
Enabling Cross-Domain Collaboration in Molecular Dynamics Workflows

Gergely Varga,
Janos Sallai

and Akos Ledeczi

Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee 37212
Email: gergely.varga@vanderbilt.edu

Christopher Iacovella,
Clare McCabe

and Peter T. Cummings

Department of Chemical and Biomolecular Engineering
Vanderbilt University

Nashville, Tennessee 37212
Email: christopher.r.iacovella@vanderbilt.edu

Abstract—Molecular dynamics (MD) simulation is used increas-
ingly often for materials design to reduce the costs associated
with the pure experimental approach. Complex MD simulations
are, however, notoriously hard to set up. It requires expertise in
several distinct areas, including the peculiarities of a particular
simulator tool, the chemical properties of the family of materials
being studied, as well as in general C/C++ or Python program-
ming. In this paper, we describe how MetaMDS, a web-based
collaborative environment, allows experts of different domains
to work together to create building blocks of MD simulations.
These building blocks, capturing domain-specific knowledge at
various levels of abstraction, are stored in a repository, and are
shared with other users, who can reuse them to build complex
simulation workflows. This approach has the potential to boost
productivity in chemical and materials science research through
separating concerns and promoting reuse in MD workflows.

Keywords–Simulation; Metaprogramming; Online collabora-
tion; Programming abstractions.

I. INTRODUCTION

Molecular dynamics (MD) simulation has become an im-
portant tool in various disciplines, including chemical engi-
neering and materials science, to augment and partially replace
the experimentalist approach in materials design. The driving
force behind this trend is twofold. First, experiments provide
only limited insight to the molecular scale phenomena, and
second, the Edisonian approach that relies on experimentation
is costly, in particular, when the design space includes a wide
range of materials that has to be evaluated. Simulation provides
the full spatial and temporal resolution of the system on the
molecular scale, providing consider insight into the subtle
mechanisms at work, and allows for precise modification of
system topology and other parameters, making it possible to
use a screening and optimization approach.

Today, several large-scale software packages exist for
molecular dynamics simulation. They are conceptually very
similar in the sense that they all implement an N-body sim-
ulation of a large number of particles and numerically solve
Newton’s laws of motion, where the forces are computed using
functional forms describing the chemical interactions between
the particles. These simulators, however, may differ in several
aspects:

• the hardware platform they run on may range from
desktops to supercomputers and from Central Process-

ing Unit (CPU) to Graphics Processing Unit (GPU) to
other specialized hardware;

• their scripting languages may be limited to only rudi-
mentary control structures or could use a powerful
language such as Python;

• they may address specific families of chemical com-
pounds (proteins, crystalline structures, etc.) or focus
on different chemical properties.

Setting up a molecular dynamics simulation is a notoriously
hard task. It needs a user to be familiar with and have expertise
in:

• the particular simulator platform, including the syntax
of the simulator’s scripting language, with the knowl-
edge of how common MD concepts can be carried out
using the simulator;

• the specifics of the chemical domain, i.e., how the
interactions between the particles need to be parame-
terized (which may be very different in, e.g., proteins
than in ionic liquids);

• the requirements of the particular application domain,
e.g., batteries, nanolubrication in hard drives, self-
healing paint, etc.;

• and general programming skills to generate input files
describing complex systems of particles or to pro-
grammatically extract the quantities of interest from
the simulation results.

Unfortunately, once a particular simulation workflow has
been set up to run on a particular simulator, it is not trivial
to retarget it to a different simulator package. There are
no common Application Programming Interfaces (APIs), no
well-defined abstractions that would allow simulations to be
specified in a simulator-agnostic manner. Also, because of the
monolithic and ad-hoc nature of the simulation code, code
reuse is often merely accidental or nonexistent.

This paper is structured as follows. First, we explain the
state of the art of the design-flow of molecular dynamics
simulations, highlighting the ad-hoc and often one-shot nature
of simulation design. Then, we describe how MetaMDS [1],
a web-based metaprogrammable environment, allows for de-
coupling the roles of simulator experts, (chemical) domain

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

experts and end users through abstractions, in a way that they
can work in parallel, creating reusable software artifacts and
collaborate with each other when building complex molecular
dynamics workflows. We present implementation details of the
MetaMDS tool and conclude with a case-study demonstrating
its use.

II. APPROACH

Our approach is inspired by Model-Integrated Computing
(MIC) [2], a systems engineering methodology that focuses
on building domain specific modeling environments, which
allow for capturing the concept of the given domain at the
level of abstraction that is most appropriate for the problem
to be solved, hiding unnecessary level of detail from the
end users. MIC focuses on creating Domain Specific Mod-
eling Languages (DSMLs) via metamodeling: describing the
DSML’s concepts with a generic meta-language (which is, in
fact, in itself a DSML). The modeling environment includes
model interpreters that analyze the model, check constraints,
verify properties, and generate code from the model, automat-
ing many of the time consuming, tedious and error prone
programming tasks.

Molecular dynamics simulation scripts can be thought of
as programs with linear control flow that describe how a
simulation is initialized (loading particle coordinates from an
input file, enumerating and parameterizing the interactions
between the particles, defining a simulation cell, etc.), how
the system evolves over time (changes in e.g., temperature,
pressure, box size, etc.), as well as when and what quantities
are logged or saved to file. We observed that the many of these
simulation concepts (e.g., loading the input file, resizing the
box, logging the potential energy) are supported in multiple
simulators, and while the syntax in which they are defined can
be very different, the parameters of these concepts (e.g., the
name of the input file to load, the dimensions of the new size,
or the frequency of the time steps when the potential energy
should be logged) are more or less the same.

Therefore, we claim that it is possible to define a simulator-
agnostic domain specific language (DSL) that can express
these concepts as first class language elements. The end
user can describe a simulation in terms of these concepts,
instead of writing simulation scripts directly. The simulator
scripts can then be automatically generated using a (simulator-
specific) interpreter. The interpreter maps the concepts to their
equivalent simulator-specific code snippets, and stitches them
together to form a script understood by the target simulator.

We further observed recurrent patterns on how the basic
concepts are used together, and have identified a number of
steps (a series of actions that can be described with basic
concepts) that are often present in multiple simulations within
the same chemical domain. An example of such step is the
initialization of a simulation (reading a data file and setting the
parameters of the interactions), equilibrating the system (letting
the system evolve at a given temperature for an extended
amount of time), and even more complex groupings such
as shearing a system to calculate the frictional properties.
These simulation steps can be expressed in the domain specific
language as a composition of the basic concepts. It is impor-
tant to note that with our proposed approach no simulator-
specific knowledge is required to define the simulation steps,

aside from a rudimentary understanding of what needs to be
in a simulation. Nevertheless, simulation steps can capture
a tremendous amount of domain knowledge about specific
compounds in a particular chemical domain. For instance,
force-field parameters that define the interactions between the
particles can be captured in a simulation step, and reused
across several simulations involving compounds within the
same family (e.g., dodecane and other length alkanes) or reused
when calculate other properties (e.g., coupled to simulation
steps that capture either phase coexistence or viscosity). We
note that initialization of a chemical system and its interactions
can be a difficult, error prone task for complex molecules and
thus reuse of validated model parameters via simulation steps
should not be an insignificant advancement.

The definition of simulation steps can further increase the
level of abstraction at which the end user can define entire
simulations. While relying on the simulator-agnostic basic con-
cepts eliminates the need for the end user to have expertise in
a particular simulator tool, building simulations from coarser-
grained steps allows end users with no detailed knowledge of a
specific aspect, e.g., force-field parameterization, to assemble
and run simulation workflows. As such, this approach enables
and encourages collaboration between those with different
areas of expertise.

Naturally, however, several questions may arise regarding a
common molecular dynamics simulation description language.
Who defines this DSL and who creates the interpreters? Which
concepts should the DSL contain, and which concepts should
be excluded? Is it possible to create a one-size-fits-all set of
concepts that meets the needs of all possible MD simulations?
What parameters should a particular concept have? How does
the DSL and the simulator specific interpreters evolve as new
simulator tools are developed or existing ones are extended
with new features.

Our answer to these questions is metaprogramming.
MetaMDS, the platform we have developed, provides a way
to define the basic concepts, along with their mappings to
simulation-specific code in a simple way. This allows the DSL
to be flexible and dynamically updated; either the basic steps,
nor the higher level concepts are hard-coded into the MetaMDS
tool. Instead, each working group may settle on the set of
abstractions that best suit their needs, share them with each
other, and use these abstractions as a means of interfacing
between team members. That is, the DSL can include multiple
methods for defining the same basic operation(s), depending
on what is most convenient for the system being studied or
for the group using the code. Also, this for composition of
concepts into simulation steps allowing for increased flexibility
and transparency, where again, groups can assemble basic
operations into whatever steps most appropriate for the given
system. Again, since the DSL is not hard-coded into the
MetaMDS tool, it is trivial to add new routines as they are
needed or become available, this makes the tool flexible and
able to grow to meet the demands of new users, chemical
systems, algorithms, and procedures.

A. Separation of roles

We can separate three different types of “actors” in the
overall simulation workflow, as shown in Figure 1.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

1. Platform experts are, as the name suggests, experts in
the usage of a simulation platform. They are well versed in
the given simulation tool, including the data file format, how
a certain task or subtask is implemented, the syntax of the
code used to control the simulation, what parameters/routines
are needed (and in what order), etc. Examples of such simu-
lation tools include Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS [3]), a classical MD simulator
that is commonly run on high-performance computing (HPC)
clusters, and Highly Optimized Object-oriented Many-particle
Dynamics (HOOMD-Blue [4]), a general purpose particle
dynamics simulations that takes advantage of NVIDIA GPUs
to attain a level of performance on a single workstation.

Of course, the platform expert needs to have a strong
knowledge of the basic principles of the field (e.g., chemical
engineering), but they need not possess “domain” expertise
related to the specific system of interest, as discussed below.

2. Domain experts are usually advanced researchers who
are experts with regards to parameterizing a particular system
and the general methodologies for carrying out the simulations
of that system. We refer to domain as the solution for a specific
problem, e.g., the models and procedures used to simulate
grafted nanoparticles or to calculate the phase coexistence
of a system. These users may have expertise in a given
platform–i.e., how to implement those parameters/procedures
in a specific simulation tool–but their domain knowledge
should be considered applicable to any tool, as these concepts
and parameters are general. In the next section we introduce
two domains investigated during development of our tool, in
order to facilitate a deeper understanding and better application
of the concepts.

3. Inquiry scientists (endusers) perform virtual experi-
ments, running simulations to determine the properties and
behavior of the system of interest within a given domain.
These inquiry scientists tend to be new researchers with limited
domain expertise, with most expertise coming from knowledge
of related work in the literature. The role of the inquiry
scientist is to develop and/or test hypotheses for a system
within a given domain, and to gain domain expertise.

Depending on the research, different types of knowledge
are required, which is why domain experts are very important.
They can design the flow of the simulations, what tasks
need to be executed, what model parameters to use, and
what properties need to be changed and checked. Platform
experts can help implement these procedures correctly in a
given simulation platform, noting that different tools may be
best suited for different types of research. Finally, inquiry
scientists perform the experiments, building upon the models
and procedures developed by the domain experts, and codes
implemented for a specific simulation tool by the platform ex-
perts. While the division between a domain expert and inquiry
scientist is often natural due to seniority in a research group,
separating-out platform expertise may be less trivial. The roles
we have introduced follow the model that has successfully been
applied in many experimental laboratories, where centralized
microscopy facilities tend to exist, where “platform” experts
in those tools (i.e., those that run the microscopy facility)
assist domain experts and inquiry scientists in performing their
measurements.

Figure 1. Knowledge domains and their relation. There is a need to know a
little bit of everything to accomplish a non-trivial task.

One should note that considerable overlap may exist be-
tween these roles. That is, as inquiry scientists become more
experienced, they will naturally gain domain expertise and
become the domain experts. Also, a domain expert in one area
may possess considerable platform expertise and thus can serve
as a platform expert for problems outside of his/her domain.
Furthermore, to accomplish complex simulations, workflows
may need to be developed using multiple experts from different
domains or even multiple platform experts if different tools
will be used in conjunction. However, by considering the
roles and relationships within this context, we can remove
the burden that often falls solely on the inquiry scientist,
enabling better collaboration and sharing of ideas between
experts, which we believe will ultimately augment productivity
and quality of the research.

B. Example domains

During the development of the tool, we have examined the
protocols and procedures used in the study of two different
domains, simulation of the coexistence properties of polymer
grafted nanoparticles and the structural and frictional proper-
ties of polymer monolayers.

1) Grafted Nanoparticles: Polymers grafted to the surface
of nanoparticles, have been used as a means to control the
aggregation behavior of nanoparticles, in order to tune the
system structure and properties. For example, tuning the graft
length can result in transitions from dispersed nanoparticles to
string and sheets [5] and properties such as fracture toughness
can be increased by many orders of magnitude for polymer
grafted nanoparticles as compared to the polymers alone [6].
Understanding how to control the aggregation/dispersion of
these systems, via polymer graft length, polymer surface
density and nano particle interactions, is of great importance
to creating predictive framework for the use of nanoparticles.
We have focused on quantifying the aggregation/dispersion
behavior of alkane grafted silica nanoparticles, by means of
calculating the phase coexistence, as a function of graft prop-
erties and relative interactions. In this case, one can consider

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

this study to be the intersection of two different domains,
grafted nano particle simulation and coexistence calculation,
with platform expertise related to the HOOMD-Blue simulator.

2) Monolayers: Self-assembled monolayers have been pro-
posed as a means to lubricate and protect surfaces interacting
at the nanoscale, such as those surfaces found nano- and micro-
electromechanical systems (NEMS and MEMS). Designing
lubricants for such systems is not necessarily straightforward,
as the behavior may strongly depend on many factors including
the chemical composition (and mixtures) of the monolayer
molecule(s), length of the molecule, density of the molecules,
and surface structure. Several different domains intersect, in-
cluding domain experts in the ares of (1) monolayer assembly,
(2) monolayer simulation under equilibrium conditions, and (3)
non-equilibrium simulation (to calculate frictional behavior)
with platform expertise related to the LAMMPS simulator.

If we want to accomplish a relatively non-trivial task using
the state of the art technologies in MD simulations, there is
a need to have knowledge of the three actors: we need the
domain knowledge to design the concept of a simulation, we
need the knowledge how to implement the steps that we want
to run in a specific platform, and last, but not least, we have
to create the data file and all the physical/dynamic properties
that could be crucial to succeed with our experiments. In our
work, we have broken down how a simulation is accomplished
from the beginning to the end, creating a universal tool that
helps different field-experts collaborate with each other.

Our collaborative tool helps experts to work together and
design simulations from ground-up in an interactive way. To
use the tool for different simulations from different domains
creates the situation for users that the more they use the tool,
the less work they need to invest in it. Building a shared library
of basic building blocks and using them as basic concepts
for different domains becomes trivial in our approach. Of
course, in the beginning platform experts need to work very
close with domain experts where they are asked to implement
those concepts that are needed to be used for the specific
simulation. However, using our system’s flexible definition
engine they can use as many parameters as they want so
that certain concepts/blocks can be reused later (e.g., loading
a data input file, exporting trajectories of particles, defining
interactions between n particles, etc), which will also serve the
same goal in a completely different concept (domain). After
defining initially the simulation basic operations (which can be
also called the shared API), domain experts can start building
logically integrated blocks from them (i.e., simulation steps),
defining the relevant parameters.

To create a connection between simulation parameters
and simulation results, we support programmable workflows,
meaning domain experts can setup simulations that change
their parameters automatically until a certain condition is met,
enabling steered simulations and allowing input to optimiza-
tion schemes – this goes well beyond what is typical in done
in state-of-the-art MD-simulations.

Inquiry scientists and platform experts also need to col-
laborate once a platform is put into use, to ensure proper
implementation. As we advance in the development of this
tool there are more extra requirements that arise related to an
easy-to-use interface, which is able to allow endusers to design

complex, yet abstract particle structures and workflows. On
the other hand, inquiry scientists can collaborate with domain
experts to augment their knowledge and ultimately transition
into domain experts themselves.

C. Advantages

The approach we introduced has several advantages com-
pared to today’s research habits. First, domain experts do not
need to be experts with regards the simulators themselves,
in particular, they do not need to know the coding syntax
and the low-level tips and tricks of a specific platform; this
is increasing important has the number of freely available,
full featured simulators continues to grow. Instead, they can
focus on their own tasks more directly related to the scientific
goals. This is also advantageous, as documentation of freely
available, ever developing simulators can often be sparse and
difficult to understand for non-experts; this is where the knowl-
edge of platform experts is particularly relevant. Additionally,
by working in the MetaMDS framework, domain experts and
inquiry scientists can avoid easy-to-make errors, like syntax
errors or bad parameter order; this is a very important because
researches can wait days or even weeks in queues, waiting for
their jobs to execute, wasting considerable research time if a
syntax error is made in the final simulation script.

Secondly, we are able to seamlessly keep all the platform-
specific code up-to-date while still providing the ability to run
using older versions; this allows new versions to be validated
to ensure errors were not introduced as a result of the update.
Similarly, this allows a standard suite of tests to be performed
across multiple different simulators, to ensure consistency in
their outputs. Furthermore, different simulators often perform
better at certain tasks and worse at others, depending on the
numerous factors such as the hardware available, nature of
the chemical system, system size, etc. Switching seamlessly
between platforms, we can optimize performance and decrease
simulation runtime; this enables results to be achieved faster
and at reduced cost to the end user (centralized high perfor-
mance computing resources charge users based on runtime).
Our approach focuses on flexibility: extending our system with
a new platform is easy and relatively fast (if you have the right
platform expert) and can improve the efficiency massively,
e.g., by taking advantage of high performance GPUs, and by
allowing the examination of systems in new domains (e.g.,
biophysics simulations).

III. IMPLEMENTATION

MetaMDS is a web application with a complex server-side
backend system. We utilized the JavaScript scripting language
both on client- and server-side. In the browser we built a
standalone application using the backbone.js framework [7]
which is based on the Model-View-Controller (MVC) pattern
and is easily extendible and customizable. On the server side
we use the node.js platform [8] (that is built on Chrome’s
JavaScript runtime) and MongoDB, a document-based, NoSQL
database [9] to store our data.

Based on our introduction of our research on how a
typical workflow is designed, we created a multi-level data-
hierarchy that can provide an easy collaboration between
different field-experts. On the top level, endusers interact with

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

Figure 2. MetaMDS data model. The data structure we use for modeling
MD-simulations. Parameter references: (1): Building blocks include parameter
definitions; (2): In code templates, code references to parameters; (3):
Simulations and simulation steps can set or override parameter values.

a visual programming language that provides them a clean
user interface and supports not just importing the pieces of the
concepts modeled by the domain experts, but they can build a
complete control-flow with branches, conditions (if/else), loops
(for/while), return values and of course setting parameter val-
ues. While manipulating program elements graphically rather
than defining them textually, scientist can design simulations
on a high-level, only having to find the suitable parameter-
value combinations. Also, they are able to automate simula-
tions (e.g., keep repeating this simulation with increasing a
parameter value until a certain condition is met, e.g., average
potential energy is less than a threshold). Endusers use built-
in programming language elements that represent the basic
language constructs and additionally use custom elements that
were designed by the domain experts. These elements are
called in our system simulation and simulation step.

In Figure 2, we introduce how our data is structured.
Simulation steps are well-defined, reusable units that are
used to construct simulations. As an example, domain experts
can define simulation steps such as Initialize TNP system,
Adjust temperature or Collect data. Simulations are defined
with a limited visual language that doesn’t allow control-
flow statements, just setting parameter types and values. It
is important to note that at this level, domain experts are
able to handle the control allowed to the endusers by defining
variable-type parameters or hardcoding in values. This means
that only the data-type of the variable parameter (e.g., integer,
double, boolean, string) needs to be defined, where setting the
numerical value of the parameters is done one level higher
(which can be set as a constant value or variable). With this
approach we can provide a very flexible system that allows
domain experts and inquiry scientists collaborate in a very
unique way, where domain experts provided a specific template
to the inquiry scientists.

At the base level of our data hierarchy we use the concept
of basic building blocks. These blocks are defined by the
domain experts on high-level and are implemented by the
platform experts. A basic building block contains its basic

properties (id, name, description), a list of parameters – where
each parameter has its own identifier/name and a thorough
description that can be used as a help while assembling
higher-level constructs to locate/recognize what is it exactly
for – and the actual platform-specific implementations. This
implementation contains the actual code in the platform’s
language using its syntax and parameter notation. These code
implementations work as code templates, which are evaluated
by the server-side backend system (either before submitting the
simulations to the chosen server/cluster, or when users want
to download generated code to run on their local systems).
After a platform expert has implemented the simulator specific
code template to handle the parameters defined by the domain
expert, it is used to build up the aforementioned simulation
steps. In Figure 2, we highlighted three different types of
pointers that point towards the parameters, which need further
explanation. Type 1 pointers mean a definition/containment: we
define the descriptors of a parameter in a basic building block,
that consists of its name, description, data type, default value,
and a simulator identifier. In some cases there are building
blocks that express the same concept but, due to simulator
implementation differences, have additional parameters that are
simulator-specific, thus we need to maintain the last property.
Type 2 pointers show reference-type connection: in a code
template we need to reference to previously defined parameters
(e.g., load filename where filename is a string type param-
eter). Type 3 connections are the most advanced references.
It expresses that an entity contains a specific parameter with
either a value (constant) or indicates that this parameter is a
variable. In the variable case we also use the parameter’s other
properties to perform validations.

In an object-oriented world, we could map the items from
our concept to the following entities: basic building blocks
as code statements; simulation steps as functions that contain
some/several statements; simulations as classes that contain
functions and variables defined; our simulation repository as
a class library; and the workflows that are built and submitted
to simulator servers as programs/applications.

IV. CASE STUDY

In this case study, we demonstrate how MetaMDS and
its flexibility can save significant time for researchers. Let’s
suppose we wish to run simulations with a simple mono
atomic fluid. In this case, we wish to determine under what
conditions it would be most efficient to run LAMMPS vs.
HOOMD-Blue. These two platforms are similar enough to
express the same concepts, however their performance vary
depending on the hardware and system studied. HOOMD-Blue
supports GPU-based calculations, which tend to provide con-
siderable performance over CPUs, while LAMMPS is designed
to scale efficiently on large numbers of CPUs. To measure
the performance of the different simulators, we use another
metric that reflects their efficiency: time-per-step (TPS). We
can define this metric as the time needed to perform one
timestep during the simulation. The test simulation (Test mono
LJ) consists of two simulation steps and we had to define 12
distinct building blocks to set up these simulation steps. For
a platform expert, implementing these 12 code templates for
HOOMD-blue and LAMMPS was accomplished within a few
hours (including understanding the concepts we were using
here). Only a single simulation needs to be constructed in

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

TABLE I. TIME-PER-STEP VALUES FOR DIFFERENT SIMULATOR
PLATFORMS.

Num. of particles TPS (ms) TPS (ms) %
LAMMPS HOOMD

500 0.11736 0.16658 70.45131
1000 0.18470 0.18053 102.30979

5000 0.70105 0.21098 332.27690
10000 1.32672 0.23454 565.66885
50000 6.71378 0.73771 910.08082
100000 14.77878 1.48404 995.84767
500000 108.06365 7.04629 1533.62483

0.1	

1	

10	

100	

1000	

500	 1000	 5000	 10000	 50000	 100000	 500000	

Ti
m
e-‐
pe

r-‐
st
ep

	

Number	 of	 par1cles	

LAMMPS	

HOOMD	

Figure 3. Comparison of the TPS values of different simulators.

MetaMDS, even though we wish to run using two different
simulators. Table I reports the TPS calculated as a function
of system size, where we note that smaller values of TPS
are preferred. Figure 3 shows the graph comparing the two
simulator systems tested. There is a clear transition at 1000
particles, for which HOOMD-Blue out performs LAMMPS,
where we observe a 3 order of magnitude speed increase by
using the GPU-enabled HOOMD-Blue. The first column of
Table I indicates the number of the particles in our system,
while the second and the third column show the time-per-
step values for both simulators we tested (in milliseconds)
and the last column shows the performance gain we can have
switching from LAMMPS to HOOMD-Blue. While this is a
relatively trivial example, the concept is generally applicable
to benchmarking more complex systems and algorithms where
GPU performance is less significant.

A. Code reusability

Another advantage of the approach used in MetaMDS is
code reusability and interchangeability. While the example
above focused on a system with only a single particle type,
we can reuse the basic simulation workflow for a system
composed of two particle types. To accomplish this, we only
had to define a new system initialization step that handles two
different types of particles. To use this simulation step, we need
only to exchange this initialization step in our first simulation
instance and then be able to perform simulations using a binary
system. The changes are shown on Figure 4. Again, this is a
relatively simple example, but the concepts demonstrated are
general. For example, a more complex simulation workflow,
with many different simulation steps and procedures could
be developed and used for one system and then reused for
a different system by only changing the step that initializes

Figure 4. Simulation initialization steps for mono- and binary-atomic systems.
The rest of our simulation is untouched while we can run different simulations
in different domains with very small changes.

the system. This is the general idea that facilitates the collab-
oration of domain experts; e.g., a domain expert could design
the workflow needed to calculate the viscosity of an alkane
system, which could then be trivially merged with the system
initialized by an expert in grafted nanoparticles to facilitate the
calculation of viscosity of grafted nanoparticles. This example
also demonstrates the power of being able to present the end
user with abstract representations. While the binary system
is still simple, two additional interactions were needed to be
defined to initialize the system; a simple model of a grafted
nano particle [10], would require three more pair interactions,
two additional bond parameters, one angle parameter and
one dihedral parameter whereas a self-assembled monolayer
system requires in excess for 50 additional model parameters.
As such, this approach facilitates reusability of not only the
general workflow, by e.g., swapping in a different model,
but also would enable reuse of models, which is particularly
important as system complexity grows.

We performed our tests on a desktop computer with an Intel
Core i7 4820K CPU and an NVIDIA GeForce GTX780Ti -
3GB - EVGA Superclocked graphics card.

V. RELATED WORK

Within the MD simulation domain, the objectives of
MDAPI [11] are closest to those of our system. MDAPI aims
at creating a unified application programming interface that
shields the specifics of the particular simulator tools. It is
designed for biophysical simulation, where the interface and
computational engines are separated, and consequently the
API is geared toward the needs of that domain. The most
important differences between MDAPI and our work is that
a.) MDAPI defines a fixed API, while the set of concepts that
serve as the interface between the simulator and the domain
expert may evolve over time; and b.) MetaMDS provides two
distinct abstraction levels (the basic operations describing the
basic concepts, and simulation steps representing high-level

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

operations that capture and hide knowledge specific to the
chemical domain), while MDAPI offers only one.

The Atomic Simulation Environment (ASE) [12] is a
Python-based tool that can connect to many different simu-
lation codes as calculators you plug into the environment. Its
primary target is quantum mechanical calculations and thus,
it is not directly applicable for most MD simulations. The
power of ASE lies in its tool integration capabilities: through
the use of the Python programming language it it possible to
link different toolkits together, e.g., plotting and visualization
libraries, etc.

Etomica [13] is a molecular simulation code written in
Java, enabling it to be easily used and distributed via the web.
Etomica is similar to our approach in a sense that it defines
a molecular simulation API that hides the low-level details of
running MD simulations, which allows simulations to be build
from predefined pieces. However, it does not offer the flexi-
bility that MetaMDS provides through its metaprogramming
functionality. Creating simulations in Etomica requires Java
programming expertise: the end users are limited to executing
prewritten modules with custom parameter settings.

MetaMDS can be thought of as a science gateway for
MD simulators. In this sense, the most closely related tool
to our work is the Nanohub [14]. The Nanohub provides a
VNC-based interface to a variety of simulation tools hosted as
cloud instances. The complexity of the variety of simulators is
addressed through simplified user interfaces: the user is only
presented with a limited subset of options to help guide the
simulations. Most of the modules have a consistent look and
feel, so the learning curve is reasonable. Visualization and
plotting tools are often built into the GUIs. Jobs are submit-
ted to clusters and the results copied back to the Nanohub
space. Unfortunately, Nanohub has its set of limitations. The
VNC-based user interface is not very responsive. User-level
customization is not supported. The user can only change the
parameters that Nanohub includes in its simplified interface.
There is no interaction supported between various tools: the
output of one simulator cannot be trivially fed to the input of
another. Similarly, the primary mode of operation is interactive,
since most tools have been developed with education in
mind, and thus submitting a large set of jobs is not easily
accomplished.

VI. CONCLUSION

We have demonstrated the design principles associated
with our MetaMDS collaborative simulation environment, built
upon the ideas of model integrated computing. This tool
enables the creation of a flexible “API” for molecular sim-
ulation, allow any number of simulation platforms to be run
with only a single simulation workflow. Furthermore, our tool
provides ways to group common procedures and concepts
used within molecular simulations, to enable the reuse and
sharing of simulation models and procedures. These common
simulation blocks can be pieced together into larger simulation
templates to accomplish tasks within a specific domain. This
approach enables experts in the simulator platforms to work
with experts in a give domain to great simulations for use by
inquiry scientists that perform virtual experiments. By their
construction, these simulation templates can be used to limit

the number of parameters available to end users, to provided
an error-free, guided experience. With the flexible simulation
parametrization we can also use MetaMDS as tool for teaching
both the concepts of simulation and for enabling students to
use simulation as a means of understanding molecular level
interactions in systems. After setting up several simulations
with variable-type parameter values, professors can allow their
students or new researchers in their groups to access domain-
specific parameter values, enabling efficient simulation of
systems within a targeted range of variables. Overall, our tool
enables the collaboration between users with different areas
and levels of expertise, allows for the seamless integration
of different simulator toolkits, and collaboration between end
users by creating a platform for the reuse of simulation models
and procedures.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the
National Science Foundation grants NSF CBET-1028374 and
NSF OCI-1047828.

REFERENCES

[1] G. Varga, S. Toth, C. R. Iacovella, J. Sallai, P. Volgyesi, A. Ledeczi, and
P. T. Cummings, “Web-based metaprogrammable frontend for molecular
dynamics simulations,” in 3rd International Conference on Simulation
and Modeling Methodologies, Technologies and Applications (SIMUL-
TECH), Reykjavik, Iceland, 07/2013 2013.

[2] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proceedings of the IEEE, vol. 91,
no. 1, 2003, pp. 145–164.

[3] S. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” Journal of Computational Physics, vol.
117, no. 1, 1995, pp. 1 – 19. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002199918571039X

[4] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General
purpose molecular dynamics simulations fully implemented on
graphics processing units,” Journal of Computational Physics,
vol. 227, no. 10, 2008, pp. 5342 – 5359. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999108000818

[5] P. Akcora, H. Liu, S. K. Kumar, J. Moll, Y. Li, B. C. Benicewicz,
L. S. Schadler, D. Acehan, A. Z. Panagiotopoulos, V. Pryamitsyn,
V. Ganesan, J. Ilavsky, P. Thiyagarajan, R. H. Colby, and J. F. Douglas,
“Anisotropic self-assembly of spherical polymer-grafted nanoparticles,”
Nat Mater, vol. 8, no. 4, 04 2009, pp. 354–359. [Online]. Available:
http://dx.doi.org/10.1038/nmat2404

[6] T. Song, S. Dai, K. Tam, S. Lee, and S. Goh, “Aggregation
behavior of two-arm fullerene-containing poly(ethylene oxide),”
Polymer, vol. 44, no. 8, 2003, pp. 2529 – 2536. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0032386103001071

[7] “Backbone.js javascript framework,” http://backbonejs.org [accessed
05/2014].

[8] “Node.js platform,” http://nodejs.org/ [accessed 05/2014].
[9] “MongoDB document database,” http://www.mongodb.org [accessed

05/2014].
[10] C. Iacovella, G. Varga, J. Sallai, S. Mukherjee, A. Ledeczi,

and P. Cummings, “A model-integrated computing approach to
nanomaterials simulation,” vol. 132, no. 1, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00214-012-1315-7

[11] “MDAPI web page,” http://www.ks.uiuc.edu/Development/MDTools/mdapi
[accessed 05/2014].

[12] “Atomic Simulation Environment web page,”
https://wiki.fysik.dtu.dk/ase/ [accessed 05/2014].

[13] “Etomica web page,” http://etomica.org/ [accessed 05/2014].
[14] “NanoHUB web page,” http://www.nanohub.org/ [accessed 05/2014].

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-351-3

COLLA 2014 : The Fourth International Conference on Advanced Collaborative Networks, Systems and Applications

