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Abstract- Soft Input Decoding of Reed Solomon codes using 

successive iterative bit-flipping was introduced earlier. The 

proposed method uses a concatenation of Convolutional and 

Reed Solomon Codes. It was shown that the proposed method not 

only improves the coding gain, but also helps in circumventing 

the miscorrections, that occur with the given probability, using 

the hard decision Reed Solomon decoder. In this paper, the 

impact of bit-flip combinations on the soft decision Reed Solomon 

decoder is analyzed. Increase in the bit-flip combinations results 

in an increase in the error locator set of the iterative decoding 

algorithm. It is shown that by increasing the possible bit-flip 

combinations using a threshold, the coding gain of the 

concatenated codes increases while the miscorrections rate 

decreases. The impact of the increase in the threshold on the 

decoder performance is also investigated in this paper. 

Simulations are performed for different code rates and an 

improvement in the coding gain is obvious through the 

simulation results presented. Moreover, the simulation statistics 

show a decrease in the miscorrections with an increase in the size 

of the bit-flip combinations. 

Keywords- Concatenated Codes; Reed Solomon Codes; BCJR; 

Successive Decoding;  Miscorrection Detection. 

I.  INTRODUCTION  

An iterative method for the Soft Input Decoding of Reed 
Solomon (RS) codes with successive iterative bit-flip decoding 
was shown earlier [1]. The proposed method considered 
concatenated Convolutional/RS Codes with CRC for error 
detection. Code concatenation is a method to increase the 
decoding capability of the individual codes by concatenating 
them together in a serial or parallel manner. Code 
Concatenation was first introduced by G. David Forney [2]. It 
is a method of combining two (normally different) codes to 
obtain a better Bit Error Rate (BER). They have many practical 
applications such as in the Compact Disc technology, Digital 
Video Broadcast, WiMax and the Voyager program. A typical 
concatenated arrangement is to use the hard decision Reed 
Solomon codes as the outer code and the soft decision Viterbi 
code as the inner code with an interleaver in between to break 
the burst of errors. 

In this work, concatenated codes with Reed Solomon 

code as the outer and a convolutional code with the 

corresponding BCJR/MAP [3] decoder as the inner code are 

considered. The Maximum a-posteriori Probability (MAP) 

decoder outputs the hard decoded data (the binary form of 

decoded data) along with the Log Likelihood Ratio (LLR) or 

the L-Value of each and every decoded bit. These LLRs (or L-

Values) give an estimate of the confidence on the hard-

decision bits. Thus lower the absolute value of the LLR (i.e., 

|LLR|) of a bit, the least reliable it is and vice versa. The hard 

decision RS decoding is done on the output of the MAP. The 

hard decision RS decoder will result in either a decoding 

success or a decoding failure. There is, however, a known 

probability of decoding error [4]. The decoding error is also 

termed as “miscorrection” in literature. Decoding error occurs 

when the decoder decodes the received word to a codeword 

other than the transmitted one. RS decoder “sees” the 

decoding error as successful decoding, so in this work a CRC 

code is used to detect and then avoid the decoding errors, with 

a high probability.  

In case of a decoding failure and/or error, a successive 

iterative algebraic decoding on the Reed Solomon codes is 

performed with a different combination of bit-flips in each 

iteration. The number of the bit-flip combinations dictates the 

size of error locator set used in the successive iterative 

decoding. The size of the error locator set is directly 

proportional to the performance and the computational costs. 

In this work, the impact of an increase in the bit-flip 

combinations on the decoder, introduced in [1], is studied both 

analytically and via simulations.  

It is shown that increasing the bit-flip combinations will 

increase the coding gain. The number of iterations, however, 

doubles with every next bit added to the bit-flip combination 

set. The idea of inversion of the least reliable bits was 

introduced earlier in Chase decoding algorithms [5] and the 

Generalized Minimum Distance (GMD) decoding [6] 

algorithms. Recently, the idea of bit-flipped decoding has 

developed much interest, mainly, due to the rediscovery of 

Low Density Parity Check Codes [7]. Similarly, soft decoding 

techniques for the RS codes were initiated in the pioneering 

work done by [8] and [9]. More recently, the author in [10] 

has treated the subject in more detail by introducing some soft 

decoding techniques using bit-level soft information.  

The rest of this paper is organized as follows. In Section 

II, the Soft Input Decoding of Reed Solomon Codes with 

miscorrection detection and avoidance [2] is discussed briefly. 

In Section III, the impact of bit-flip combinations on the 
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scheme is discussed. In Section IV, the simulation results are 

presented with different bit-flip combinations and different 

code rates. Finally, a conclusion is given in Section V.  

II. SOFT DECODING OF REED SOLOMON CODES WITH 

MSCORRECTION DETECTION AND AVOIDANCE  

In this section, the encoder and decoder for successive 
iterative decoding of RS codes with miscorrection detection 
and avoidance is introduced briefly. 

A. The Encoding Process 

The Encoding process used in this study is depicted in 

Fig. 1. Here, the encoder is a simple concatenated RS-

Convolutional encoder. This code concatenation is widely 

used in many popular protocols such as the Digital Video 

Broadcast (DVB-S) and WiMax.  

CRC of m-bits is computed on the data of length k-1 and 

the data along with the appended CRC are then encoded with a 

systematic RS encoder. In this case, the RS encoder produces 

a codeword (c) of n-symbols (each of m-bits over GF(q)), 

where q=2
m

 and n = q-1 (or 2
m

-1). The codeword c is 

represented as, 

c = (c1,c2,c3,………,cn),                ci ϵ GF(q)           (1) 

This codeword (c) is then converted into its binary 

equivalent for encoding with a convolutional encoder. The 

binary equivalent of “c” can be formally expressed as, 

cb=(c1,1,c1,2,….,c1,m,c2,1,c2,2,…..,c2,m,………..,cn,1,cn,2,……

……………,cn,m),                ci,j ϵ GF(2)           (2) 

This binary-vector cb is then encoded by the convolutional 

encoder to produce the message u for transmission. The 

message u is then BPSK modulated and transmitted over the 

Additive White Gaussian Noise (AWGN) channel. 
The role of the CRC code is to detect the decoding errors 

[4] made by the RS decoder. This detection helps in avoiding 
these decoding errors through a successive iterative decoding 
process. 

 

Figure 1.  The Encoder 

If the received word (r=u+e, where e is the error pattern) 

has a smaller Hamming distance to another valid codeword, 

the RS decoder will “miscorrect” it to this closest codeword. 

Such a miscorrection is called a decoding error [3] and in the 

decoder introduced in this work a CRC code is used to detect 

such a decoding error. CRC gives the ability of detecting the 

decoding errors at the cost of additional redundancy, thereby 

effectively reducing the code rate. This is catered-for in the 

simulation results by making comparisons with the 

corresponding low rate encoders (for fairness). In this work, 

CRC codes of different lengths for different RS code rates are 

considered. The CRC code, however, always occupy one 

symbol in the codeword in order to have a minimum impact 

on the overall code rate, as discussed in the section on 

simulation results. CRC is placed in the last m-bits of the RS 

data part, so that it gets protected from channel noise by the 

RS parity, allowing for the detection of RS decoder errors 

 

B. The Soft Input Decoder 

The successive iterative soft input decoding of the 
concatenated Convolutional/RS codes is illustrated in Fig. 2. 
The decoding starts with the Soft Input Soft Output (SISO) Log 
MAP decoding. The output of the Log MAP decoder is the soft 
estimate of the decoded data along with their reliability values 
(so called L-Values or the Log Likelihood Ratios (LLRs)). 
Hard decisions are made on the output of the MAP decoder and 
the binary data is fed to the hard decision RS decoder. The RS 
decoder will either successfully decode the data make a 
decoding error or fail to decode it, resulting in a decoding 
failure. These situations are summarized by the three cases 
given below, 

1. The RS decoder succeeds to decode the given word. The 
CRC is recomputed on the k-1 decoded data symbols and 
compared with the CRC present in the k

th
 data symbol.  

a.  If both the CRCs match, the decoding is successful and 
the iterative process stops. 

b.  If the CRCs do not match, a decoding error is made by 
the RS decoder and some predefined number of attempt 
are made to correct the “miscorrected codeword”.  

2. The RS decoder fails to decode the given word. This 

happens when the RS decoder is neither successful in 

rightly decoding the given word, nor in miscorrecting it. In 

this case the “erroneous word” is not discarded, rather 

subjected to the iterative bit-flipping technique in order to 

try and recover the transmitted codeword (c). 
In cases 1b and 2, the successive bit-flip decoding of RS 

codes is performed iteratively with a different combination of 
bit-flips in each iteration. The bit-flipping is done on the basis 
of |LLR| values obtained from the MAP decoder. A 
combination of bits from this “wrongly decoded” codeword is 
flipped followed by the hard decision RS decoding and CRC 
comparison. If the CRCs match, there is a success and the 
successive iterative decoding stops. If not, then the next 
combination of bits is flipped from the original “erroneous 
word”. 

 

Input Data Compute CRC-m 

Data CRC 

Systematic RS 

Encoder 

Data CRC RS Parity 

Convolutional Encoder 

u 

Channel 
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Figure 2.  The soft input decoding of RS codes based on Bit-Flipping [1] 

This process of bit-flipping and CRC comparison is 
repeated until either an RS decoding success followed by CRC 
comparison success or a threshold number of iterations. When 
the threshold is reached, the decoding fails. 

The combination of the bits to be flipped is decided as 
follows. In the first iteration the least reliable bit is flipped. In 
the second iteration, the second least reliable bit is flipped. In 
the third iteration the first and the second least reliable bits are 
flipped and so on. This is limited by the number of bit-flip 
combinations chosen in advance, e.g., for 8-bit bit-flip 
combination a total of 28-1 combinations will be considered. 
The decoding error of the successive iterative bit-flip decoder 
is bounded by the following equation (for explanation and 
derivation of the following please refer to [1]), 

PE = PERS*PECRC             (3) 

where PERS is the probability of decoding error with the hard 
decision RS decoder and PECRC is the probability that the CRC 
collision will go undetected. 

III. IMPACT OF BIT-FLIP COMBINATIONS ON THE DECODER 

Increase in the size of the bit-flip combinations results in an 

increase in the decoding capability, by considering a larger set 

of errors. For bf = 8 bits, a set of 8 bit-flip errors are evaluated 

by the successive iterative decoder. Thus the error correction 

capability of the simple error-correction only RS decoder is 

increased up to an additional 8 symbols (if all the least reliable 

8-bits belong to different symbols). 

The error correction capability (Ecc) of the hard decision RS 
decoder is “t” i.e., 

Ecc = t              (4) 

where, 

t=(n-k)/2  
            

(5) 

n is the codeword length and k is the dimension of the RS 
code, thus n-k is the number of parity symbols in the 
codeword. “t” is therefore half the number of parity symbols.   

If the value of bf is increased from 8 to 16, this means the 
least reliable 16 bits will be considered in different 
combinations resulting in an increased decoding capability. If 
all the bits happen to be in different symbols then the decoding 
capability of RS codes can be extended up to bf-bits in total. 
With the successive iterative bit-flip decoding using a bit-flip 
combination of “bf” bits, the error correction capability (Eccbf) 
can be given by the following equation, 

Eccbf   ≤   t+bf,     1 ≤ bf ≤ n*m                         (6) 

e.g., for bf = 8-bits an additional 8 symbol errors are 
correctable if all the 8 least reliable bits belong to different 
symbols. Similarly for bf = 16 bits, the additional error 
correctional capability is increased by 16 symbols (again if all 
the least reliable bits belong to different symbols). In the worst 
case the error correction capability is enhanced by one symbol. 
This happens when all the least reliable bits belong to the same 
symbol. However by increasing the bf, the chances of all the 
bits belonging to the same symbol decreases. 

It is, however, infeasible to increase the value of bf up to 
n*m. Due to practical limitations, a smaller threshold value 
needs to be chosen.  

It is to be noted that the increase in the error correction 
capability is beyond the error correction capability of the Chase 
2 decoding algorithm (which is 2t). The reason is the presence 
of the CRC code in the data part, which will prevent the 
decoding error (miscorrection) and bring the received word 
from the Hamming sphere of another valid codeword back to 
its original position (or in the worst case at least identify it as a 
decoding error). 

This, however, comes at the cost of extra computations. By 
increasing the bit-flip combinations by one bit, i.e., from bf to 
bf+1, we are effectively raising the size of error location set 
from 2

bf
 to 2

(bf+1)
. This means, the number of iterations of the 

successive iterative decoder is doubled i.e.,  

2
(bf+1)

 = 2*2
bf

             (7) 

Increasing the value of bf, also results in an increased 
miscorrection detection and avoidance capability. This is 
because by increasing the value of bf, there are more error 
locations to be tried and corrected. If a decoding error occurs, it 
is detected with the help of CRC and tried in the next iterations 
for correction. Due to increased iterations, there remains a good 
probability that the errors in the received word will be 
corrected. 
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IV. SIMULATION RESULTS  

Simulations are performed over an Additive White 
Gaussian Noise (AWGN) channel. A convolutional encoder of 
rate-½ is used with BPSK modulation. RS codes of different 
block lengths (n) over the corresponding Galois Field (GF 
(2

m
)) are considered in the simulations. For each of the symbol 

size (m), a corresponding size of CRC code is chosen so as to 
occupy exactly one symbol, e.g., for m=8 the CRC-8 (CCITT) 
is used and for m=6, the CRC-6 (ITU) is used. Use of the CRC 
effectively reduces the code rate to (k-1)/n instead of k/n. To 
compensate for the reduced rate and give a fair comparison, the 
shortened RS codes are plotted for comparisons, e.g., RS (15, 
11) with a 4-bit CRC is plotted against the same rate RS (12, 8) 
code. Symbol Error Rate (SER) vs. Eb/N0 curves are shown in 
Figs. 3-5 to demonstrate the results.  

Convolutional codes are good at converting the random 
channel errors to burst errors and RS codes have the excellent 
ability of correcting the burst errors. Burst errors may belong to 
a group of bits making one symbol or a group of symbols. 
Because of the excellent ability of the RS codes, to correct the 
symbol errors and erasures, SER (instead of Bit Error Rate) is 
plotted vs. the SNR, for better comparisons. It is to be noted 
that an improvement in SER suggests an improvement in the 
Bit Error Rate as well. In each of the plotted curves, the value 
of bit-flip combinations (bfc) is kept at 8, 12 and 16.  It can be 
noticed from the curves that the SER drops with the increase in 
the bit-flip combinations.  

A. RS(15, 11) code 

Fig. 3 shows the simulation comparison for iteratively bit-
flipped decoded Convolutional/ RS code for RS (15, 11). The 
effective code rate is 10/15 (i.e., (k-1)/n) because of the CRC, 
so it is compared with the same rate RS (12, 8) code. The 
simulation results show a coding gain of 0.25 dB at SER of 10

-4
 

using a bf of size 8, a gain of 0.4 dB at same SER using a bf of 
size 12 and a coding gain of 0.5 dB using a bf of size 16. 

 

 

Figure 3.  Convolutional/RS(15, 11) code with bit-flip combinations of 8, 12 

and 16 bits compared to same rate RS(12, 8) code 

B. RS(63, 55) 

Fig. 4 shows the SER results for RS (63, 55) code 
compared with the same effective rate (i.e., 0.86) Reed 
Solomon code, i.e., RS (56, 48). A coding gain of 0.45 dB 
using a bfc of 8 bits is obtained at SER of 10

-4
. A gain of 0.5 is 

obtained with a bf of size 12 and a gain of around 0.75 dB is 
obtained when 16-bit bit-flip combinations are considered. 

C. RS(255, 223) 

Fig. 5 shows an RS (255, 223) code with an 8-bit CRC, 
compared with the same effective rate RS(240, 208) code 
giving a coding gain of 0.2 dB using a bit-flip combination of 8 
bits at SER of 10

-3
. With 12-bit bit-flip combinations, the 

coding gain is 0.3dB and the coding gain increases to 0.4dB 
with a 16-bit bit-flip combinations. 

 

Figure 4.  Convolutional/RS(63, 55) code with bit-flip combinations of 8, 12 

and 16 bits compared to same rate RS(56, 48) code 

 

 

Figure 5.  Convolutional/RS(255, 223) code with bit-flip combinations of 8, 

12 and 16 bits compared to same rate RS(240, 208) code 
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In all of the simulations results, the curves for the different 
codes tend to meet with the curve for the hard decision Reed 
Solomon codes at the higher values of Eb/N0. The reason for 
this is that at very high signal to noise ratio, the concatenated 
Convolutional/RS code is able to correct the errors in the 
received words with a high probability, thus giving almost the 
same SER as that of the bit-flipped scheme presented in this 
work. However the improvement in the SER is obvious for the 
smaller values of Eb/N0 which is of more significance. 

V. CONCLUSION AND FUTURE WORK  

A scheme for the soft decoding of Reed Solomon codes is 
presented in this paper. The proposed scheme has the ability to 
correct errors beyond the decoding capability of Reed Solomon 
codes. The effect of the bit-flip combinations on the decoding 
scheme is analyzed. It is shown that by increasing the value of 
the threshold for the number of iterations to perform in the 
successive decoding of Reed Solomon codes, the error 
correcting capability increases and the probability of decoding 
error decreases. However, a very high threshold becomes 
practically infeasible.  

The work presented in this paper is based on Error only 
Reed Solomon codes. In future it is planned to extend the work 
to Error and Erasure correcting Reed Solomon codes using 
symbol reliabilities in addition to the bit reliabilities. The error 
correction capability of the error and erasure RS codes is given 
by, 

2*Nerr + Nera <= 2t             (8) 

where Nerr is the number of errors and Nera is the number of 
erasures in the erroneous word. Using the symbol reliabilities, 
erasures can be introduced at known locations in the RS code 

and the decoding capability can be further enhanced by 
correcting up to 2t symbols. By being able to correct up to 2t 
erasures as well as the errors using the bit-flipping method 
discussed in this work, there is a likelihood of increasing the 
error correction capability beyond 2t. 
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