
Generative Content Co-creation:
Lessons from algorithmic music performance

Andrew R. Brown
Interactive Media Lab

Griffith University
Brisbane, Australia

email: andrew.r.brown@griffith.edu.au

Abstract—This article examines features of algorithmic music
performance practices and considers how these might be
applied to other generative content creation contexts. Based on
the assumption that all generative processes are performative,
the article draws from an analysis of live algorithmic music to
outline lessons that may be more widely applicable to content
co-creation with algorithmic systems. Methods discussed
include algorithm selection and expression, the architecture of
algorithmic system design, the effects of materiality on
algorithmic performance, and how co-creative strategies
openly embrace the influence of humans as agents in
generative content systems. Having distilled and articulated
these methods in this article it is anticipated that future
research will apply them to generative media system beyond
music performance for evaluation of their generalizability.

Keywords-Generative; Media; Creative; Content; Music;
Algorithmic.

I. INTRODUCTION
Algorithmic content creation for fixed and dynamic

works has a rich history, both in academic circles and in
commercial contexts. For example, in the use of procedural
content in computer games and interactive installations. Even
if generative media outcomes are not dynamic the process of
algorithmic content creation is, both in the system design and
in the computational rendering. Algorithmic content creation
always has a performative element. With this in mind, this
article will reflect on the characteristics of performative
algorithmic practices, in particular live coding and
interactive computer music, and highlights aspects of these
practices that are relevant for the design of generative
content systems more broadly defined.

Generative media have been used in many contexts, from
graphic design to architecture, and employ many techniques,
from rule-based models to generative adversarial networks.
Uses for generative media include customizing individual
products based on templates or stylistic patterns, the design
of complex artefacts with many dimensions of components,
and the production of emergent or evolving experiences that
adapt to changing contexts.

Within contemporary societies the production of media
content is generally considered to be a creative act. Within
this context a creative computational system can been
defined as “a collection of processes, natural or automatic,
which are capable of achieving simulating behavior which in

humans would be deemed creative” [1]. Following
Csikszentmihalyi [2], it is generally accepted that creative
practice involves the production of novel and useful
outcomes from work done within a conceptual space of
acceptable outcomes. In the creative computation literature,
there is often a distinction between (mere) generation for
human selection from outcomes and generation for (self)
evaluation by the machine [3]. In this article, the focus is on
algorithmic systems used for generative co-creation [4]
between humans and machines, such as those used in
generative design or adaptive game music engines. Co-
creation, in these contexts, is understood as “collaborative
creativity where both the human and the computer take
creative responsibility for the generation of a creative
artefact” [5].

Section II will discuss approaches and considerations in
algorithmic music practices that are relevant to generative
media content creation. Section III will explore how
performative interaction with generative systems is the basis
for co-creation between people and machines.

II. LESSONS FROM LIVE ALGORITHMIC MUSIC
Generative algorithms are used in a range of music

performance practices. These include those characterized as
interactive music systems [6], live algorithms [7], networked
music performance [8], or live coding [9]. Such practices
will be collectively attributed here as live algorithmic music,
and their practitioners as algorithmic musicians.

According to Lewis, live algorithmic music systems are
interesting because they “produce a kind of virtual society
that both draws from and challenges traditional notions of
human interactivity and sociability, making common cause
with a more general production of a hybrid, cyborg sociality
that has forever altered both everyday sonic life and notions
of subjectivity in high technological cultures” [10]. More
specifically, it has been suggested that live algorithmic music
practices convey three important attributes; algorithmic
thinking, real-time creativity, and networked collaboration
[11]. In the following sections each will be explored in turn.

A. Algorithm choice and design
Live algorithmic music is typically performed from

memory and without time to consult reference materials, so it
is sensible that algorithmic musicians seek to identify a small
cohort of functions that are widely applicable to a variety of

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies

musical circumstances. An advantage of focusing on a small
set of coding patterns means these can be thoroughly
understood and flexibly employed. This approach contrasts
with many digital media software applications that boast the
extensive array of functions available, most of which users
will never use or, when they do, are ‘one trick ponies’ that
soon become kitsch. Selection of such a set of foundational
functions is likely to be media-specific and will have
aesthetic implications. An example of such a selection is
from the live coding duo aa-cell who suggest the following
list of algorithms; probability, linear and higher order
polynomials, periodic functions, modular arithmetic, set
theory, and recursion [12]. They comment that “what has
been a surprise to us, however, is just how much utility a
small set of processes have provided” [12]. However, they
also warn that correlations between mathematical functions
and musical patterns are limited.

In addition to the choice of algorithm, algorithmic
musicians often focus on “the way in which generative
algorithms are represented in code to best afford interaction
and modification during performance” [13]. They are aware
that algorithm selection and design can significantly
influence the flexibility and responsiveness of generative
processes. So, they are concerned to choose the best
parametric variations and constraints that maximize novelty
whilst avoiding system misbehavior in the form of
inappropriate output.

The balance of stability and novelty is at the heart of
music making and is often stressed as key to other creative
arts and to creativity itself. Algorithm design needs to enable
the tuning of a system that walks a line between output that
is neither boring nor inappropriate. Stability is often
provided by incorporating domain knowledge into generative
systems and novelty is often provided by processes with
unpredictable outcomes.

One risk in overloading a system with domain specifics
and constraints, is the restriction of output variety. Methods,
such as genetic programming, can avoid such constraints by
automating algorithm construction, not simply algorithm
execution. However, the challenges of reliably automating
meta-structural choices are many.

B. Compact code
It is important in live coding performances to manage the

amount of code being typed on stage. Succinct expression of
ideas and outcomes allows for efficient expression of ideas
and responsiveness to contextual changes. Succinct
expression relies on the language used, algorithm design, and
interface for interaction.

Compactness of code is highlighted by Farnell as a
desirable principle of procedural audio design, he argues that
“compact code can be useful for purely software
development reasons, being easy to understand, extend, and
maintain” [14]. The advantage of code succinctness for
creative expression is elsewhere emphasized: “The
description length and complexity of an algorithm plays a
large factor in its appropriateness for live coding... we
consider algorithmic directness one of the most powerful
aspects of live coding” [13].

However, compactness is not the algorithmic musician’s
only criteria. Many also seek ‘descriptive transparency’
defined as the “ability to further interact with the algorithm
at a syntactic level” [13]. In practice this means that
algorithms are designed to be modifiable through exposure
of appropriate parameters. Descriptive transparency can be in
tension with succinct expression as too concise a
representation may obscure opportunities for interaction or
variation by hiding key parameters or commitments.

C. Structure and abstractions
The choice of software abstractions makes a substantive

difference to the ability to express ideas, in both a positive
and a negative way [15]. The algorithmic musician
constructs mental images of predicted outcomes and devises
strategies to achieve them. In computing we use predefined
structures, probabilistic decisions or situationally responsive
processes, just like mental models—to guide prediction and
planning. So computational abstractions need to be
conditioned by limits or rules that guide effective outcomes.

Algorithmic musicians emphasize the importance of
hierarchy in managing complexity and affording significant
change with minimal high-level adjustments. This is
necessary in live algorithmic music because “there is no
possible way for us to deal with the complexity of the
underlying operating system and hardware without levels of
abstraction” [13]. In generative content systems, abstractions
too are more than a structural convenience, they instil
constraints and affordances and help represent a model of the
content domain [16]. This push toward domain-specific
abstraction has resulted in mini-languages being developed
by algorithmic musicians to minimize cognitive load and
enhance coding efficiency when performing.

Along with abstractions, the use of familiar metaphors in
software design is also emphasized for reducing cognitive
load for users. Brown and Sorensen [13] mention the
deliberate use of familiar names for functions in their live
coding practice—for example, bass, melody, and ambient—
so that audience members unfamiliar with computer
languages can make more sense of the projected code. When
designing algorithmic music systems, Hoeberechts and co-
authors [19] emphasize the importance of using real-world
metaphors for system components, including ‘instrument’,
‘performer’, ‘mood’ and the like. Metaphors are also used to
manage system organization. For example, in describing
musical processes in terms of well understood practices such
as describing software functions as ‘players’ that execute
‘scores’ on ‘instruments’. The power of such analogy has
also been emphasized by other studies of creativity and
computation [18].

Metaphors can be useful for describing high-level
parameters for algorithmic control. This should allow
generative media systems to be guided by human interaction
to produce a wide range of suitable outcomes. If abstractions
are well chosen, then expressiveness and diversity of content
output should be enhanced.

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies

D. Networked architecture
Multiple dimensions can exist within one generative

outcome. For example, a musical melody contains pitch,
rhythm, timbre, volume and so on. However, relationships
also exist between elements, like musical parts in a score, or
visual components in a scene. Algorithmic musicians have
found it useful to organize their code and their collaborations
such that these elements correspond to a network of
relationships. Networked musical performance practices
include those with a focus on distributed interaction over the
internet or, perhaps more pertinent here, distributed multi-
agent systems whose architectures model the
interdependence of sub components of the media being
generated.

In many algorithmic music environments, concurrency is
a key coding strategy to achieve interdependent modularity.
Multiple concurrent operations are often conceived as
‘loops’ or ‘processes’ that act independently even if they
share data. More formally, they have been implemented as
‘temporal recursions’—code functions (closures) that call
themselves periodically and maintain their own state [19].

Formalized protocols have been developed by
algorithmic musicians for networked generative system
architectures. A recent example is the Musebot (musical
robot) framework designed to explore “the affordances of a
multi-agent decision-making process” [20]. The Musebot
protocol establishes “a parsimonious set of parameters for
effective musical interaction between musebots” [20]. The
open source specification includes a state-driven
communication system for coordinating activities between
agents. Messages are not themselves defined but are decided
upon by cooperating developers. The objective of this
approach is to compartmentalise the generative processes
into components that manage complexity and enable flexible
modular design and reuse.

E. The materiality of algorithms
Algorithms are made concrete using electromechanical

means. When so constituted “an algorithm is a statement (in
Foucault’s meaning of the word), that operates, also
indirectly, on the world around it” [21]. Algorithms that
manifest as music machines have existed throughout history,
as evident in the well-known player piano. The physicality of
such machines conditions outcomes from them, for example
through limits on speed of operation, resolution of output,
and accuracy of calculation. In short, materiality matters.

According to Sorensen and Gardner, the “traditional view
[in computer science] is to promote a strong separation
between the program, process and task domains” [19]. Such
separation may be counterproductive to effective media
outcomes because it ignores the material implications of the
world in which the computational processes are engaged.
They suggest, instead, a model of ‘cyber-physical
programming’ that acknowledges the temporal bounds of
real-time computation and the interactions with physical
media; such as sound playback systems, electronic circuitry,
or 3D printing materials.

For algorithmic musicians, the affordances of computing
machinery and software are particularly felt in relation to
time. Music, as a temporal art form, relies on very precise
timing for musical expression and sonic fidelity. Temporality
is also pertinent for other interactive generative systems,
such as computer games.

For performers or game players, feedback about the
ongoing generative process is often expressed as real-time
audio-visual output. The materiality of algorithmic media
imposes limits on operations and provides feedback to
human participants who can, in response to that feedback,
become active agents in the generative process. Thus,
materiality becomes the basis for interaction with generative
process.

III. THE HUMAN IN THE LOOP
Almost by definition, algorithmic musicians are

continually interacting with real-time generative processes.
While such intimate co-creation may not always be true for
all content generation systems, none are free from the
influence of designers and programmers. Therefore, methods
of co-creation with algorithms need to be taken into account.

A. Embodiment
In musical performance on acoustic instruments, sound

strongly implies causality and agency [21]. In algorithmic
music performance this connection can seem less direct,
however, as Farnell suggests, “above all, it is important that
we remain mindful of sound as a process of transforming
energy” [14]. Even though Emmerson suggests that
“electricity and electronic technology have allowed (even
encouraged) the rupture of these relationships of body to
object to sound” [22] the impact of gesture and (implied)
action remain important in algorithmic media. When
developing computational systems for generative media
content, we should not lose sight of how human agency is
implicated in the outcome.

Generative models of music often focus on emulating
musical theories or musical cognition. Algorithms based on
these theories need to take into account the performative
aspects of music. When algorithmic musicians are producing
music, they pay attention to sonic expression alongside
compositional structure. Techniques that can be applied to
both are discussed in [12] whilst techniques that focus on
musical expression in particular are explored elsewhere [23].

Outside of music, the modelling of human creative
gesture is well established. For example, in systems for
digital drawing and character animation, or in the use of style
transfer by machine learning systems for artistic practice. In
music studies, the role of gesture is well explored [24], as is
expressive gesture as a musical ‘force’ that guides
expectations [25]. The implications of for generative content
creation systems include consideration of a role for direct
human motion in algorithm control, or for motion capture or
physics simulation to animate parametric movements in an
organic way.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies

B. Interaction
When addressing the role of visual feedback for

audiences, live coders included in their TOPLAP manifesto
(available online) a fundamental principle; “show us your
screens”. Projecting code during performances, it is hoped,
will make visible the actions (typing) of the performer. For
live coders themselves, visual feedback is also provided by
the text editor which acts as their user interface to code
acting as a musical score. In live coding, interaction is
mediated by reading and writing code. Relatedly, recent
explorations with the Musebot protocol have included human
integration into multi-agent music systems using “a ‘code-
wrapper’ around the human player—whimsically termed an
algoskin” [26] that enables a human performer to appear to
the network like another musebot. Other algorithmic
musicians’ employ various interfaces with algorithms, often
via controllers employing combinations of buttons, dials and
sliders that trigger functions and manipulate parameters. This
field of interaction design for music is so active it has its own
conference, i.e., New Interfaces for Musical Expression
(NIME).

At issue here is the expression of ‘liveness’ [27], “a sense
that the person playing is contributing to that emotive energy
through the performance decisions being made” [28]. More
generally our interest is in the contribution of performative
interaction on the outcome of the generated digital media.
This is particularly important for interactions between people
and machines in co-creative algorithmic systems.

So, how can a person be an active co-creator? Dahlstedt
suggests the following categorization; “You can play on, in
or with an algorithm” [21]. Performing ‘on’ an algorithm
means to control its parameters. Performing ‘with’ an
algorithm means to undertake your own activities in parallel
to the algorithm’s without influencing it. Performing ‘in’ an
algorithm means that actions of the algorithm and human are
socially coupled [29] such that each interaction has an effect
on other parts of the cybernetic system.

A fourth category of co-creation is the ability for the
human to redefine the generative process as it executes. As is
the case in virtuosic live coding performances. According to
Magnusson this “seems to be a logical and necessary step in
the evolution of human–machine communication” [11].

IV. CONCLUSION
The production of generative media requires creators to

design the behaviors of algorithmic systems. In this way
content outcomes are managed by the specification of
creative behaviors rather than only by direct manipulation of
materials. Behaviors are performative, and so we can learn
from the performing arts how algorithmic behaviours lead to
creative outcomes. Computational performing arts, such as
live algorithmic music, have a special role to play in
revealing pertinent practices applicable to generative content.

This article summarized live algorithmic music practices
to assemble, for the first time, a consolidated set of lessons
that may be helpful for co-creative content production.
Methods that were identified include algorithm selection,
algorithmic system architecture, the effects of materiality on

algorithmic behaviour, and the influence of humans as co-
creative agents. Future research will look at implementing
these methods in prototype generative media systems for
evaluation.

Lewis philosophically suggests that the impact of live
algorithmic music may even reach beyond these lessons, that
“perhaps our improvising computers can teach us how to live
in a world marked by agency, indeterminacy, analysis of
conditions, and the apparent ineffability of choice” [10].

REFERENCES
[1] G. Wiggins, “A preliminary framework for description,

analysis and comparison of creative systems,” Journal of
Knowledge Based Systems, vol. 19, no. 7, pp. 449–458, 2006.

[2] M. Csikszentmihalyi, “The Domain of Creativity,” in
Changing the World: A framework for the study of creativity,
London: Praeger, 1994.

[3] S. Colton, A. Pease, J. Corneli, M. Cook, and T. Llano,
“Assessing Progress in Building Autonomously Creative
Systems.,” in ICCC, pp. 137–145, 2014.

[4] T. Lubart, “How can computers be partners in the creative
process: classification and commentary on the special issue,”
International Journal of Human-Computer Studies, vol. 63,
no. 4–5, pp. 365–369, 2005.

[5] A. Kantosalo, J. M. Toivanen, P. Xiao, and H. Toivonen,
“From Isolation to Involvement: Adapting Machine Creativity
Software to Support Human-Computer Co-Creation.,” in
Proceedings of the International Conference on
Computational Creativity, Ljubljana, Slovenia, pp. 1–7, 2014.

[6] R. Rowe, Interactive Music Systems: Machine listening and
composing. Cambridge, MA: The MIT Press, 1993.

[7] T. Blackwell and M. Young, “Live Algorithms,” Artificial
Intelligence and Simulation of Behaviour Quarterly, vol. 122,
pp. 7–9, 2005.

[8] E. M. Schooler and J. Touch, “Distributed music: A foray into
networked performance,” in Proceedings of the International
Network Music Festival, Santa Monica, CA, 1993.

[9] N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live
Coding in Laptop Performance,” Organised Sound, vol. 8, no.
3, pp. 321–330, 2003.

[10] G. E. Lewis, “Why do we want our computers to improvise?,”
in The Oxford Handbook of Algorithmic Music, A. McLean
and R. T. Dean, Eds. New York: Oxford University Press, pp.
123–130, 2018.

[11] T. Magnusson, “Herding cats: Observing live coding in the
wild,” Comp. Music Journal, vol. 38, no. 1, pp. 8–16, 2014.

[12] A. Sorensen and A. R. Brown, “aa-cell in practice: an
approach to musical live coding,” in Proceedings of the
International Computer Music Conference, Copenhagen, pp.
292–299, 2007.

[13] A. R. Brown and A. Sorensen, “Interacting with Generative
Music through Live Coding,” Contemporary Music Review,
vol. 28, no. 1, pp. 17–29, 2009.

[14] A. Farnell, “Procedural Audio Theory and Practice,” in The
Oxford Handbook of Interactive Audio, K. Collins, B.
Kapralos, and H. Tessler, Eds. Oxford: Oxford University
Press, pp. 531–540, 2014.

[15] H. Abelson and G. J. Sussman, Structure and Interpretation
of Computer Programs, 2nd Edition. Cambridge, MA: The
MIT Press, 1996.

[16] J. Rohrhuber, A. de Campo, and R. Wieser, “Algorithms
Today: Notes on language design for just in time
programming,” in Proceedings of the International Computer
Music Conference, Barcelona, 2005.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies

[17] N. Hoeberechts, J. Shamtz, and M. Katchabaw, “Delivering
Interactive Experiences through the Emotional Adaptation of
Automatically Composed Music,” in The Oxford Handbook of
Interactive Audio, K. Collins, B. Kapralos, and H. Tessler,
Eds. Oxford: Oxford University Press, pp. 419–442, 2014.

[18] D. Hofstadter and E. Sanders, Surfaces and Essences:
Analogy as the fuel and fire of thinking. New York: Basic
Books, 2013.

[19] A. Sorensen and H. Gardner, “Cyber-physical programming
with Impromptu,” ACM Sigplan Notices, vol. 45, no. 10, pp.
822–834, 2010.

[20] A. Eigenfeldt, A. R. Brown, O. Bown, and T. Gifford,
“Distributed Musical Decision-making in an Ensemble of
Musebots: Dramatic Changes and Endings,” in Proceedings
of the International Conference on Computational Creativity,
Atlanta, GA, pp. 88–95, 2017.

[21] P. Dahlstedt, “Action and Perception: Embodying Algorithms
adn the Extended Mind,” in The Oxford Handbook of
Algorithmic Music, A. McLean and R. T. Dean, Eds. New
York: Oxford Univerity Press, pp. 41–65, 2018.

[22] S. Emmerson, “‘Losing Touch?’: The human performer and
electronics,” in Music, Electronic Media and Culture,
Hampshire, UK: Ashgate, pp. 194–216, 2000.

[23] P. Todd, “Simulating the Evolution of Musical Behaviour,” in
The Origins of Music, Cambridge, MA: The MIT Press, pp.
361–388, 2000.

[24] M. Leman, “Music, Gesture, and the Formation of Embodied
Meaning,” in Musical Gestures: Sound, movement, and
meaning, R. I. Godøy and M. Leman, Eds. New York:
Routledge, pp. 126–153, 2010.

[25] S. Larson, Musical Forces: Motion, Metaphor and Meaning
in Music. Bloomington: Indiana University Press, 2012.

[26] A. R. Brown, et al., “Interacting with Musebots,” in
Proceedings of New Interfaces for Musical Expression,
Blacksburg, VA, pp. 19–24, 2018.

[27] P. Auslander, Liveness: Performance in a mediatized culture.
Oxon, UK: Routledge, 1999.

[28] M. Frengel, “Interactivity and Liveness in Electroacoustic
Concert Music,” in The Oxford Handbook of Interactive
Audio, K. Collins, B. Kapralos, and H. Tessler, Eds. Oxford:
Oxford University Press, 2014.

[29] H. R. Maturana and F. J. Varela, The Tree of Knowledge: The
biological roots of human understanding. Boston: Shambhala,
1988.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-707-8

CONTENT 2019 : The Eleventh International Conference on Creative Content Technologies

