
Hardware Realization of Embedded Control Algorithm on FPGA

Róbert Krasňanský, Branislav Dvorščák and Štefan Kozák
Institute of Automotive Mechatronics, Faculty of Electrical Engineering and IT,

Slovak University of Technology in Bratislava,
Bratislava, Slovakia

{robert.krasnansky, branislav.dvorscak, stefan.kozak}@stuba.sk

Abstract—This paper explores an efficient algorithm for design
and implementation of Proportional-Integral-Derivative (PID)
controller on the Field Programmable Gate Array (FPGA)
technology. To create a synthesizable control algorithm, the
Very High Speed Integrated Circuits Hardware Development
Language (VHDL) was used as a programming tool. The paper
points to the possibilities of parallel computation with the aim
of speeding up the control implementation. The practical
application of proposed control algorithm is illustrated by a
test performed on a real laboratory Direct Current (DC) motor
system. The results confirm the legitimacy of using the FPGA
methodology for design of control algorithms, since it improves
speed, accuracy and compactness. In addition, it is cost
effective and has a low power consumption, which are
desirable attributes in embedded control applications.

Keywords-FPGA; PID controller; Spartan 6; DC motor;
VHDL language

I. INTRODUCTION

Motivated by the practical success of conventional
control methods applied in industrial process control, there
has been an increasing amount of work on development of
effective hardware realizations of these control algorithms.
Despite the numerous control design methods that have been
proposed in the literature, it is estimated that PID controllers
are still employed in more than 92% of the industrial
processes today and many control systems using PID control
have proved its satisfactory performance [1].

Recently, it has been shown that FPGAs can pose an
alternative solution for the realization of digital control
systems, previously dominated by the microprocessor
systems [2]. The motivation behind using FPGAs to
implement a PID controller, rather than microcontrollers or
digital signal processors (DSPs), is that they provide a good
balance between performance and cost. On the other hand,
although the microcontrollers may be cheaper, they do not
provide enough processing power to effectively perform
complex calculations in real-time. Digital signal processors
can implement complex algorithms quickly; however, these
implementations are expensive. In addition, the systems
designed on FPGA are flexible and can be reprogrammed an
unlimited number of times. Unlike processors, FPGA circuits
use dedicated hardware for processing commands. FPGAs
logical structures can be arranged to execute in a truly
parallel manner unlike the inherent sequential execution in
microcontrollers, so different processing operations do not

have to compete for the same resources. This functionality
also makes it possible for multiple control loops to run on a
single FPGA device at different rates. Execution time may
be this way dramatically reduced, since parallel architectures
allow FPGA-based controllers to reach the level of
performance of their analog counterparts without their main
drawbacks as parameter drifts or lack of flexibility [7]. These
features make FPGAs very interesting for rapid prototyping.

The objective of this work is to design and implement a
digital PI controller algorithm on FPGA platform and verify
its performance as well as assess the FPGA suitability for
control application.

The paper is organized as follows. Section II presents the
overview to the FPGA architecture and functionality as well
as VHDL language features and applications. Section III
introduces the technical background of the PID algorithm
followed by an approach for designing and implementation
of the control system extended with the anti-windup on
FPGA technology. In Section IV, an application of the
proposed design to a laboratory DC motor system is
presented and the experimental results on Xilinx FPGA chip
are discussed. Comparisons are made between the
implementation on a real system and the simulation results.
The conclusion and future work are provided in Section V.

II. BACKGROUND

A. FPGA Architecture

The Field Programmable Gate Array (FPGA) represents
an integrated circuit containing a two-dimensional array of
configurable logic blocks whose interconnection and
functionality can be reprogrammed depending upon the
requirement of the user [8]. A typical FPGA architecture
depicted in the Fig. 1 consists of three major elements:

• Programmable logic blocks, which consist of
Configurable Logic Blocks (CLBs) arranged in an
array that provides the functional elements and
implements most of the logic in an FPGA. Each
logic block has two flip flop and can realize any 5-
input combinational logic function.

• Programmable interconnect resources provide
routing path to connect between individual CLBs
and between CLBs and input-output blocks.

• Input-Output Blocks (IOBs) provide the interface
between the package pins and internal signal lines
and thus the interconnection of external signals and

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

internal signals in an array of CLBs. It can be
programmed and configured as input, output or
bidirectional port.

The CLBs, IOBs and their interconnectors are managed
by a configuration program stored in a memory chip.

Figure 1. FPGA internal structure

A custom design can be implemented by specifying the
function of each logic cell and setting the connection of each
programmable switch. The CLBs structures include 2, 4 or
more logic cells, also called logic elements. The structure of
a logic cell, as the basic grain of the FPGA, is presented in
Fig. 2. It consists of a Look-up Table (LUT), which can be
configured either as a ROM, RAM or a combinatorial
function.

Figure 2. Logic cell [7]

Also, a carry look-ahead data path is included in order to
build arithmetic operators and a D-Type Flip-Flop with all its
control inputs, allowing registering the output of the logic
cell.

B. VHDL Programming Language

FPGAs can be programmed using Very High Speed
Integrated Circuits Hardware Development Language
(VHDL) [1] specifically developed to describe the behavior
and structure of a digital circuit and its attributes. It uses
significantly different principles than C language; for
instance, the commands in the code are not executed
sequentially, from the top to the bottom but in parallel way.
VHDL describes the connections of the logic gates together
to form adders, multipliers, registers and so on. A custom

design can be implemented by specifying the function of
each logic cell and setting the connection of each
programmable switch.

A circuit design process can be carried out as shown in
the Fig. 3. Once a FPGA is programmed, the internal
circuitry is connected in a way that creates a hardware
implementation of the application defined in the software.
The big advantage of FPGA-based algorithms design is the
possibility to employ the modular approach. Since there are a
lot of I/O ports, it is theoretically possible to design more
algorithms on one chip without influencing one another.

Figure 3. Design process of the circuit

The result is a user programmable piece of hardware with
the reliability of dedicated hardware circuitry and the speed
of modern microprocessor. Finally, FPGAs are Join Test
Action Group (JTAG) compliant, thus the test data can be
serially loaded into the device and the test results can be
serially read out.

III. IMPLEMENTATION OF CONTROL ALGORITHM ON FPGA

A. Digital PI Controller

In this paper, the PID algorithm is applied for closed loop
control. Among the control structures used in the industrial
segment, the classic parallel PID controller depicted in Fig. 4
is one of the most widely used due to its well established
practical implementation and tuning. The controller output is
computed in continuous time as follows:

++= ∫
t

d
i

p dt

tde
Tdtte

T
tektu

0

)(
)(

1
)()((1)

where the adjustable parameters are the proportional gain
kp, the reset time Ti and the derivative time Td, while u(t) is
the control output and e(t) is the error signal (setpoint
response level – measured response). The compensation
parameters allow an increase in the system performance in a
variety of ways.

Proportional control increases gain margin and stabilizes

a potentially unstable system. Integral control, on the other

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

hand, minimizes steady-state error and derivative control
increases system speed by increasing system bandwidth.

For a small time sample T, (1) can be transformed to a
difference equation by discretization using Euler integration
method – rectangular integration.

Figure 4. PID controller structure

A difference equation can be implemented by digital
systems, either in hardware or software, where the derivative
term is replaced by a first-order difference expression and
the integral part by a sum, so the equation is given as:

))1()(()()()(
1

0

−−++= ∑
−

=
nenekjekneknu

n

j
dip (2)

where n is a discrete time instant, ki = kpT/Ti is the
integral coefficient, kd = kpTd/T is the derivative coefficient
and T is sampling time. Using this algorithm called the
“position form”, all past errors e(0) - e(n) have to be stored
to compute the sum. In this paper, we prefer the “incremental
form” of the PI algorithm, where the recursive equation
describing this algorithm is obtained when (2) for the time
instant n-1 is subtracted from the same equation for the time
instant n. Thus, the expression for u(n-1) is calculated in the
following way:

))2()1(()()1()1(
1

0

−−−++−=− ∑
−

=
nenekjekneknu

n

j
dip (3)

and the correction term as

))2()1(()(

)1()()(

210 −+−+=
−−=∆

nekneknek

nununu
 (4)

Subsequently, for the PI controller, the current control
input is in the form

)1()()1()()1()(10 −++−=∆+−= nekneknunununu (5)

where

pkk =0

 ip kkk +−=1

and ki = kpT/Ti is the integral coefficient. The big advantage
of this approach is that in software implementation, (5)
avoids accumulation of all past errors.

The PI incremental form (5) has to be decomposed into
basic arithmetic operations:

)()()(nynwne −= (6)

)(00 nekp = (7)

)1(11 −= nekp (8)

 101 pps += (9)

The current control output is then calculated as

)1()(1 −+= nusnu (10)

B. Parallel Design

For the implementation of the proposed PI algorithm
onto FPGA, the parallel design [3] has been used. This
design is mainly composed of combinational logic, so each
operation has got its own arithmetic unit – adder or
multiplier. Such modified control algorithms are then
feasible on FPGA circuits. The parallel design architecture of
the PI incremental algorithm is depicted in Fig. 5. The design
requires a total of 2 combinational logic multipliers, 3 adders
and 3 registers [6]. The clock signal clk is used to control
sampling frequency. The negation of y is generated using bit-
wise complementing and subsequently adding 1. The
difference w - y generates current error e(n).

Registers are used to store the intermediate results
obtained. Multipliers and adders are used for multiplication
and addition of input signals according to arithmetic
operations described in the previous section A. The block
REG stores error values e(n) and e(n−1). Hence, at the rising
edge of control, signal e(n) of the last cycle is latched at
register REG, thus becomes e(n−1) of this cycle. Similarly,
u(n − 1) are recorded at REGs by latching u(n) respectively
[10].

Figure 5. Parallel design of incremental PI algorithm

The values of e(n) and e(n−1) with their polarity
indicating whether the calculated value is positive or
negative are fed to PI equation (10) and the current control

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

output is calculated. From Fig. 5, it can be seen that the
register blocks (REG) depend on clock frequency. That
means that the functionality of these blocks shall be within
the process, which responds to the rising edge of clk signal.
At the same time, registers can be set to initial values of 0
after the first start or by asserting the reset signal. The
process code example can be developed as depicted in Fig. 6
below.

Figure 6. The laboratory model of DC motor

Once the signal reset is in logical state 1, the variables e(n),
e(n-1) and u(n-1) are reset. When the signal reset is in logical
state 0 and the rising edge of the signal clk occurs at the
same time, the program assigns to the variable e(n-1) the
value of the variable e(n), similarly to the variable u(n-1) the
value of the variable u(n) and calculates the difference of
input signals w –y.

C. Implementation of Anti-windup Control

In the motor speed control, the maximum control output
from a PI controller is determined by the converter
protection, magnetic saturation and motor overheating.
Hence, the saturation is applied even at the cost of
introduction a non-linearity into the system. This
phenomenon, called windup effect, can lead to a large
overshoot, long settling time or even unstable closed-loop
system.

The goal of the implementation of anti-windup in the
incremental form of the PI controller is to eliminate the
wind-up in the error integrator and to provide a strictly
aperiodic step response even in case with large input
disturbance. The implementation of anti-windup system is
easy using incremental PI algorithm. The control action
value is being checked and uout is determined according to
the following equation [4]:

≤
≥

>>

=

minmin

maxmax

minmax

 if

 if

 if

uuu

uuu

uuuu

u

in

in

inin

out (11)

where uin(n) represents the control output before saturation
and uout(n) is the saturated control output variable.

IV. CASE STUDY

A. Laboratory DC Motor System

In this section, the proposed algorithm is applied to
control a real laboratory DC motor system (Fig. 7) to
demonstrate its high performance and efficacy. The system
consists of two co-operating real DC servomotors, where the
first one is connected as a drive motor and the other one as a
generator. The manipulated variable is the input voltage of
DC motor and the output controlled variable is the angular
speed represented by the output voltage in range of 0-10V.
To obtain a model of the system, input-output relations of the
plant have been identified with the help of the software
LABREG [5]. The interconnection of the laboratory model
with the software LABREG is assured by the Advantech data
acquisition card type PCI 1711.

Figure 7. The laboratory model of DC motor

The discrete transfer function we obtained with the
selected sampling rate Ts = 0.1s has been converted to the
following continuous-time model:

 ()
1053.141420

677.108047.0
2 ++

+=
ss.

s
sG (12)

The control objective was to drive the angular speed of
the motor to track the desired reference signal.

B. Design of Control Algorithm

The first control algorithm has been developed using
VHDL language in the Xilinx ISE Design Suite 14.4
software environment according to incremental PI from (Fig.
5). Firstly, a software implementation was developed and
tested to verify the algorithm functionality. By choosing of
appropriate sampling period and fixed point format a discrete
PI controller has been developed from continuous-time PI
controller, whereas the inverse dynamic tuning method has
been used to tune the parameters kp and Ti. From the
parameter tuning experiment the following results were
obtained: proportional gain kp = 0.2025, integral coefficient
Ti = 0.4752, derivative coefficient kd = 0 and sample period T
= 0.1s. The same discrete PI parameters were applied to the

Regist_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
 en1 <= to_sfixed (0, en1);
 un1 <= to_sfixed (0, un1);
 e <= to_sfixed (0, e);
ELSIF clk'EVENT AND clk = '1' THEN
 en1 <= e;
 e <= to_sfixed (to_integer (unsigned (w)) –
 to_integer (unsigned (y)), e);
 un1 <= "0" & Add3 (16 downto -9);
END IF;

END PROCESS Regist_process;

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

hardware implementation on FPGA to perform the control
tests.

Because of the fact that most FPGAs are limited to finite
precision signal processing using fixed-point arithmetic, the
bit word-length and radix setting of input and output signals
were determined carefully to ensure the fidelity of the
algorithm. Since every addition or subtraction causes adding
an extra bit as well as every multiplication result will have a
bit width equal to the sum of the number of bits in the inputs,
this was the most important part of the design. A simple flow
diagram (Fig. 8) shows the implementation of the designed
algorithm using FPGA. The algorithm has 4 inputs: the
motor system output, the reference signal w with the same bit
width as signal y, clock and reset.

Figure 8. FPGA-based control implementation cycle

The step sequence of the algorithm can be determined as
follows:

Step 1: Initialization of the system (set clock frequency,
declaration of system variables);

Step 2: Setting of bit width of the signals (input and
output signals according to the resolution of A/D
conversion results);

Step 3: Calculation of the current error according to the
reference signal defined by user (e = w – y);

Step 4: Calculation of the control output with the
current error based on the combinatorial logic
operations according to relation (10) and parallel
architecture (Fig. 5);

Step 5: Optimization of the obtained control output for
8-bit D/A converter;

Step 6: The analog output signal obtained is fed back to
drive the speed of DC motor system.

The second control algorithm was developed according
to section C and (11) and also applied to the real-time speed
control of the laboratory motor system. This algorithm is
unlike the first one augmented of the anti-windup
mechanism. The calculated control output is adjusted
according to (10) and after that optimized and fed back to
motor system through 8-bit DAC.

C. Experimental Results

The experimental studies were carried out to evaluate the
performance of the proposed control algorithm. The
algorithm was downloaded into SPARTAN-6 FPGA
development kit (Fig. 9) and the complete system was reset.

Figure 9. SPARTAN-6 development board

The comparison of the experimental results executed
using FPGA with the simulation results obtained from
MATLAB are illustrated in Fig. 10 below.

Figure 10. Time responses of the real system and simulation

The comparison of the performance of the proposed anti-
windup PI control algorithm with the PI control algorithm
without the anti-windup mechanism is also depicted. The

10 20 30
0

2

4

6

time [s]

a
ng

ul
a

r
sp

e
e

d
[r

a
d/

s]

setpoint
output (real)
output (simulation)

10 20 30
0

2

4

6

time [s]

setpoint
output
output (anti-windup)

10 20 30

1

2

3

4

time [s]

u
 [V

]

control (simulation)
control (real)

10 20 30

1

2

3

4

time [s]

upper bound
control
control (anti-winup)

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

results show the effectiveness and good performance of the
FPGA-based controller. The limited vector size of the signals
due to the different interpretation of the fixed-point
arithmetic has an effect in the calculation and therefore in the
shape of the obtained time responses.

The objective evaluation of quality has been performed
by meaning of various performance and quality criteria in the
time domain (settling time, maximal overshoot and root
mean square error (RMSE)) with results expressed in Table
1. The PID algorithm has been demonstrated to be effective
for DC motor speed control.

TABLE I. QUANTIFICATION OF QUALITY CONTROL CRITERIA

Control Performance

Controlled output Settling time
Max.

Overshoot (%)
RMSE

Real system 8,25 6,9449 0,8937

Simulation 9,1 5,6301 0,8992

Real system with anti-windup 5,3 0,7815 0,9217

As seen in Table 1, anti-windup mechanism has

improved the control performance mostly in the way of
overshoot and settling time.

D. Resource Usage

Xilinx tool device utilization summary and percentage of
available resources reports, which have been used for the
current design using FPGA are shown in Table 2 below.

TABLE II. DEVICES UTILIZATION SUMMARY

Device Utilization Summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 170 18,224 1%

Number used as Flip Flops 168

Number used as Latches 2

Number of Slice LUTs 313 9,112 3%

Number used as logic 305 9,112 3%

Number of occupied Slices 124 2,278 5%

Number of MUXCYs used 204 4,556 4%

Number with an unused Flip Flop 186 344 54%

Number with an unused LUT 31 344 9%

Number of fully used LUT-FF pairs 127 344 36%

Number of slice register sites lost to
control set restrictions

94 18,224 1%

Number of bonded IOBs 33 232 14%

Number of LOCed IOBs 13 33 39%

Number of RAMB16BWERs 0 32 0%

Number of RAMB8BWERs 0 64 0%

Number of BUFG/BUFGMUXs 5 16 31%

Number of DSP48A1s 3 32 9%

Hardware resources usage was: 168 slice flip-flops, 170
slice registers and 313 slice LUT's. It can be seen that just
5% of the FPGA was used.

V. CONCLUSION AND FUTURE WORK

In this paper, a closed-loop PI algorithm was proposed,
designed and successfully implemented on FPGA platform.
The performance was verified and tested for control of
laboratory DC motor system. The control algorithm has been
improved by using the anti-windup structure in case of
considering the input constraints. The overall control
algorithm has been programmed using VHDL language and
implemented on Xilinx Spartan-6 FPGA development kit.
The experimental results show a good set-point tracking and
demonstrate that FPGAs are well suited for implementation
of complex motor control algorithms due to their high speed
execution characteristics. The future work will deal with the
design and implementation of more complex predictive
control algorithm considering the constraints on input, state
and output variables.

ACKNOWLEDGMENT

The work has been supported by the Slovak Research
and Development Agency under grants APVV-0772-12 and
APVV-0246-12.

REFERENCES
[1] P. J. Ashenden, The Designer’s Guide to VHDL. Morgan

Kaufmann, 1995.
[2] K. J. Astrom and B. Wittenmark, Computer Controlled

Systems, Englewood Cliffs, NJ: Prentice-Hall, 1997.
[3] Y. F. Chang, M. Moallem, and W. Wang, “Efficient

implementation of PID control algorithm using FPGA
technology,” Proceedings of 43 IEEE Conference On
Decision and Control, vol. 5, Dec. 2004, pp. 4885–4890.

[4] L. Charaabi, E. Monmasson, and I. Slama-Belkhodja,
“Presentation of an efficient design methodology for FPGA
implementation of control systems: Application to the design
of an antiwindup PI controller,” Proc. IEEE Ind. Electron.
Soc. Annu. Conf., vol. 3, Nov. 2002, pp. 1942–1947.

[5] S. Kajan and M. Hypiusová, “Labreg Software for
Identification and Control of Real Processes in Matlab,”
Technical Computing Prague 2007: 15th Annual Conference
Proceedings, Prague, Czech Republic, Nov. 2007, pp. 71.

[6] R. Krasňanský and B. Dvorščák, “Design and Implementation
of FPGA-based PID controller,” In ACCS’13: 3rd
International Conference on Advanced Control Circuits and
Systems, ERI, Luxor, Dec. 2013, pp. 43.

[7] E. Monmasson and M. N. Cirstea, “FPGA Design
Methodology for Industrial Control Systems-A Review,”
IEEE Transactions on Industrial Electronics, vol. 54, August
2007, pp. 1824-1842.

[8] J. Oldfield and R. Dorf, Field-Programmable Gate Arrays,
John Wiley & Son, 1995.

[9] Xilinx Data Book, 2006, Available online at: www.xilinx.com
(accessed March 28, 2014).

[10] W. Zhao, B. H. Kim, A. C. Larson, and R. M. Voyles, “FPGA
implementation of closed-loop control system for small-scale
robot,” In ICAR’05: 12th International Conference on
Advanced Robotics, Seattle, WA, July 2005, pp. 70-77.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

