
SOA Model for High Availability of Services

Tayyaba Anees and Heimo Zeilinger
Institute of Computer Technology
Vienna University of Technology

Gußhausstraße 27-29, 1040 Vienna, Austria
e-mail: {anees, zeilinger}@ict.tuwien.ac.at

Abstract— Service-oriented Architecture (SOA) provides
reusability and enables easy functionality integration.
Service availability in SOA is important as it is used by
safety critical systems, telecommunication systems and
business systems. Service unavailability can result in reduced
profits, reputation damage and reduced safety. Machine
virtualization, clusters and group communication systems
are used to increase availability, but they are not very much
applied to SOA-based systems. This paper focuses on
service-orientation and a model for increasing service
availability in SOA is proposed. The proposed model
improves failure detection process using monitoring. Use of
heartbeat mechanism is proposed for failure detection
instead of timeout mechanism as it can provide more
accuracy and also it can reduce failure detection time. Model
is emulated in LAN and WAN environments to investigate
impact of different network configurations on service
availability. Results indicate that service availability is
increased and failure detection process is improved by
monitoring.

Keywords- service-oriented architecture; availability; high
availability; monitoring; failover; safety critical systems;
business systems; telecommunication systems

I. INTRODUCTION

Service-oriented architecture [1] is for flexibility and
reuse, and enables organizations to easily integrate systems
[2]. The term SOA followed in the paper is defined by the
organization for advancement of structured information
standards (OASIS) [1] as “…a paradigm for organizing
and utilizing distributed capabilities that may be under the
control of different ownership domains” [1]. Services are
reusable, which can work autonomously as well as in
service compositions. SOA follows a standard-based
development approach [3]. Service availability is seen in
the paper from service consumer’s point of view. In our
opinion, standards based development makes SOA-based
systems more acceptable to service consumers and they
can be trusted for quality.

According to authors’, availability of services in SOA
needs attention as unavailability of services can result in
dissatisfaction among service consumers, lost revenues,
damaged reputation for service providers and loss of
human lives. One of the most important issues for SOA is
to assure availability [4]. Business services today are not
only doing more work but also have more users, often
spread out across the globe and require 24/7 availability
and availability is one of the important factors to be
considered for business-driven IT service management [5].

The fundamental characteristic of SOA, loose coupling and
on-demand integration, enable organizations to seek more
flexibility and responsiveness from their business IT
systems, but this brings challenges to assure QOS,
especially availability, which should be considered in an
integrated way in SOA [6].

SOA adoption is increasingly seen in the latest trends
where safety critical systems, telecommunication systems
and business systems are using it ([7], [8] and [9]). This
tendency is due to reduced expected costs due to
reusability, which is achievable by using SOA. Service
availability is becoming a requisite for such systems as
profits can only be earned if service functionality is
available to service consumers. Many of these systems
require not only availability, but instead high availability
for safety as unavailability of service can cause
information loss, which can put system into hazardous
state, thus reducing system safety. In the paper, the term
availability describes the probability that a service in a
given time is available.

Availability is dependent on mean time to failure
(MTTF) and mean time to repair (MTTR). In the paper,
the qualitative description of high availability [11] is
followed as highly available systems are those systems
which are expected to operate correctly in the presence of
multiple failures, using a subset of original components,
with reduced capacity and system should be able to self-
heal and reconstitute itself, without the loss of data or
application services. The system must detect failures and
reconfigure system operations dynamically. In our opinion,
high availability is expensive and it is not required for all
applications or services. Requirements for availability and
high availability are dependent on area of application and
also on a specific solution. In SOA, requirements for
availability and high availability are generally specified in
service level agreements (SLA).

This work focuses on increasing service availability by
reducing failover time and failure detection time through
monitoring. Failover means a backup module taking the
workload, when the primary module has failed [12].
Failover time includes the failure detection time and the
recovery time [12].

Clusters, group communication systems (GCS) and
machine virtualization are solutions, which are used to
increase availability. These solutions also use monitoring
but they differ in concept, and they are not very much
applied within the domains of SOA. In machine
virtualization, several operating systems share the
resources of same physical machine. Shared physical
machine can increase performance overhead and it can

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

become a single point of failure for virtualized solutions.
Clusters use GCS and GCS based solutions require
coordination activities between group members, which can
impose performance overhead. SOA-based solutions for
increasing availability are mostly focusing on service
compositions. Middleware based solutions also exist,
which use an enterprise service bus. These solutions can
also add performance overhead, which can increase
failover time.

The proposed approach focuses on the use of
monitoring and heartbeat mechanism for failure detection
instead of using timeouts for failure detection and retrying
in case of failures. The proposed approach simplifies the
management of failures by focusing only on the necessary
participants of SOA-based systems including service
consumers, service providers and service registry.
Additionally, the focus is on atomic services instead of
service compositions for simplification. In the proposed
approach, service provider’s availability is seen from
service consumer’s perspective because they are the ones
who ultimately use the service and in this context failover
time becomes important, which is the time when service is
unavailable. Failures are covered in the approach through
redundancy and service provider’s availability is
determined through failover time. The proposed approach
improves the process of failure detection and failover by
using heartbeat mechanism and service provider
availability is improved by reducing failure detection time
through monitoring service provider’s failures and by
selection of an optimal heartbeat interval.

The remainder of the paper is organized as follows:
Section II describes the state of the art research work. In
Section III we present and propose a SOA model for
improving service availability. It also includes a discussion
about the availability parameters considered in the
proposed solution and describes the approach for analyzing
service availability in SOA. Section IV presents
experimental results and discussion. Section V contains
concluding remarks.

II. STATE OF THE ART
SOA eases development efforts due to reusability and

standards based development approach [3]. As stated by Li
[4], SOA is an emerging approach addressing the
requirements of loosely coupled, standards-based, and
protocol independent distributed systems. Costs are
reduced by reusability of components which turns out to be
an advantage orchestrating large scale distributed
applications [13]. These cost reductions lead to upcoming
adoptions of SOA in business computing environments
[8].

Recently, a shift in trends is seen and there is a move
towards SOA adoption by safety critical systems. SOA is
being adopted by military organizations such as the United
States Department of Defense, The North Alliance Treaty
Organization and the UK’s Ministry of Defense [9].
Telecommunication networks are service centric and use
service composition techniques in accordance to SOA
principles [14].

Platforms that are supposed to form the core of mission
critical service-oriented applications need mechanisms that
can regulate the reliability and availability of the core
services in changing conditions [15].

For increasing availability of services different
solutions are proposed. In [16], a solution for improving
availability of service compositions or complex services is
proposed. Another solution is to pool multiple services that
provide the same functionality by different service
providers [4]. If a service fails, another service in the pool
is selected to process the request again. In this approach,
an appropriate size of service pool has to be selected
otherwise resources can be underutilized. In the proposed
approach, the focus is on reducing failure detection time
and failover time by monitoring for increasing service
provider availability. If failure detection time is reduced,
the time for which the service is unavailable or MTTR is
reduced and consequently availability is increased as it is
dependent on MTTR. The proposed approach focuses on
monitoring failures of individual services and not
composite services. In service compositions, wrong
execution order of services or failure of one service in a
service composition can reduce service availability of all
services in a service composition but mostly the focus of
service compositions is on a single solution and how
services are invoked in that solution. In our opinion, the
probability of reuse of individual services is higher than
the reuse of service compositions. A single service can be
reused in many different business solutions so availability
of individual services can be more beneficial as it can
increase service availability in different solutions.

The current solutions for increasing availability include
machine virtualization [17], clusters [4] and group
communication systems [18]. The emergence of machine
virtualization has significantly reduced system setup time,
coupled with the ability to migrate services and the
flexibility to consolidate multiple underutilized servers into
a smaller number of machines [19]. These solutions aim at
reducing MTTR by using redundancy and failover
mechanism. In any reliability work in general, a decrease
in MTTR contributes a proportional reduction in
unavailability [20]. In most of the high availability
distributed systems, redundancy is used to increase
availability and redundant servers appear to reduce MTTR
[19]. Failover can be used to ensure availability [4].
Failover is realized by heartbeat detection and
automatically takeover of functions [21].

Failover requires failure detection and service
migration to a redundant service provider. For failure
detection, heartbeat mechanism can be used and timeouts
can also be used. For failure identification at application
level keep-alive probing can be used and applications can
set own timeouts [22]. Another common method to detect
failures is the error prone approach of timeouts in order to
overcome inaccurate failure detections in software [23].
Another possibility to introduce fault tolerance to
applications are self checking mechanisms in the code. The
application verifies that it is healthy on its own. Through
such tactics, most failures can be detect accurately [23].

In the proposed approach, heartbeat mechanism is used
for failure detection and for better accuracy in comparison
to the timeout approach. Monitoring service constantly
checks for service failures and in timeout approach failure
is only detected when service consumer sends a request to
the service provider. As monitoring is done on a constant
basis failures can be detected earlier than the timeout
approach where the process of failure detection begins

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

after consumer sends a service request. In case of
monitoring, failed service can be restored using failover
before a service consumer sends a request. In failover
process, after failure detection, recovery is done by
switchover process in which a redundant service provider
takes over the work of failed service provider. Runtime
monitoring can be used for analyzing and recovering from
detected faults [24]. Monitoring is used in the proposed
solution for failure detection and recovery.

III. PROPOSED MODEL

A. Availability Parameters

The tendency of SOA adoption raises the need for
investigation of availability issues related to SOA.
Nowadays, there is a tough competition in every field of
life. Business systems and telecommunications systems
need to increase customer satisfaction for acquiring higher
profits. Safety critical systems need to provide more
confidence to service consumers for getting more profits
and in worst case for retaining profits. As these systems
are using SOA, this can be achieved by improving quality
of service attributes, such as by improving service
availability in SOA.

This paper proposes a SOA-based model, which can be
used by such systems for increasing service provider
availability. Basic SOA model includes service providers,
service consumers and service registry. In modified SOA
model we have added a monitoring service to basic SOA
model as shown in Figure 1. In Figure 1, service providers
publish service descriptions (1.publish) in registry. Service
consumers find (2.find) required service from registry.
Service provider has service implementation and service
registry holds service description. Service consumers bind
(3.bind) to service provider. Service consumers and service
provider start interacting (4.interact) with each other. Next
section explains the role of monitoring service.

Figure 1. Modified SOA model.

Availability of service provider is essential as they
provide functionality to service consumers. In general,
availability decreases due to failures. Availability can be
increased by increasing MTTF or by reducing MTTR.

MTTF is the time until a failure happens and it can be
increased by reducing failures from the system. For
increasing MTTF statistical data is needed. MTTR is the
time to repair the system. As the model proposed in the
paper is based on a newly developed system, statistical
data is not available for it and statistical data is not always
accurate and complete as well. The focus in the proposed
approach is on reducing MTTR by reducing failover time
through monitoring for increasing service availability.
Failover time is the downtime of service. In our opinion,
by reducing failover time, availability can be increased.

The requirements for availability and high availability
vary for different systems. High availability can be
analyzed quantitatively as well as qualitatively. In the
proposed solution, availability and high availability are
qualitatively analyzed. Qualitative descriptions are used
for analyses because SOA is not specific to an area of
application and different areas of application can have
different requirements for availability and high
availability. Quantitative requirements differ for different
areas of application whereas qualitative description is
applicable in a generic way such as highly available
systems should be able to detect failures and restore
operations dynamically. Failures of some services can be
tolerable and some are not depending on requirements and
cost of high availability. Reliable communication is an
essential service for many distributed applications, some of
which require very fast recovery from failures, while
others can tolerate slower failure recovery [25].

In our opinion, in SOA, several services work together
to perform a business task and not all services used in a
service-centric solution require high availability. For
instance, customer interaction services may require high
availability because their unavailability can result in
monetary losses but services which are used for internal
communication between employees may not need high
availability as in this case monetary losses are not
expected. In our opinion, high availability is expensive and
it should not be added without considerable thought.

In SOA, service level agreements are used to describe
quality of service parameters [26]. In our opinion, for
SOA-based systems requirements of availability and high
availability should be specified in SLA. Authors believe
that highly available systems have certain features such as
redundancy, use of automated means for recovery, minor
failures and the ability of failure detection. A system can
be considered highly available on the basis of these
features. Redundancy, failure detection and automated
recovery using monitoring are used for high availability in
the proposed approach.

B. Service Availability in SOA

In the proposed solution, for increasing service
provider availability in SOA, monitoring service is added
to the basic SOA model as shown in Figure 1. Monitoring
service detects failures, notifies service consumers about
failures and initiates the failover process. Monitoring
service deletes the information of failed service from
service registry to reduce failures by reducing chances of
requests being sent to failed services. Monitoring service
restarts the failed service provider as well. UDDI based
service registry is used in the test environment as it fulfils
the requirements. In proposed solution, availability of

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

service provider is improved by reducing failure detection
time and failover time through monitoring. Failover time
includes failure detection time and switchover time.
Switchover time is the time that the primary and the
backup are switching over the roles [12]. In the model,
switchover time is the time for finding the backup service
provider from service registry. In the proposed model,
redundant service providers are used who send heartbeat
messages to monitoring service at periodic intervals.
Monitoring service detects failures on the basis of 3
consecutive missed heartbeat messages from the service
provider.

In the proposed approach, heartbeat mechanism is used
as failure detection time can be reduced with it and it
provides greater accuracy in comparison to timeout
approach. In case of heartbeat approach, failures can be
detected earlier than timeout approach as failures are
constantly monitored and service an be restored before a
service consumer sends a request to service whereas in
timeout approach service failure is detected only after the
service consumer sends request to the service. In the
approach of timeouts, service consumers are blocked for a
certain time to get a response from service. If they do not
get a response within a specified time interval, they retry
the service and wait for ensuring service failure. In
heartbeat mechanism service consumers are not blocked
for a certain time and another service can be used as soon
as the failure is detected.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The following experiment is conducted to evaluate the
proposed approach to increase service availability in
service-oriented systems. Test environment for evaluating
the proposed model is shown in Figure 2. WANem [27],
an emulator is used for evaluating the model in test
environment under different network conditions. Four
nodes are used in the test setup. All traffic between service
consumers, service providers and monitoring service
passes through the emulator. Service consumers send
requests in parallel to service providers and they are placed
on one node. Service registry and service providers are
placed on another node. Monitoring service is placed on a
separate node. Service consumers and service providers are
deployed on Glassfish server [28]. Service registry which
is used is jUDDI [29] and it is deployed on Jakarta-Tomcat
server [30]. Service registry uses mySQL [31] database for
storing information. Synchronous web services are used in
the implementation.
In experiments in Figure 3, different number of service
consumers and different number of service providers are
used with no packet loss or delay. In experiments shown
in Figure 4, different number of service consumers and 10
service providers are used with different rates of packet
loss 0 %, 1 % and 5 %. Different rates of packet loss are
used for analyzing the impact of packet loss on service
provider’s availability. Packet loss is chosen to analyze
the applicability of the proposed model to all kind of
services as for some services such as VOIP services high
rate of packet loss is expected whereas for other services
rate of packet loss can be low. In the experiment, different
heartbeat intervals are used to analyze optimal failure
detection time and to reduce failover time to increase

service provider availability. Model is emulated with 100
ms, 500 ms and 1000 ms heartbeat interval for sending
heartbeats. Different heartbeat intervals are used to
analyze how fast monitoring service can detect failures
accurately. In the experiment, measurements are taken to
see the impact of different redundancies and different
number of service consumers on failover time.

Figure 2. Test environment of modified SOA model.

Failover time is chosen in measurements as it is the
time when service is unavailable. Different redundancies
are used because overall performance can decrease or
failover time can increase by adding more redundancy. In
the proposed approach, performance is determined with
respect to failover time. Failover time or performance
should be acceptable to service consumers. Performance
can also decrease with more service consumers as failover
time can increase due to more number of service requests
with higher number of service consumers.

Figure 3. Average failover time with different redundancies.

Results shown in Figure 3, with 0 % packet loss show
that by increasing number of service consumers, failover
time is increased irrespective of redundancies. Results
indicate that failover time with 130 service consumers is 5
s. In our opinion, failover time up to 5 s should be
acceptable for most of the service consumers unless there

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

are critical services which have higher requirements for
failover time. In our opinion, for business systems and
telecommunication systems 5 s failover time can be
tolerable in most of the cases as loss of human lives is not
expected with the services provided by business systems.
Results indicate that service provider can tolerate failover
requests from 130 service consumers at the same time
which is quite acceptable according to the capacity of one
system. However, by improving the capacity of system
using better hardware the limitation of 130 service
consumers can be removed. 5 s‘s failover time is high for
critical services used by safety critical systems as they
have high requirements for availability and high
availability but for non-critical services they can also
consider 5 s’s failover time.

Results indicate that by increasing redundancy and due
to sending of more heartbeat messages, bandwidth
consumption is not changed considerably, due to which
performance or failover time stays similar with different
redundancies. In our opinion, redundancy can be added in
the system to increase availability of service according to
requirement as performance is not deteriorated with it. We
recommend that, for systems where frequency of failures is
high or reputation damage is important for a certain
business, redundancy can be added for increasing
availability because results indicate that performance is not
decreased with redundancy. However, if frequency of
failures in a system is low, adding more redundancy to the
system is not recommended as it will be expensive and it
can result in underutilized resources.

Results in Figure 4, indicate that monitoring service
can detect failures in less time when a small heartbeat
interval is used such as 100 ms. Results show that with a
small heartbeat interval, failure detection time is reduced.
Failure detection time with 1000 ms heartbeat interval is
3000 ms, with 500 ms heartbeat interval failure detection
time is 1500 ms whereas with 100 ms heartbeat interval
failure detection time is reduced to 300 ms.

Figure 4. Average failover time with different rates of packet loss and
with different redundancies.

Results in Figure 4 indicate that by selecting an
appropriate heartbeat interval monitoring service can
detect failures quickly which reduces failure detection
time. As failure detection time is reduced, failover time is
reduced as well and service availability is increased. The
results indicate that service provider can handle 130

service consumers with 5 s’s failover time which can be
acceptable for non-critical services and if the requirements
of availability and high availability are not high for a
specific system.

We have also analyzed the impact of packet loss on
service provider availability in these measurements.
Results in Figure 4, indicate that 1 % packet loss has
insignificant impact on service provider availability and 5
% packet loss can reduce service provider availability, but
the difference is not very high. The results indicate that
services which can tolerate packet loss to some extent can
be accommodated by using the model. Results indicate that
sustainable work load can be identified by using the model.
By avoiding peak load on the system, service provider
availability can be increased.

V. CONCLUSION

Applicability of service-oriented architecture is
increasing in safety critical systems, telecommunication
systems and business systems. Requirements of
availability and high availability for every application area
are different. Even the best practices cannot be utilized
properly to fulfil the requirements. The solutions for
increasing availability, such as machine virtualization,
clusters and group communications systems are not very
much applied within the domains of SOA. In this paper, a
SOA-based model has been proposed and monitoring is
used for increasing service availability. Clusters, machine
virtualization, group communication systems and
middleware based solutions can increase availability but
they can also increase complexity, performance overhead,
installation requirements and maintenance costs due to
which they are not chosen in the proposed approach. In the
paper, it is investigated that how different network
conditions can impact or reduce service availability.
Proposed SOA model focuses on reducing failure detection
time by using heartbeat mechanism. Heartbeat mechanism
is chosen for more accuracy in failure detections in
comparison to the timeouts approach. In case of timeouts,
failure is detected once and with heartbeat mechanism
failure is ensured repeatedly. Experimental results show
the effectiveness of the approach and indicate that by using
heartbeat mechanism failures can be detected earlier than
the timeout approach. Results indicate that a small
heartbeat interval can reduce failure detection time and
failover time and by selecting an optimal heartbeat interval
service availability can be increased. Availability is also
increased by adding redundancy as a redundant system can
cover more failures than a non-redundant system. Results
indicate that redundancy does not reduce performance and
it can be used according to requirement. The next step in
the research work is to extend the model with redundant
monitoring services as a single monitoring service can
become a single point of failure for the system. Diverse
monitoring services can be introduced in model to avoid
failures of same kind. Model can be extended by analyzing
availability of service compositions or by analyzing
availability of asynchronous services. Also, a middleware
can be added to the model and availability can be analyzed
for middleware based service-oriented systems.

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

REFERENCES

 [1] Reference Model for Service Oriented Architecture 1.0,

OASIS Committee Specification 1, Aug 2006.
[2] OASIS, “Advancing open standards for information

society”, [retrieved: Feb, 2013] from http://www.oasis-
open.org/.

 [3] W. D. Yu and C. H. Ong, "A SOA-based Software
Engineering Design Approach in Service Engineering,"
Proc. IEEE International Conf. on e-Business Engineering
(ICEBE), China, Oct. 2009, pp. 409 - 416.

[4] B. Li, “Research and application of SOA standards in the
integration on web services,” Proc. 2nd International
Workshop on Education Technology and Computer
Science (ETCS), China, vol. 2, Mar. 2010, pp. 492–495.

[4] M. Chen, C. Wu, and k. Wu, “Staging adjust service pool
to assure availability in SOA title,” Proc. International
Conf. on Complex, Intelligent, and Software Intensive
Systems (CISIS), Korea, Jun. 2011,pp. 409-413.

[5] J. Qiu, J. A. Pershing, Y. Li, L. Xie, J. Luo, and Y. Chen,
“Availability weak point analysis over an SOA
deployment framework,” IEEE Symposium on Network
Operations and Management (NOMS), Brazil, Apr. 2008,
pp. 473 - 480.

[6] J. A Pershing, L. Xie, J. Luo, Y. Li, and Y. Chen, “A
methodology for analyzing availability weak points in
SOA deployment frameworks,” IEEE Transactions on
Network And Service Management (TNSM), vol. 6, Mar.
2009, pp. 31-44.

[7] J. Niemöller, I. Fikouras, K. Vandikas, R. Levenshteyn,
R. Quinet, and E. Freiter, “Blending the
telecommunication domain with Web 2.0 services,” Proc.
14th International Conf. on Intelligence in Next
Generation Networks (ICIN), Berlin, Oct. 2010, pp. 1-6.

[8] J. He, E. Castro-Leon, and M. Chang, “Scaling down SOA
to small businesses,” Proc. IEEE International Conf. on
Service-Oriented Computing and Applications (SOCA),
Jun. 2007, pp. 99 - 106.

[9] J. Fenn, A. Brown, and C. Menon, “Issues and
considerations for a modular safety certification approach
in a service-oriented architecture,” Proc. 5th IET
International Conf. on System Safety, United kingdom,
Oct. 2010, pp.1-6.

[10] M. Haberkorn, and K. Trivedi, “Availability monitor for a
software based system,” Proc. 10th IEEE High Assurance
Systems Engineering Symposium (HASE), USA, Nov.
2007, pp. 321–328.

[11] A. Apon and L. Wilbur,“Ampnet - a highly available
cluster interconnection network,” 17th International
Symposium on Parallel and Distributed Processing
(IPDPS), France, Apr. 2003, pp. 201.2.

[12] M. Yin, “Assessing availability impact caused by
switchover in database failover,” Proc. Annual Reliability
and Maintainability Symposium (RAMS), USA, Jan. 2009,
pp. 401 - 406.

[13] T. G. Papaioannou, N. Bonvin, and K. Aberer, “An
economic approach for scalable and highly-available
distributed applications,” Proc. IEEE 3rd International
Conf. on Cloud Computing, USA, Jul. 2010, pp. 498 - 505.

[14] R. Levenshteyn, R. Quinet, J. Niemöller, I. Fikouras,
K. Vandikas, and E. Freiter, “Blending the
telecommunication domain with web 2.0 services,” Proc.
14th International Conf. on Intelligence in Next
Generation Networks (ICIN), Berlin, Oct. 2010, pp.1-6.

[15] S. Ahlfeld, S. Schulte, J. Eckert, A. Papageorgiou,
T. Krop, and R. Steinmetz, “Enhancing availability with

self-organization extensions in a SOA platform,” Proc. 5th
International Conf. on Internet and Web Applications and
Services (ICIW), Barcelona, May. 2010, pp. 161 - 166.

[16] A. Grzech and P. Swiatek, “Complex services availability
in service oriented systems,” Proc. 21st International Conf.
on Systems Engineering (ICSEng), USA, Aug. 2011, pp.
227 - 232.

[17] C. Lin, X. Zhang, and X. Kong, “Model-driven
dependability analysis of virtualization systems,” Proc. 8th
IEEE/ACIS International Conf. on Computer and
Information Science, China, Jun. 2009, pp. 199 - 204.

[18] Y. Krasny, A. Krits, E. Farchi, G. Kliot, and R. Vitenberg,
“Effective testing and debugging techniques for a Group
Communication System,” Proc. International Conf. on
Dependable Systems and Networks (DSN), Japan, Jun.
2005, pp. 80-85.

[19] H. Y. Chan, B. Y. Ooi, and Y. Cheah, “Dynamic service
placement and redundancy to ensure service availability
during resource failures,” Proc. International Symposium
in Information Technology (ITSim), Kuala Lumpur, Jun.
2010, pp. 715 - 720.

 [20] W. D. Grover and A. Sack, “High availability survivable
networks: When is reducing MTTR better than adding
protection capacity?,” Proc. 6th International Workshop on
Design and Reliable Communication Networks (DRCN),
France, Oct. 2007, pp. 1-7.

[21] L.Yue, Y. Shengsheng, G. Hui, and Z. Jingli, “Design of a
dual-computer cluster system and availability evaluation,”
Proc. IEEE International Conf. on Networking, Sensing
and Control (ICNSC), Taiwan, Mar. 2004, pp. 355 - 360.

[22] R. Wolski, J. S. Plank, and M. Allen, “The effect of
timeout prediction and selection on wide area collective
operations,” Proc. IEEE International Symposium on
Network Computing and Applications (NCA), USA, Oct.
2001,pp. 320 – 329 .

[23] K. P. Birman, “Reliable Distributed Systems
Technologies, Web Services and Applications,” Springer,
2005.

[24] A. Q. Gates, N. Delgado, and S. Roach, “A taxonomy and
catalog of runtime software-fault monitoring tools,” Proc.
IEEE Transactions on Software Engineering, vol. 30, Dec.
2004, pp. 859 - 872.

[25] S. Han and K. G. Shin, “Experimental evaluation of
failure-detection schemes in real-time communication
networks,” Proc. 27th Annual International Symposium on
Fault-Tolerant Computing, USA, Jun 1997, pp. 122 - 131.

[26] P. Merson, L. O’Brien Lero, and L. Bass, “Quality
attributes for service-oriented architectures,” Proc. Int.
Workshop Systems Development in SOA Environments
(SDSOA), USA, May 2007, p. 3.

[27] WANem, “Wide Area Network Emulator,” [retrieved: Feb
14, 2013] from http://wanem.sourceforge.net/.

[28] Glassfish homepage, [retrieved: Feb 16, 2013] from
http://glassfish.java.net/.

[29] jUDDI, “An Apache Project Homepage,” [retrieved: Feb
11, 2013] from http://juddi.apache.org/.

[30] Apache Tomcat, [retrieved: Feb 14, 2013] from
http://tomcat.apache.org/.

[31] MySQL, [retrieved: Feb 22, 2013] from
http://www.mysql.com/.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-263-9

CTRQ 2013 : The Sixth International Conference on Communication Theory, Reliability, and Quality of Service

