
Semi-Automated Task Planning in Metric Propositional Interval Neighborhood Logic

Laura González-Garcı́a
Polytechnic University of Cartagena

Cartagena, Spain
Email: lgg2@alu.uptc.es

Guido Sciavicco
Dep. of Information Engineering and Communications

University of Murcia, Murcia, Spain
Email: guido@um.es

Abstract—Planning is the process of thinking about and organiz-
ing the activities required to achieve a desired goal. It involves
the creation and maintenance of a plan. As such, planning is
a fundamental property of intelligent behaviour. This process is
essential to the creation and refinement of a plan, or integration of
it with other plans. In logistics planning, which is a fundamental
part of every engineering projects, planning is a usually hand-
crafted activity, often supported by high-level commercially
available software. These techniques are error-prone as they relay
on the expertise of the responsible engineer, and suffer of limited
reasoning capabilities, being usually based on temporal constraint
networks in Allen’s style. Recently, interval temporal logics have
been studied that allow one to describe temporal situations at a
higher level, and yet with a decidable satisfiability problem. We
propose here the use of Metric Interval Temporal Neighbourhood
Logic, a decidable fragment of Halpern and Shoham’s Modal
Logic for Time Intervals (HS), as a tool for task planning. The
main characteristics of this proposal is that the language, whose
syntax heavily restricts HS, and whose proposed applications so
far have been limited to theoretical and abstract situations, is
still expressive enough to cope with the complexity of a realistic
case study.

Keywords-Automated Planning; Interval Temporal Logics.

I. INTRODUCTION

Task management is the process of managing tasks through
its life cycle. It involves planning, testing, tracking and re-
porting. Task management can help either individuals achieve
goals, or groups of individuals collaborate and share knowl-
edge for the accomplishment of collective goals [1]. Tasks are
also differentiated by complexity, from low to high. Effective
task management requires managing all aspects of a task, in-
cluding its status, priority, time, human and financial resources
assignments, recurrence, notifications and so on. These can
be lumped together broadly into the basic activities of task
management. Managing multiple individual or team tasks may
require specialised task management software. Specific soft-
ware dimensions support common task management activities.
These dimensions exist across software products and services
and fit different task management initiatives in a number of
ways. In fact, many people believe that task management
should serve as a foundation for project management activities.
Task management may form part of project management
and process management and can serve as the foundation
for efficient work-flow in an organisation. Project managers
adhering to task-oriented management have a detailed and up-
to-date project schedule, and are usually good at directing team

members and moving the project forward.

As a discipline, task management embraces several key
activities. Various conceptual breakdowns exist, and these,
at a high-level, always include creative, functional, project,
performance and service activities. Creative activities per-
tain to task creation. These should allow for task planning,
brainstorming, creation, elaboration, clarification, organization,
reduction, targeting and preliminary prioritization. Functional
activities pertain to personnel, sales, quality or other manage-
ment areas, for the ultimate purpose of ensuring production
of final goods and services for delivery to customers. These
should allow for planning, reporting, tracking, prioritizing,
configuring, delegating, and managing of tasks. Project ac-
tivities pertain to planning and time/costs reporting. These
can encompass multiple functional activities but are always
greater and more purposeful than the sum of its parts. Project
activities should allow for project task breakdown, task al-
location, inventory across projects, and concurrent access to
task databases. Service activities pertain to client and internal
company services provision, including customer relationship
management and knowledge management. These should allow
for file attachment and links to tasks, document management,
access rights management, inventory of client and employee
records, orders and calls management, and annotating tasks.
Performance activities pertain to tracking performance and
fulfillment of assigned tasks. Finally, report activities pertain
to the presentation of information regarding the other five
activities listed, including graphical display.

Task management software tools abound in the market-
place [2][3]. Some are free; others exist for enterprise-wide de-
ployment purposes. Some boast enterprise-wide task creation,
visualization and notifications capabilities - among others -
scalable to smaller, medium and bigger size companies, from
individual projects to ongoing corporate task management.
Project management and calendaring software also often pro-
vide task management software with advanced support for
task management activities and corresponding software en-
vironment dimensions, reciprocating the myriad project and
performance activities built into most good enterprise-level
task management software products. Nevertheless, most of
such software lack truly intelligent capabilities, as they are
based on algebraic networks in Allen’s style [4][5]. The main
limits of algebraic, constraint-based reasoning, compared to
logical reasoning are discussed in [6], and include the fact that
algebraic networks: (i) are purely existential, and do not allow,

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[i, j]RA[i′, j′] ⇔ j = i′

[i, j]RL[i′, j′] ⇔ j < i′

[i, j]RB [i′, j′] ⇔ i = i′, j < j′

[i, j]RE [i′, j′] ⇔ j = j′, i < i′

[i, j]RD [i′, j′] ⇔ i < i′, j′ < j

[i, j]RO [i′, j′] ⇔ i < i′ < j < j′

i j

i′ j′

i′ j′

i′ j′

i′ j′

i′ j′

i′ j′

Figure 1: Allen’s interval relations and the corresponding HS
modalities.

in general, the specification of universal properties; (ii) do not
allow, in general, the specification of negative information;
(iii) are not designed to easily integrate and/or compare two
or more plans.

The fact that constraint-based networks are usually pre-
ferred over logic-based reasoning systems in planning lan-
guages and software is explained by the usually bad compu-
tational behaviour of interval-based temporal logics. Interval
temporal logics provide a natural framework for temporal rep-
resentation and reasoning on interval structures over linearly
ordered domains. They take time intervals as the primitive
ontological entities and define truth of formulae with respect
to them instead of to time instants. Modal operators of interval
temporal logics correspond to binary relations between pairs of
intervals In the realm of interval temporal logics, a prominent
role is accorded to Halpern and Shoham’s modal logic of
time intervals (HS) [7], whose modalities make it possible
to express all Allen’s binary interval relations. Unfortunately,
most of them, including HS and the majority of its fragments,
turn out to be undecidable (a comprehensive survey on interval
logics can be found in [8]; more recent contributions include
[9][10]). Focusing our attention to the class of models built
on the set of the integers, in [10] it has been shown that
there exists exactly 44 expressively different fragments of HS
with a decidable satisfiability problem, with complexities from
NP-complete to EXPSPACE-complete, and 62 are decidable
in the finite case [11]. Among these, a metric extension of
the fragment that features 〈A〉 and 〈A〉 only (known as AA
or PNL) has been developed by Bresolin et al. in [12]. The
resulting interval temporal logic, called Metric PNL (MPNL
for short), pairs PNL modalities with a family of special
proposition letters expressing integer constraints (equalities
and inequalities) on the length of the intervals over which
they are evaluated. The authors show that the satisfiability
problem for MPNL, interpreted over finite linear orders and the
natural numbers, is decidable, and, in particular, EXPSPACE-
complete.

In this paper, we propose the use of MPNL as a task
planning reasoning tool. In the next section, we provide
the necessary preliminaries on MPNL and interval temporal
logics in general. In Section 3, we consider the problem of
representing a plan in MPNL, and in Section 4 we apply our
technique to a practical case-study, before concluding.

II. PRELIMINARIES

Let D = 〈D,<〉 be a linearly ordered set. An interval
over D is an ordered pair [i, j], where i, j ∈ D and i < j
(strict semantics). There are 12 different non-trivial ordering
relations (excluding equality) between any pair of intervals in a
linear order, often called Allen’s relations [4]: the six relations
depicted in Figure ?? and the inverse ones. We interpret
interval structures as Kripke structures and Allen’s relations
as accessibility relations, thus associating a modality 〈X〉 with
each Allen’s relation RX . For each operator 〈X〉, its inverse
(or transpose), denoted by 〈X〉, corresponds to the inverse
relation RX of RX (that is, RX = (RX)−1). Halpern and
Shoham’s logic HS is a multi-modal logic with formulas built
on a set AP of proposition letters, the boolean connectives ∨
and ¬, and a modality for each Allen’s relation. We denote
by X1 . . .Xk the fragment of HS featuring a modality for each
Allen’s relation in the subset {RX1

, . . . , RXk}. Formulas of
X1 . . .Xk are defined by the grammar:

ϕ ::= p | ¬ψ | ψ ∨ τ | 〈X1〉ψ | . . . | 〈Xk〉ψ,

where p ∈ AP is a propositional letter. The other boolean
connectives can be viewed as abbreviations, and the dual
operators [X] are defined, as usual, as [X]ϕ ≡ ¬〈X〉¬p.
The semantics of HS is given in terms of interval models
M = 〈I(D),V〉, where I(D) is the set of all intervals over
D and V : AP 7→ 2I(D) is a valuation function that assigns to
every p ∈ AP the set of intervals V(p) over which p holds.
The truth of a formula over a given interval [i, j] in an interval
model M is defined by structural induction on formulas:

M, [i, j]
 p iff [i, j] ∈ V(p)
M, [i, j]
 ¬ψ iff M, [i, j] 6
 ψ
M, [i, j]
 ψ ∧ τ iff M, [i, j]
 ψ and M, [i, j]
 ϕ
M, [i, j]
 〈Xk〉ψ iff M, [i′, j′]
 ψ

for some [i, j]RXk [i′, j′].

Formulae of HS can be interpreted over a class of interval
models (built on a given class of linear orders). Among others,
we mention the following important classes of (interval models
built on important classes of) linear orders: (i) the class of
all linear orders; (ii) the class of (all) dense linear orders,
that is, those in which for every pair of distinct points there
exists at least one point in between them; (iii) the class of (all)
discrete linear orders, that is, those in which every element,
apart from the greatest element, if it exists, has an immediate
successor, and every element, other than the least element, if
it exists, has an immediate predecessor (iv) the class of (all)
finite linear orders, that is, those having only finitely many
points. In the recent years, a great effort has been devoted to
the study of decidability of fragments of HS. Ever since HS
was introduced, it was immediately clear that its satisfiability
problem is undecidable when interpreted on every interesting
class of linearly ordered sets [7], including all of the above
mentioned ones. While this sweeping result initially discour-
aged further research in this direction, recent results showed
that the situation is slightly better then it seemed. Given the
set of HS modalities that correspond to the set of Allen’s
relations {RX1

, . . . , RXk}, we call fragment F = X1X2 . . .Xn

any subset of such modalities, displayed in alphabetical order.
There are 212 such fragments. Some of these are expressively
equivalent to each other; in [9] (respectively, [13]) it is possible

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

to find all possible inter-definability in the class of all linearly
ordered sets (respectively, all dense linearly ordered sets),
giving rise to 1347 (respectively, 966) expressively different
fragments. The number of different fragments on other classes
of linear orders has not been determined yet, but it is believed
that the situation in the finite or discrete case should be similar.
Out of these fragments, it has been possible to prove that
exactly 62 are decidable in the finite case [11], and 44 in
the (strongly) discrete case (and in the case of Z) [10], all of
which with complexities that range from NP-complete (in very
simple cases) to NEXPTIME-complete, EXPSPACE-complete,
to non-primitive recursive.

Motivated by the (potential) applicability of these logics, in
the discrete and the finite case the possibility of adding length
constraints has been studied. Following [14] we introduce a set
of pre-interpreted atomic propositions referring to the length of
the current interval. Given a distance function δ : Z×Z→ N,
defined as δ(i, j) = |i− j|, for each ∼∈ {<, ≤, =, ≥, >},
we introduce the length constraint len∼k, with the following
semantics:

M, [i, j]
 len∼k iff δ(i, j) ∼ k.

As studied in [14][12], the language of AA can be ex-
tended with length constraints when interpreted over N, Z, or
finite models without loosing the decidability of the fragment
itself; its complexity, though, worsen from NEXPTIME to
EXPSPACE. Equality and inequality constraints are mutually
definable, although there is a increase in formula length if
we consider, for example, only constraints of form len=k as
primitive. Length constraints can be expressed in HS in a direct
way. The simplest way to achieve this is to make use of 〈B〉 or
〈E〉. For example, under the discreteness hypothesis, we have
that:

M, [i, j]
 len=k iff 〈B〉k−1> ∧ [B]k⊥,

which proves that AA plus metric constraints (known as
MPNL) is a proper fragment of HS.

Finding an optimal balance between expressive power and
computational complexity is a challenge for every knowledge
representation and reasoning formalism. Interval temporal log-
ics are not an exception in this respect; in [14] the applicability
of MPNL has been advocated. To recall some of the arguments,
MPNL has been proved expressive enough to to encode (metric
versions of) basic operators of point-based linear temporal
logic (LTL) as well as interval modalities corresponding to
Allen’s relations. In addition, it allows one to express limited
forms of fuzziness. Limiting ourselves to a few examples, we
show that MPNL is expressive enough to encode the strict
sometimes in the future (respectively, sometimes in the past)
operator of LTL:

〈A〉(len>0 ∧ 〈A〉(len=0 ∧ p))
Moreover, length constraints allow one to define a metric
version of the until (respectively, since) operator. For instance,
the condition: ‘p is true at a point in the future at distance
k from the current interval and, until that point, q is true
(pointwise)’ can be expressed as follows:

〈A〉(len=k ∧ 〈A〉(len=0 ∧ p)) ∧ [A](len<k → 〈A〉(len=0 ∧ q)).

MPNL can also be used to constrain interval length and to
express metric versions of basic interval relations. First, we
can constrain the length of the intervals over which a given
property holds to be at least (respectively, at most, exactly)
k. As an example, the following formula constrains p to hold
only over intervals of length l, with k ≤ l ≤ k′:

[G](p→ len≥k ∧ len≤k′) (bl)

where the universal modality [G] (for all intervals) is express-
ible in the language, and its corresponding formula depends
on the class of models over which the formula is interpreted.
By exploiting such a capability, metric versions of almost all
Allen’s relations can be expressed (the only exception is the
during relation). As an example, we can state that: ‘p holds
only over intervals of length l, with k ≤ l ≤ k′, and any
p-interval begins a q-interval’ as follows:

(bl) ∧ [G]

k′∧
i=k

(p ∧ len=i → 〈A〉〈A〉(len>i ∧ q)).

Finally, MPNL makes it possible to express some forms of
‘fuzziness’. As an example, the condition: ‘p is true over the
current interval and q is true over some interval close to it’,
where by ‘close’ we mean that the right endpoint of the p-
interval is at distance at most k from the left endpoint of the
q-interval, can be expressed as follows:

p ∧ (〈A〉〈A〉(len<k ∧ 〈A〉〈A〉q) ∨ 〈A〉(len<k ∧ 〈A〉q)).

III. TASK PLANNING IN MPNL

It is generally accepted that task planning in Engineering
is a fundamental phase of the design, organization, and control
of any realistic work organization plan. In its simplest version,
it includes, at least:

1) A list of each atomic task, along with its properties
(including its temporal duration);

2) A set of precedence relations among tasks.

The purpose of a systematic organization of such set of task
is to answer the following question: Is the plan possible, and,
if so, what is its minimal temporal duration? In view of these
considerations, we may define a plan as follows.

Definition 1: A plan is a finite collections of tasks, each
one of which with a finite and univocally determined duration,
and such that they are placed over a finite temporal line
respecting a finite collection of precedence requirement.

The typical practical approach to the problem of finding
a plan from the collection of its requisite is twofold. On the
one side, engineers are trained to organize tasks in a systematic
network of precedence (for example, with the so-called critical
path method [15]), and to compute (by hand) the viability of
the entire network. On the other side, commercially available
software, such as, for example, Microsoft Project c© are used
to aid this process. Now, it is easy to observe that:

1) Atomic tasks can be logically treated as propositional
letters;

2) The precedence relation can be modeled as Allen’s rela-
tion meets;

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

3) On a dicrete/finite temporal line, durations are exactly
length constraints.

These considerations allow us to conclude that MPNL is a
suitable logical counterpart of a task planning network. Plans
are, by definition, temporally finite, and by seeing the plan the
logical conjunction of the (formulas corresponding to) set of
all constraints, plan viability corresponds to (MPNL-) formula
satisfiability. Moreover, the notion of minimal duration is
precisely the notion of minimal model of a formula.

From now on, we consider the language of MPNL inter-
preted in the class of finite (and, therefore, discrete) models.
Satisfiability of MPNL-formulas in the finite case can be safely
restricted to the initial interval, which we can denote as [−1, 0].
In fact, given any MPNL-formula ϕ, the latter is satisfiable if
and only if the MPNL-formula 〈A〉ϕ is initially satisfiable.
By applying such a small technical modification, we obtain a
task, represented as a propositional letter, will be placed on
the interval [i, j] exactly when the plan sets it to start at the
moment i and to finish at the moment j. In this context, the
universal modalitity, introduced in the previous section, can
be expressed as follows:

[G]p ≡ [A]p ∧ [A][A]p.

Let us assume, now, that tasks are represented by the
propositional letters T1, T2, . . . ∈ T , where T is a finite set of
tasks. Similarly, it is convenient to assume that task indexes
are collected in a subset of natural numbers I. Therefore, by
expressing:

〈A〉Tl ∨ 〈A〉〈A〉Tl,

where l ∈ I, we force the task T1 to be part of a plan.
Similarly, by adding:

[G](Tl → len=k),

we force Tl to have the duration of k units. The precedence
relation can be then expressed as follows. Given a constraint
of the type: the task Tl cannot start before the task Tg has
finished, we can set:

[G](Tl → 〈A〉(Tg ∨ 〈A〉Tg).

To make sure that we can exclude unwanted models, we can
add the following constraint that ensures tasks are unique:

∧
l∈I

[G]〈A〉(Tl → [A]¬Tl).

Unlike algebraic networks, MPNL allows one to express
more complex requirements. First of all, besides single tasks
T1, T2, . . ., we can express the concept of task type, by adding
suitable propositions in conjunction with those that denote
tasks, and, then, impose universal constraints over them.
Suppose, for example, that T ′ ⊂ T collects all and only those
tasks of a certain type, for which we have the constraint that:

between any two successive tasks of T ′ a temporal distance of
at least k units must get by. We can deal with such a constraint
by means of the following technique:

∧
Tl∈T ′ [G](Tl → P)∧

[G](P →
∨
Tl∈T ′)∧

[G](P ∧ 〈A〉〈A〉P → 〈A〉(len>k−1P)),

where by means of the first formula, we make sure that
elements of T ′ are labeled by an additional proposition P , by
the second one we guarantee that P labels only elements of T ′,
and, finally, by last one we introduce the temporal constraint.

Other types of constraints can be expressed, such as: the
tasks Tl and Tg cannot start at the same time:

[G]((〈A〉Tl ∧ 〈A〉Tg)→ ⊥).

Finally, it is worth noticing that more complex constraints
can be expressed in MPNL. In fact, we can easily identify the
maximal temporal duration k of any task in T ; by using this
information, as we have explained in Section 2, almost every
Allen’s relation can be expressed over bounded intervals (all
tasks are bounded), and they can be used in both existential
and universal statements.

In more advanced task planning systems, one would like
to be able to take into account a certain amount of finite
resources. Indeed, in real cases, not every temporally sound
plan is executable, if it requires, at any given moment of time,
more resources than those that are at disposition. It is not
difficult to see that this information can be expressed by using
only a propositional language, such as MPNL. Let us assume
that we measure our resources with a natural number n. The
requirements may indicate the resources that are consumed
by each task, and the total number of resources that are at
the disposition for the entire plan. We assume, for each task
Tl, that the propositional letter Rnl denotes the fact that n
resource units are necessary; clearly, if N is the maximum
number of units that are necessary for any task, at most |T |·N
different propositional letters must be added to the language.
We then have to assign the correct number of units to each
task, and, since we can only compare intervals, in order to take
into account overlapping tasks (and therefore, the combined
amount of resources required at any given moment), we collect
such information at the finest temporal granularity, that is, unit
intervals:


∧
Tl∈T [G](Tl → Rnl)∧∧
s=1,...,M

∧
l∈I

∧
k≤k[G] (〈A〉(len=k ∧ Tl ∧Rsl)→∧

k′<k〈A〉〈A〉(len=1 ∧Rsl)).

Now, we can easily pre-compute all and only those sequences
of indexes l1, l2, . . . in I, such that, for each such sequence
σ, there are tasks in T such that, by summing all resources
requested by each of them, we obtain a number greater than
the maximum numbers of units available, which we can denote
by M . Let Σ be the set of such sequences of indexes. If σ =
l1, l2, . . . , l|σ| ∈ Σ, then there exists tasks in T for which we

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Table I: A FRAGMENT OF A REALISTIC CASE STUDY. UPPER SIDE: TASKS. LOWER SIDE: GENERAL REQUIREMENTS.

Symbol Name Type Duration Preceding Task(s) Formulas
T1 Water well building − 5 − 〈A〉T1 ∨ 〈A〉〈A〉T1

T2 Water convey construction work P1 12 T1 〈A〉T2 ∨ 〈A〉〈A〉T2, [G](T2 → len=12)

[G](T2 → 〈A〉(T1 ∨ 〈A〉T1)
T3 Water convey construction work P1 14 T2 〈A〉T3 ∨ 〈A〉〈A〉T3, [G](T3 → len=14)

[G](T3 → 〈A〉(T2 ∨ 〈A〉T2)
T4 Pumphouse construction − 15 − 〈A〉T4 ∨ 〈A〉〈A〉T4, [G](T4 → len=15)

T5 Pump acquisition,installation and electric connections − 30 T1 〈A〉T5 ∨ 〈A〉〈A〉T5, [G](T5 → len=30)

[G](T5 → 〈A〉(T1 ∨ 〈A〉T1)
T6 Ground filling-up and cleaning − 4 T3 〈A〉T6 ∨ 〈A〉〈A〉T6, [G](T6 → len=4)

[G](T6 → 〈A〉(T3 ∨ 〈A〉T3)

General Requirement or Generic Data Formula or Symbol
Maximal duration of a task 30
Tasks are unique

∧
l=1,...,6[G]〈A〉(Tl → [A]¬Tl)

∗Between any two convey construction works, a minimum of 5 time units [G]((T2 ∨ T3)↔ P1) ∧ [G](P1 ∧ 〈A〉〈A〉P1 → 〈A〉(len>4P1))
must be given for checking

have used the propositional letters, corresponding to the need
of resources, Rf(l1)

l1
, R

f(l2)
l2

, . . ., and the previous constraints
have placed them somewhere in the model. We need to make
sure that no such tuple of propositional letter is true at any
given unit interval:

∧
σ∈Σ

∧
l1,...,l|σ|∈σ

[G]((len=1∧Rf(l1)
l1
∧Rf(l2)

l2
∧. . .∧Rf(l|σ|)

l|σ|
)→ ⊥).

Concluding, this section shows the applicability of a logical
framework as an effective support tool for plan design and
test. The advantages of using a logical tool in substitution
of an algebraic one are well-known, and include, among
others, (i) the possibility of specifying universal properties;
(ii) the possibility of specifying negative information; (iii) the
possibility of comparing, under various points of view, two
or more plans. Moreover, it is worth recalling that algebraic
networks feature only limited disjunction capabilities; as for
example, the only way to encode a requirement such as the
task Tl precedes the task Tm or the task Tg in an algebraic
network is to compute two entirely separated networks, while
such a requirement has an immediate logical counterpart:

[G]((Tm ∨ Tg)→ 〈A〉(Tl ∨ 〈A〉Tl).

IV. A REALISTIC CASE STUDY

We present in this section a fragment of a realistic case
study that includes a planning phase. The project under
analysis is the construction of a drinkable water provision
system for various towns. It includes the building of two water
wells, one pumphouse, an impulsion system, and one energy
transformation unit. A realistic case study features various tens
of different requirements, all of which fall into some of the
categories explained in the previous section, and classified into
different (conceptual) groups.

In order to show the applicability of MPNL as planning
support system, we give in Table I an extract from the
collection of task requirements and conditions for this project,
and we translate it into MPNL, adding the general conditions

as explained in the previous section. To the original plan, we
added a further condition in order to show the capabilities
of this approach. We suppose that, at some point the chief
engineer requires a minimum time to check the construction
work before continuing (∗): instead of re-thinking the entire
plan, it is enough to add the corresponding formula and re-run
the satisfiability checker.

V. CONCLUSIONS

The purpose of this paper was twofold. On the one side,
we present a novel technique to solve a well-known problem,
that is, plan design and checking in Engineering. This problem
is usually solved by means of simple algebraic methods, well-
established in the field, but that suffer of intrinsic limitations.
On the other side, we give a clear and simple application
of a recently studied temporal logic for time intervals, that
is, MPNL. Algebraic networks are historically preferred over
logical formalism for planning applications; this is due to many
reasons, among which we mention computational properties
of the formalisms and simplicity of the approach. The recent
discover of decidable, pure temporal logic for time intervals
may change this perspective, allowing one to use more power
formalisms without giving up the decidability and therefore
the possibility of computer-assisted design. Moreover, while it
is true that algebraic networks present, usually, a satisfiability
problem with (non-deterministic) polynomial complexity, the
plan designing and checking phase needs not to be real-time
(it is usually a off-line procedure), and one can afford longer
computation times.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Spanish
fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G.
Sciavicco).

REFERENCES

[1] W. Bibel, “Let’s plan it deductively,” in Proc. of the 15th Int. Joint
Conference on Artificial Intelligence (IJCAI), 1997, pp. 1549–1562.

[2] U. Riss, A. Rickayzen, H. Maus, and W. van der Aalst, “Challenges
for business process and task management,” Journal of Universal
Knowledge Management, vol. 0, no. 2, pp. 77–100, 2002.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

[3] IBM. (2014, Jan.) Life cycle of human tasks. [Online]. Avail-
able: http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.
jsp?topic=/com.ibm.websphere.bpc.610.doc/doc/bpc/ctasklifecycle.html

[4] J. Allen, “Maintaining knowledge about temporal intervals,” Communi-
cations of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[5] J. F. Allen and P. J. Hayes, “A common-sense theory of time,” in Proc. of
the 9th International Joint Conference on Artificial Intelligence (IJCAI-
85), Los Angeles, CA, USA, 1985, pp. 528–531.

[6] G. Sciavicco, “Reasoning with time intervals: A logical and com-
putational perspective,” ISRN Artificial Intelligence, vol. 2012, 2002,
available online. Article ID 616087.

[7] J. Halpern and Y. Shoham, “A propositional modal logic of time
intervals,” J. of the ACM, vol. 38, no. 4, pp. 935–962, 1991.

[8] V. Goranko, A. Montanari, and G. Sciavicco, “A road map of interval
temporal logics and duration calculi,” J. of Applied Non-Classical
Logics, vol. 14, no. 1–2, pp. 9–54, 2004.

[9] D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco, “Ex-
pressiveness of the interval logics of allen’s relations on the class of
all linear orders: Complete classification,” in Proceedings of the 22th
International Joint Conference Artificial Intelligence (IJCAI), 2011, pp.
845–850.

[10] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco,
“Interval temporal logics over strongly discrete linear orders: the
complete picture,” in Proc. of the 3rd International Symposium on
Games, Automata, Logics and Formal Verication (GANDALF), 2012,
pp. 155–168.

[11] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco,
“Interval temporal logics over finite linear orders: the complete picture,”
in Proc. of the 20th ECAI, 2012, pp. 199–204.

[12] D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco, “Optimal decision
procedures for mpnl over finite structures, the natural numbers, and the
integers,” Theoretical Computer Science, no. 493, pp. 98–115, 2013.

[13] A. I. A. M. L. Aceto, D. Della Monica and G. Sciavicco, “Complete
classification of the expressiveness of fragments of halpern-shoham
logic over dense linear orders,” in 20th International Symposium on
Temporal Representation and Reasoning (TIME), 2013, pp. 65–72.

[14] D. Bresolin, D. D. Monica, V. Goranko, A. Montanari, and G. Sciav-
icco, “Metric propositional neighborhood logics on natural numbers,”
Software and System Modeling, vol. 12, no. 2, pp. 245–264, 2013.

[15] S. Shaheen, Practical Project Management. Wiley, 1986.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-344-5

COMPUTATION TOOLS 2014 : The Fifth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

