buttons appropiate?

Q5: Would you recommand the tool to a friend?

 The colors in the Fig. 6 represent the runs for each tester.

After the second run almost all users improved their times.

The time values presented in Fig. 6, of 0 min, 3.30 min, 50

sec, 2.20 min and 1.34 min represent the time difference

between the first run and the third run for each of the testers.

 Also we can observe that a learning curve appears for

each of the testers. This means that the time needed to

accomplish the same task reduces after the first attempt. Fig.

7 indicates that only 7 answers from a total of 25 answers

are under the 2.5 average values. This means only 28% of

the answers have obtained under 2.5 points, the maximum

value being 5. Thus, 72% of the answers lie between 3 and 5

points in the Fig. 7.

Figure 6. Time need for each tester

Figure 7. The results of the questionaire

 The Powwow tool is not capable to support real time jam

sessions yet. This issue has to be addressed in the future in

order to achieve real time feedback during collaborative

design of game levels. We did not test our collaborative jam

session concept presented in section 5 because this

represents work in progress. We plan to do this experiment

also in the future when the Powwow tool is capable to

support real time collaborative work.

VII. CONCLUSION AND FUTURE WORK

 In this paper we described Powwow, a software tool that

represents an alternative for developing fast runnable video

game prototypes. Powwow can be used in the requirements

elicitation phase and during the software jam session that we

introduced in this paper too. The tool enforces

communication and knowledge sharing through the

interactive development work style.

 We have made a case for rapid game prototyping as it

can help to close the gap between the design model and user

model. This does not mean that we not believe in the

standard approach of firstly gather requirements and then

develop incremental prototypes. We think that our tool is an

alternative of gathering requirements and building fast

runnable video game prototypes right away from the first

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

meeting with the customer.
By binding all the editing stages presented in section 4

together and implement in further releases of Powwow
mechanisms that support real or near real time collaboration.
We think that the tool should perform all the synchronization
operations with the local file folder and the distributed file
server independently.
 In our case study we found out that developers need
specialized apps for developing and testing RPG (role
playing games) games. They would like to have a tool where
they can right away test new game ideas without having to
write necessarily code.
 We also have introduced collaborative software jam

sessions as an alternative development technique to take

advantage of creative and ambitious game designers.

 Finally, we have presented a preliminary study where we

used our tool in order to develop runnable game prototypes.

Until now we are able to work collaboratively with the

Powwow tool and can develop a video game level in matter

of minutes. We think that this result will motivate us to

focus in the future on the development of real time

capabilities in order to perform local collaborative jam

sessions too.

ACKNOWLEDGMENT

Special thanks go to Damir Ismailović, the leader of the
DRG (Dance Research Group). We would like to also thank
the members of the DRG who provided key insights during
the research phase of this paper.

REFERENCES

[1] D. Wuest, N. Seyff, M. Glinz, “Flexible, lightweight

requirements modeling with flexisketch” Fourth International
Conference on Mobile Computing, Applications and Services

(MobiCASE), Springer-Verlag, Berlin, Heidelberg, October
2012, pp. 225-244, doi: 10.1007/978-3-642-36632-1_13.

[2] Codea app, http://twolivesleft.com/Codea/, retrieved: March,
2013.

[3] PGC app, https://itunes.apple.com/us/app/prototype-game-
crafter-1.0/id419847669?mt=8, retrieved: March, 2013.

[4] Battle Map 2 app, https://itunes.apple.com/us/app/battle-map-
2/id384800918?mt=8, retrieved: March, 2013

[5] J. Haladjian, D. Ismailović, B. Köhler and B. Bruegge, “A
quick prototyping framework for adaptive serious games with
2D physics on mobile touch devices“ IADIS International
Conference Mobile Learning, March 2012, pp. 197-204,
ISBN (Book): 978-972-8939-66-3.

[6] B. Bates, Game Design 2th edition. ISBN-10: 1592004938.
Course Technology PTR, 2004, pp. 225.

[7] B. Bruegge, S. Krusche and M. Wagner, “Teaching tornado
from communication models to releases“
(EduSymp12), Proceedings of the 8th edition of the
Educators' Symposium, Innsbruck, Austria, October 2012, pp.
5-12, doi: 10.1145/2425936.2425938.

[8] A. MacWilliams A Decentralized Adaptive Architecture for
Ubiquitous Augmented Reality Systems Dissertation,
Technische Universität München, June 2005, pp. 121.

[9] D. A. Norman and S. W. Draper, User centered system
design; new perspectives on human-computer interaction. L.
Erlbaum Associates Inc., 1986.

[10] Powwow tool,
https://www.youtube.com/watch?v=njS2caLWFRI, retrieved:
March, 2013.

[11] Tiled program, http://www.mapeditor.org/ , retrieved: March,
2013.

[12] A. I. Wasserman, “Software Engineering Issues for Mobile
Application Development. “ Proceeding FoSER '10
Proceedings of the FSE/SDP workshop on Future of software
engineering research, 2010, pp. 397-400, doi:
10.1145/1882362.1882443.

[13] E. M. Maximilien and P. Campos, “Facts, trends and
challenges in modern software, International Journal of Agile
and Extreme Software Development, Vol. 1, No. 1, July 2012,
pp. 1-5, doi: 10.1504/IJAESD.2012.048305.

Figure 8. Collaborative software jam sessions

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-287-5

COLLA 2013 : The Third International Conference on Advanced Collaborative Networks, Systems and Applications

