
Towards Discrete Event Multi Agent Platform Specification

Sébastien Mattei, Paul-Antoine Bisgambiglia, Marielle Delhom, Evelyne Vittori

University of Corsica, CNRS UMR SPE 6134, UMS Stella Mare 3514

Corte, France

{smattei,bisgambiglia,delhom,vittori}@univ-corse.fr

Abstract— Nowadays, simulation tools have become essential.

They allow to study and understand complexes actions that

may be impossible to study in situ. In this paper we introduce

an approach to use Discrete Event System Specification model

as agents and finally create an original platform which allows

using DEVS framework and a Multi Agent System platform

working together to simulate population dynamics. We first

apply this approach on anthill model and then the final

approach to a fish model. Ants’ basic behaviors are added

successfully in DEVS formalism.

Keywords-DEVS; MAS; Modeling; Simulation.

I. INTRODUCTION

For years, we have been working on modeling and

complex system simulation [1–4], and on Discrete Event

System Specification (DEVS [5]). Our researches are

essentially based on DEVS formalism [6]. In 1970’s,

Professor Zeigler [5] introduced this method that has proved

successful. It represents: (1) a complex system from an

interconnected collection with more simple subsystems; (2)

a separation between modeling and simulation, simulation

algorithm are automatically generated according to defined

models. This formalism is open, flexible and offers a large

extension capacity.

According to recent works [4], [7–11], it has been

proved that DEVS formalism might be qualified as a multi-

formalism thanks to its opening capacity, to its capacity to

encapsulate others modeling formalisms. In one

heterogeneous system, it is possible to use modeled

subsystems from different formalisms, differentials

equations, neuron networks, continuous systems.

These opening and extension capacities are really

interesting in our researches, because this formalism has

boundaries and doesn’t allow a representation of all kind of

systems like living systems. In order to get over these

boundaries, Multi Agent System (MAS [12], [13]) seems to

be an interesting alternative.
MAS’s purpose is to create cooperation between entities

(agents) that have intelligent behavior, and to coordinate
their purposes and their action plans to solve a problem. In
our case, MAS utilization is justified because they are
adapted to reality, they also allow: (1) agents cooperation;
(2) to solve complexes’ issues; (3) incomplete expertise
integration. An agent is a physical or virtual identity
determinated by movements collections (individual
objectives, functions of satisfactions or survival), owning its
own resources and getting just one partial representation (or

none) of its environment. An agent’s behavior goes to satisfy
its objectives according to its resources, its skills and its
functions of perceptions, representations and
communications. MAS have got a lot of applications into
artificial intelligence. They can reduce complexity of issue’s
resolution by breaking the sub-collection’s knowledge by
associating an intelligent independent agent to each of its
sub-collections and coordinating activity of these agents
[14]. MAS are related to Distributed Artificial Intelligence
(DAI).

Our team works on several scientific research and
technology development. These two domains include
concepts (scientific way) and concepts implementations
(technological way). They are used for issue’s study linked
to artificial or naturals complexes system’s behavior like
management and modeling evolutive interfaces systems
(spread of pollutants) and natural system’s modeling (tides,
fishes), telecommunication, acquisition’s system’s
conceptions (sensors) and analysis and data treatment
(decision’s help).

So, our objective is to capitalize the twenty last years
gained experiences and skills to propose a brand new and
ambitious project. This project’s final objective is to propose
a brand new platform to:
• Modelize different processes working on fauna and

flora’s evolution (tide, wind, phytoplankton,
zooplankton, larva, algae, fishes, pollutants, etc.);

• Simulate from autonomous and intelligent’s agents the
interaction and evolution of these processes. We are
going to develop and integrate in a multi modelization
and simulation based on multi formalism’s environment
«Discrete Event System Specification» (DEVS a hybrid
platform based on multi agent system’s properties (MA
S [14]);

• Finally, we want to provide tools for decision help to

make easier the simulating results operations and

resource management.
To meet our goals we are going to proceed step by step.

In this paper, we propose to associate DEVS formalism and
MAS. From advantages of these two paradigms, we want to
define an extension of DEVS’s formalism, faithful to
standard, that make possible to modelize agents and way of
communication and environment interactions as a DEVS’s
system. This transformation, from agents to model, emerge a
lot of issues that we propose to study and solve by our self.

In the first part, we introduce DEVS formalism and MAS
principles. Then, in a second part, we detail these two
modeling and simulation’s paradigms advantages. In the
third part, we propose our approach formalization. Then, the

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

fourth part is dedicated to a MAS study case presentation
before proposing its DEVS’s model conversion. At last, the
final part concerns the conclusion and a presentation of our
future works.

II. OVERVIEW

Today, simulation’s tools have become essential. They
allow to study and understand complexes actions that may
are impossible to study in situ. In this part, we introduce our
works based on our researches and in particular two
modeling and simulation’s methods.

A. DEVS presentation

DEVS formalism [5], [6] is based on the definition of

two types of components: atomic models and coupled

models.

Atomic model (Fig. 1) provides an autonomous

description of the system behavior, defined by states,

input/output functions and transition functions. The coupled

model is a composition of atomic models and/or coupled

models. It is modular and presents a hierarchical structure

which enables the creation of complex models from basic

models.

1) DEVS models

Atomic DEVS model:

AM: < X; Y; S; ta; δext; λ; δint > (1)

Figure 1. Atomic model.

where:

- X: is the set of input events, is characterized by a couple

(port, time, value), where the port means the input on which

the event occurs, the time is the date of occurrence of the

event, it is blank for internal events, and the value

symbolizes the data from the event;

- Y: is the set of output events;

- S: is the set of partial or sequential states, which includes

the state variables;

- ta: S → T∞: is the time advance function which is used to

determine the lifespan of a state;

- δext: QxX → S: is the external transition function which

defines how an input event X changes a state of the system,

where Q = {(s, te) | s ∈ S, te ∈ (T ∩ [0, ta(s)]} is the set of

total states, and te is the elapsed time since the last event, T

is the total time of the simulation;

- λ: S → Yι : is the output function where Yι = Y ∪ {ι} and ι

∉ Y is a silent event or an unobserved event. This function

defines how a state of the system generates an output event,

when the elapsed time reaches to the lifetime of the state;

- δint: S → S: is the internal transition function which defines

how a state of the system changes internally, when the

elapsed time reaches to the lifetime of the state.
Every state S is associated with a lifetime ta, which is

defined by the time advance function. When a model
receives an input event X, the external transition function δext
is triggered. This function uses the input event, the current
state and the time elapsed since the last event in order to
determine what the next model state is. If no events occur
before the time specified by the time advance function for
that state, the model activates the output function λ
(providing outputs Y), and changes to a new state
determined by the internal transition function δint.

Coupled model: coupled model is a composition of
atomic models and/or coupled models. It is modular and
presents a hierarchical structure which enables the creation
of complex models from basic models. It is described in the
form of:

CM :< XM, YM, CM, EIC, EOC, IC, L > (2)
With:

• XM: all the input ports;
• YM: all the output ports;
• CM: the list of models forming the CM coupled model;
• EIC: all the input links connecting the coupled model to

its components;
• EOC: all the output links connecting the components to

the coupled model;
• IC: all the internal links connecting the components

between themselves;
• L: the list of the priorities between components.

With the DEVS formalism, each model is independent
and can be considered as its own entity or as a model of a
larger system. DEVS formalism is closed under coupling,
that is to say that for each atomic or coupled DEVS model it
is possible to build an equivalent DEVS atomic model.

The DEVS models are executed by abstract simulators
[15–17] that are independent from the models themselves.
Consequently, separated concerns between models and
implementations of simulation can be achieved and enhance
the verification of each layer independently. DEVS is a
popular method to simulate a variety of systems. However,
since its introduction by B.P. Zeigler, significant efforts were
taken to adapt this formalism to different fields and
situations. The many proposed extensions proved its ability
to extend and openness.

2) DEVSIMPY framework

DEVSimPy framework allows a simple graphical

interface to create and use DEVS models. It is a WxPython

based environment for the simulation of complex systems.

Its development is supported by the CNRS (National

Center for Scientific Research) and the SPE research

laboratory team.

The main goal of this framework is to facilitate the

modeling of DEVS systems using the GUI library and the

drag and drop approach. The interface is designed to help

the implementation of DEVS model in form of blocks. The

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

modeling approach of DEVSimPy is based on UML

Software, and there is a separating between the GUI part

and the implementation part of DEVS formalism.

With DEVSimPy we can: (1) describe a DEVS model and

save or export it into a library; (2) edit the code of DEVS

model to modify behaviors also during the simulation; (3)

import existing library of models which allows the specific

domain modeling (Power Systems, Fuzzy, Continuous ...);

(4) automatically simulate the system and perform its

analysis during the simulation.

3) DEVS Advantages and drawbacks

Discrete event simulation has a quickly execution because

of its way to treat event, avoiding continuous treatment.

Moreover, coupling and separation between modeling and

simulation on DEVS formalism allow reusing existing

models in new models. DEVS is a powerful formalism

allowing reusing models through library already developed

and also interconnecting of these models to compose

heterogeneous models based on a different formalism. In

our team, it used to simulate continuous systems [2], and

differentials equations, and fuzzy system [18], and sensor

network and neural network.

As such DEVS does not allow simulating all kind of

systems. For example, it is not quite complete to study

systems describing behavior of living species, and their

interaction with environment. As is a formalism associating

other approaches, we would like to add new functionalities

to coupling it with MAS.

After a description of the DEVS formalism and his

working, we’ll introduce Multi Agent System.

B. MAS presentation

MAS are more suited to living organism’s modeling

where communication between system’s members is

complex.

The multi agents’ paradigm is issued from the

distributed artificial intelligence in the early 80’s [13], [14].

This bottom up approach is used to build individual based

model dedicated to the study heterogeneous systems and

solve problems with complex interactions. Multi-agent

systems consist of agents and their environment.

According to Michael Wooldridge we consider that "An

agent is a computer system that is situated in some

environment, and that is capable of autonomous action in

this environment in order to meet its design objectives" [13].

Agents can either be physical (human being, robot, etc.)

or virtual. The global behavior of MAS emerges from the

sum of individual actions of agents, from the interactions

between agents and between agents and their environment.

Many Multi-agent systems platforms and frameworks are

created by researchers and developers. They implement

common standards useful to save developers time and also

aid in the standardization of MAS development. Multi-agent

systems are applied in the real world to computer games,

environment, E-commerce defense, transportation, logistics,

GIS.

1) MAS organisation

In MAS, environment is created in first. Then, agents are

positioned on the environment with random position or

known position. There are three kinds of agents:

 Reactive agent;

 Cognitive agent;

 Hybrid agent.

Reactive agent has no representation of its environment

or others agents, it only reacts to environment stimuli. It has

a simple behavior.

Cognitive agents are smart agents, they detect

environment and others agents. They have skills, and they

are able to plan an action with his skills and his thoughts.

Hybrid agents are the most complex kind of agent: they are

the middle way between cognitive agent and reactive agent.

They may have simple behavior in reaction of stimuli or

complex behavior like a cognitive agent. If we need both

behaviors, we can use hybrid agent to describe simple

behavior to manage memory (use less memory and it is less

complex to code) and complex behavior when we need it.

Agent may communicate with others and with environment

thanks to three communications methods:

 Share memory (blackboard);

 Communication by messages;

 Message by environment.

Share memory is like a database process. Each agent

fills a general knowledge base and takes information in. At

any time an agent can ask blackboard for information.

Communication by messages is like a conversation. Agents

can send a message to one agent or various agents, and they

can ask information to the others agents. The final method

consists to give the whole responsibility to the environment.

Only it can send information to agents.

2) MAS Advantage and drawback

Various kinds of agents exist and we explain their

perspective’s advantage in living organism’s modeling.

TABLE I. MAS AGENT AND COMMUNICATION SUMMARY

Kind of agents
Way of

communication
Architecture

Reactive

Shared

memory (black
board)

Subsumption

architecture

Cognitive By message BDI architecture

Hybrid By environment Hybrid architecture

We have chosen reactive agent because its behavior is
simpler to modelize, and it doesn’t have an environment
perception and it reacts only to exterior stimuli that we can
modelize with an input message. Thereafter, we plan to use
others kind of agents to make behavior and simulation more
specific and reliable.

The MAS’ major drawback is timing constraint. Using
continuous simulation is longer and can cause issues. For
example, it is difficult to apply an action to an agent at a
given time. While DEVS make it possible. Moreover, MAS
does not allow interconnection between heterogeneous

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

models. For example, it is not possible to associate an agent
model with a model describing flow of a river.

C. Existing approaches

In this part, we introduce two existing approaches and
explain our choices about our method.

The first approach we have studied is the platform
GALATEA [19].

GALATEA is offered as a family of languages to model
MAS to be simulated in a DEVS, multi-agent platform.
GALATEA is the product of two lines of research:
simulation languages based on Zeigler's theory of simulation
and logic-based agents. There is in GALATEA a proposal to
integrate, in the same simulation platform, conceptual and
concrete tools for multi-agent, distributed, interactive,
continuous and discrete event simulation. It is also
GALATEA a direct descendent of GLIDER, a DEVS-based
simulation language which incorporated tools for continuous
modeling as well. In GALATEA, GLIDER is combined with
a family of logic programming languages specifically
designed to model agents.

This platform would allow modelize different
formalisms, in different languages in a same interface. But
this implementation seems tedious and difficult.

The second approach is the “Specification of Dynamic
Structure Discrete Event Multiagent [20]” article. It matches
a lot with our works. An agent is represented by an atomic
model and stimuli by exterior messages. But using of VLE
plateform [21], [22] to simulate and using of CELL-DEVS
formalism [7], [23] to describe environment can make the
simulation slower to generate. Indeed, each cell is
represented by an atomic model and for a big environment
number of atomic model is very high. Because of its number,
simulation use lot of resources and memory, especially in our
case with a big agent’s concentration and a large
environment (all of both are atomics models if we’ll use
CELL-DEVS.

III. OUR APPROACH

After analyzing DEVS and MAS’ good points and
weaknesses, it is important to remember the final objective
of this project: to realize a M&S platform to study population
dynamics.

Figure 2. Simplified approach.

 Fig. 2 points a global vision of our DEVS based
architecture. Agents are DEVS models interacting with a

database. Simulation results are displayed by an external
tools (viewing tool). It’s the first step of our project: describe
MAS from DEVS model.

Our goal is to propose a coupling between these two
modeling approaches in order to keep their advantages:
flexibility and opening (in Information technology) for
DEVS formalism and good living organism’s representation
and their interactions for MAS.

To modelize living organisms and their interactions, the
tool must allow:

 To create and destroy agent during simulation;

 To modify variable during simulation;

 To have a graphical and dynamic representation of
models’ evolution;

 To follow evolution thanks to curves;

 To save simulation’s results in database or file;
In this case, we need:

 Data on species studied (by simulation or by levy
and field study);

 A modeling environment;

 Decision aid tools.

Figure 3. AgentDEVS platform.

Fig. 3 represents our platform architecture. It is
composed of a DEVS model library including in the
DEVSIMPY framework and two databases. The first
database contains all data and the second is simpler and
contains only ants’ location used to make the graphical
interface.

DEVSIMPY framework is composed by various atomic
and coupled models. We detail these models:

 One atomic model “Agent manager” is charging to
read and transmit information from database to
agents (send answer) and it is able to create and
destroy agents;

 One atomic model “Data manager” to manage agents
output (it receives their messages) and to update the
two databases (a full database and another allowing

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

to display information). It can also transmit directly
a message to the Agent manager;

 N atomic agent models with their own behavior and
N coupled society models to gather agents with same
behavior;

 An atomic model to allow graphical display.
Data side contains:

 A database containing all information;

 A small database containing only information to

display.
To represent an agent in its environment with DEVS

formalism, we use atomic models. We have one atomic
model for each agent and one atomic model for the
environment. Environment is also a supervisor and there are
coupled models to represent society and agents’ group
(Anthill for ant or shoal). Another approach was defined in
[19] with a hybrid simulation platform called GALATEA.
This platform seems to slow in simulation time and unsuited
to utilization that we wish have.

The chosen way of communication is shared memory
(Blackboard). After studying and thoughts it seems that it is
the most adapted way of communication to couple with
DEVS. DEVS being hierarchical, there are a lot of messages
outstanding. So, using an associated data file (here
blackboard), or a database, allows to limit the number of
messages (towards high level model: environment), and
avoid concurrent access issues to data (files are generated by
high level model and information are centralized). Using
communication by messages, it would have been very
difficult to manage important flow of messages.

Other issues to consider are:

 File management;

 Messages’ format;

 Dynamic agent destruction and creation;

 Graphical interface.
The issue of file management is in first on the file format

used. There are lots of data to represent and we suggest using
a XML file or Netcdf. This kind of file can represent data
easily and clearly. We have also thought on a unique file
reading issue to graphical display and we propose solution:
to have two files. One has only agent’s location and
identification and is use only to graphical display: it’s a CSV
or excel file to represent a grid and the environment. And the
other is a XML or Netcdf file to represent all data. The other
advantage of file management with one model is data
centralization and so we don’t have concurrent access issues.

In MAS, message’s format is defined by a standard:
FIPA-ACL. The minimum message is: type of send
messages (syntaxes), message sender, message receiver,
message content. But often the minimum message isn’t
enough to communicate. We may need to indicate others
information like used language in message content, used
protocol, message’s ontology, reference to an earlier
message and reference to a conversation. Then message must
be transmitted by a Message Transport Service (MTS) by
communication channel (Agent Communication Channel:
ACC).

In the DEVS formalism, message is composed as
following: port, time, value. When compared these two
messages, we could say that “port” in DEVS could be
“sender” and “receiver” in MAS. “Value” could be “content
message”. We did not define remaining parameters yet. To
avoid agents’ creation and destruction issues we suppose that
we can use a DEVS’ extension. This extension allows create
and destroy agents dynamically with a manager [8–10], [16].
The manager is our environment model with a supervisor
role.

The final goal being to represent MAS in DEVS model, it
is essential to use a graphical interface to display data. We
plan to implement a coupling with Google API (Google map
to display data on a map world) and use a viewer to display
data in a board.

IV. CASE OF STUDY

In order to validate our approach, we chose to work on

ant modeling and simulation.

One of the most used models in Multi Agent System

(MAS) is the example of anthill. We will try to transcribe

this ant model with DEVS formalism. In Multi agent

system, an ant is an agent and works alone or with others

agents to modify the environment (Fig. 4). Environment

represents a spot where agents can interact, is a kind of grid.

In a MAS, they are various kind of agents, we used reactive

agent. It reacts to an exterior stimulus and does an action

when it gets this stimulus. With DEVS, we can represent

this with a received message on the entry port of a model.

Every reactive agent is an atomic model.

Figure 4. Agent communication with environment.

Fig. 4 points an external stimulus or initialization from

environment (1). Then ant makes an action or not (2) and

sends a message to the environment to ask questions and

update information (3).

A. Ants’ behavior description

Global behavior of an ant is made with various

independents’ behaviors or with behaviors

Linked. Behaviors we have retained are:

● To look for food;

● To collect food;

● To drop pheromones;

● To back to the nest (brining food);

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

● To drop food;

● Possibility to follow pheromones.

An ant check out of the nest and look for food, it makes

a random motion around the nest. When it founds food, it

eats and goes back to the nest to drop it. During return, it

drops pheromones on the way which are chemicals agents

able to show the way to follow to find food. After have

dropped the food, ant choose to follow pheromone or

looking for others sources food.

B. MAS’ models

In our model, ant has only one parameter, its energy.

Environment have location of food source, nest and others

variables like the number of food in the nest and the number

of pheromone on a cell. At model initialization, the

environment creates many food sources and the nest. Then

agents are created with a default position: nest location.

First, agents move randomly around the nest at each time

step. Ant sends message to the environment to tell him their

locations. Environment tests if ants’ locations are equal to

others object’s location like food and sends him the result.

Figure 5. Ants DEVs behavior.

Ant receives message and depending on the result (Fig.

4 and Fig. 5); it keeps its behavior (looking for food) or

change (eating food). When it finds food, it sends a message

to the environment to inform about the food eaten.

Environment knows how many foods remains on the cell.

Once the food eaten ant changes its behavior and passes in

«back to the nest» step. It drops pheromones (it sends a

message to the environment for each cell through and

environment adds pheromones on that cell). Then ant drop

food in the nest and may choose to follow pheromones if the

scent is strong enough (if many ants drop pheromone on a

same cell, that cell smells more and catches more ants) or

move randomly to find others food sources.

C. DEVS models

The Research team intends to make a link between agent

behavior and a DEVS model.

Fig. 5 represents ants DEVS behavior. Message is like

following: location x, location y, energy, food, and

pheromone. A message involves automatically a data update

and an answer.

1) Ant atomic model

The sets of states about our system are S: looking for

food collects food, back to the nest (bringing food), drop

food and follow pheromones. To start the system’s state is

‘Look for food’. According to this state and input messages

it is changing its state variables (position x, y) and its state

and sends message to update the database or query the

environment.

The internal function δint is the way to allow the ant to

change its behavior and so change state.

The externals functions δext are messages from

environment (here, if they are foods or pheromones).

The output function λ is message send by ant to

environment (here, its location and number of food eat).

The time advance ta function is evolution of time like

«tick» in Multi Agent System.

Input: X = location of neighbors object and object type

(MSG.x,MSG,y,MSG.type)

Output: Y = x, y, id, energy, pheromone, food

Time: Sigma = 0

State: Looking for food, collect food, back to the nest

(bringing food), drop food and follow pheromones.

State variable: x, y, food, energy, id

Initialization function:

S = LookForFood()

X=Y=Food = 0

Energy = 100

Id = UNIQUE

Sigma = 0

Output function: λ

MSG.id=ID

MSG.x =x

MSG.y=y

MSG.energy=energy

MSG.pheromone=False

MSG.food=0

Send(MSG)

Time advance function: ta

return Sigma

Behavior function: δext(MSG) :

if MSG.type== food et S!= bringingFood:

S = EatFood // we change state to EatFood

energy+=10 // it collect food so it gain energy

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

X=MSG.x // ant go on the cell with food

Y=MSG.y // ant go on the cell with food

food+=20 // ant increases number of food

Sigma=4 // time to do action

if MSG.type==pheromone et s!=bringingFood:

S =follow // ant change state to follow

X=MSG.x // ant go on the cell with pheromone

Y=MSG.y // ant go on the cell with pheromone

Sigma =0 // time to 0 to continue motion

if MSG.type==anthill et s==bringingFood:

S=drop // we change state to Drop

Increase number of food in the anthill

(MSG.food=food)

food=0 // food is already drop

X=MSG.x // ant go on the anthill

Y=MSG.y // ant go on the anthill

Sigma=6 // time to drop food

Behavior function: δint() :

if s==drop

S=LookForFood

if s==eatFood

S= BringingFood

if s==LoofForFood

X=random

Y=random

if s== BringingFood

X=random // towards anthill

Y=random // towards anthill

drop pheromone (MSG.pheromone=True)

if s==follow

X=follow pheromone

Y=follow pheromone

Sigma=0

2) Environment atomic models
Environment atomic models manage pheromones, food

source.
Manager’s agent model receives ant’s location, if ants

drop pheromone (with a Boolean) and if food was eaten. In
output it sends to the ants if they are on food source and
pheromones location.

Manager’s data model updates data.

D. Simulation and results

Our models allow simulate an ants’ basic behavior. Its
aim is the validation of our theoretical approach. This
example must be improved to be realistic.

V. CONCLUSION ANS PERSPECTIVES

In this paper, we proposed an original approach to
associate DEVS formalism and MAS. Our approach seems
similar to VLE works but these are limited to an
environment representation made with cellular grid. We do
not want to be limited by this mode of representation.

We propose a new method based on DEVS. We chose an
easy study case, ants’ evolution, to focus on the interests of

our solution. Ant society modeling is a famous example in
MAS. We have chosen this example to test our approach and
to propose a tutorial application even if it’s far to our final
application.

Various issues happened: an important increase in
messages that were sent between agents and environment
(slow down the simulation); the need to dynamically create
or destroy agents (dynamic DEVS [8]); the database
management from atomic model and the display tool
development.

Born of recent work [24], [25] our interest on MAS has
become a real need. Moreover it perfectly integrates to the
development of our platform (DEVSIMPY). Indeed, in
Mediterranean, water availability and quality, as well as and
biodiversity evolution represents a real issue. This is why
development activities and land use planning must consider
the water management and water systems. To answer to
these issues, the STELLA MARE project (« Sustainable
TEchnologies for LittoraL Aquaculture and Marine Research
» was developed at the University of Corsica. Its objectives
are large and it must be a scientific research center in
innovation and appreciation of Mediterranean resources.

We wish to propose a generic software environment
based on discrete event simulation principals (DEVS) and
MAS described in Fig. 6. This environment must allow
simulating fish resources evolution.

Figure 6. Final platform.

Fig. 6 points our final architecture. At time, we suggested
proposed a method to describe MAS from DEVS model. The
next step is completing DEVS framework with a MAS
platform. The objectives of this platform are to make easier
agent creation without describing atomic models behaviors.

Our research perspectives are various with the DEVS
formalism and we plan to work on simulation algorithm
haste and on cognitive agents’ models and on agents and
environment’s interaction and communication. We need also
visualization tools development (viewer).

Our final objective is to define agent models autonomous
and intelligent and able to interact together. So, they will be
influenced by their environment based on current models.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

REFERENCES

[1] J.-B. Filippi, F. Bernardi, and M. Delhom, « The JDEVS

environmental modeling and simulation environment », IEMSS,

Integrated Assessment and Decision Support, Lugano Suisse, pp.

283–288, 2002.

[2] L. Capocchi, F. Bernardi, D. Federici, and P.

Bisgambiglia, Transformation of VHDL Descriptions into DEVS

Models for Fault Modeling and Simulation. 2003.

[3] P.-A. Bisgambiglia, E. de Gentili, P. A. Bisgambiglia,

and J. F. Santucci, « Fuzzy Simulation for Discrete Events

Systems », in Proceedings of the 2008 IEEE World Congress on

Computational Intelligence (WCCI 2008) - IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pp. 688–694, 2008.

[4] S. Garredu, E. Vittori, J.-F. Santucci, and D. Urbani, « A

methodology to specify DEVS domain specific profiles and create

profile-based models », pp. 353–359, 2011.

[5] B. P. Zeigler, Theory of Modeling and Simulation.

Academic Press, 1976.

[6] B. P. Zeigler, Multifaceted modelling and discrete event

simulation. Academic Press, 1984.

[7] J. Ameghino, A. Troccoli, and G. Wainer, « Models of

complex physical systems using Cell-DEVS », pp. 266–273.

[8] F. Barros, « Dynamic structure discrete event system

specification: a new formalism for dynamic structure modelling

and simulation », in Proceedings of Winter Simulation Conference

1995, 1995.

[9] A. M. Uhrmacher and B. Schattenberg, « Agents in

Discrete Event Simulation », in Proceedings of ESS98, 1998.

[10] A. Uhrmarcher, « Dynamic Structures in Modeling and

Simulation: A Reflective Approach », ACM Transactions on

Modeling and Computer Simulation vol. 11 2001, pp. 206–232,

2001.

[11] P. Fishwich and B. P. Zeigler, « A multi-model

methodology for qualitative model engineering », ACM

transaction on Modeling and Simulation, vol. 2, no. 1, pp. 52–81,

1992.

[12] G. Weiss, Multiagent Systems, A Modern Approach to

Distributed Artificial Intelligence. MIT Press, 1999.

[13] M. Wooldridge, An Introduction to MultiAgent Systems,

Wiley and Sons. Chichester, West Sussex, Angleterre: Wiley and

Sons, 2002.

[14] J. Ferber, Multi-Agent System: An Introduction to

Distributed Artificial Intelligence, Addison Wesley Longman.

Addison Wesley Longman, 1999.

[15] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of

Modeling and Simulation, Second Edition. 2000.

[16] F. Barros, « Abstract simulators for the dsde

formalism », in Proceedings of WSC 1998, pp. 407–412, 1998.

[17] A. C. Chow and B. P. Zeigler, « Abstract Simulator for

the Parallel DEVS Formalism », in Proceedings of AIS94, 1994.

[18] P.-A. Bisgambiglia, P. A. Bisgambiglia, and J.-S.

Gualtieri, « Cognitive simulation-based on knowledge evolution in

fuzzy discrete event systems », pp. 895–901, 2011.

[19] J. Davila and M. Uzcategui, « GALATEA: A multi-

agent, simulation platform », in In International Conference on

Modeling, Simulation and Neural Networks MSNN’2000, Mérida,

Venezuela, 2000.

[20] R. Duboz, D. Versmisse, G. Quesnel, A. Muzzy, and E.

Ramat, « Specification of Dynamic Structure Discret event

Multiagent Systems », in Agent-Directed Simulation (ADS 2006),

Huntsville, AL, USA,, 2005.

[21] E. Ramat and P. Preux, « “Virtual laboratory

environment” (VLE): a software environment oriented agent and

object for modeling and simulation of complex systems »,

Simulation Modelling Practice and Theory, vol. 11, no. 1, pp. 45–

55, March 2003.

[22] G. Quesnel, R. Duboz, and É. Ramat, « The Virtual

Laboratory Environment – An operational framework for multi-

modelling, simulation and analysis of complex dynamical

systems », Simulation Modelling Practice and Theory, vol. 17, no.

4, pp. 641–653, April. 2009.

[23] L. Ntaimo and B. P. Zeigler, « Expressing a Forest Cell

Model in Parallel DEVS and Timed Cell-DEVS Formalisms »,

2002.

[24] D. Urbani and M. Delhom, « Water Management Using

a New Hybrid Multi-Agents System - Geographic Information

System Decision Support System Framework », pp. 314–319,

2006.

[25] D. Urbani and M. Delhom, « Analyzing knowledge

exchanges in hybrid MAS GIS decision support systems, toward a

new DSS architecture », in Proceedings of the 2nd KES

International conference on Agent and multi-agent systems:

technologies and applications, Berlin, Heidelberg, pp. 323–332,

2008.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-222-6

COMPUTATION TOOLS 2012 : The Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

	I. Introduction
	II. Overview
	A. DEVS presentation
	1) DEVS models
	2) DEVSIMPY framework
	3) DEVS Advantages and drawbacks

	B. MAS presentation
	1) MAS organisation
	2) MAS Advantage and drawback

	C. Existing approaches

	III. Our approach
	IV. Case of study
	A. Ants’ behavior description
	B. MAS’ models
	C. DEVS models
	1) Ant atomic model
	2) Environment atomic models

	D. Simulation and results

	V. Conclusion ans perspectives
	References

