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Abstract—Identity Oriented Networks (ION) provide 
mechanisms for scalability, mobility and operations across 
heterogeneous entities by disseminating unique identity of end 
points from their position in the network. However, current 
devices cannot parse the newly added ID field in 3.5 layer. This 
paper puts forward a universal Software Defined Networking 
(SDN)-based packet processing mechanism to parse 
information in high layers and exchange redundant 
information in low layers with key information in high layers 
at the entrances of network. Thus, the key field in high layer is 
visible in low layer and can be parsed by current protocol and 
routing devices. The article takes GPRS Tunneling Protocol 
(GTP) packets for example to explain the packet processing 
method. Besides, delay caused by the packet processing module 
is measured and an experiment is made to verify that parsing 
high-layer field succeeds and strategies on high-layer field can 
be made.  
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I.  INTRODUCTION 
With the development of network technologies and user 

requirements, mobility has been a significant trend. Firstly, 
the number of mobile devices including M2M modules 
keeps increasing and is expected to be 11.6 billion by 2020. 
Secondly, mobile traffic has grown faster year by year. 
Mobile traffic content also tends to carry more video traffic 
including streaming video, which requires high bandwidth 
transmission capabilities. Thirdly, offload mobile traffic 
(traffic from dual-mode devices over Wi-Fi or small-cell 
networks) is taking more and more proportion of the whole 
traffic. In 2015, mobile offload traffic exceeded cellular 
traffic for the first time. In general, more devices, more 
traffic and more offload connectivity pattern should be taken 
into consideration in next-generation network. 

In 5G era, network has five performance requirements: 1) 
bandwidth and speed throughput: 10Gps; 2) latency: less 
than 1ms; 3) scale: 10-100 times than Long Term Evolution 
(LTE) [1]; 4) session continuity: ubiquitous; 5) mobility 
speed: 500km/h. However, current LTE architecture has 
many constraints. The handoff delay and latency is 

noticeable. Due to requirement of global IP addresses, multi-
homing features make IP addresses aggregation difficult and 
lead to large RT on routers. 

In the context, Identity Oriented Networks (ION) has 
been put forward to improve mobility performance. The 
fundamental premise of ION is the one that provides 
mechanisms for scalability, mobility and operations across 
heterogeneous entities by disseminating unique identity of 
end points from their position in the network. A 3.5 layer is 
added between the IP layer and the TCP/UDP layer. An 
identity field is carried in the new layer to identify a node, an 
app or anything. ID can be bond with an IP address locator to 
complement forwarding. Thus, network has the following 
improvements: 1) native mobility; 2) ID-based Apps; 3) 
multi-homing ID with global scope; 4) context awareness 
based on ID profile; 5) ID-based security. 

Although ION improves network performance in many 
ways, current switching and routing devices can only parse 
information no higher than the IP layer. The long-term trend 
is to develop new devices that are capable to parse the 3.5 ID 
layer information. However, it will take a long time to update 
all routing devices and Capital Expenditure (CAPEX) should 
also be considered. To solve the issue, this article put 
forward a universal SDN-based packet processing 
mechanism to parse information in high layers and exchange 
redundant information in low layers with key information in 
high layers. Thus, the key field in high layer is visible in low 
layer and can be parsed by current protocol and routing 
devices. 

The paper is organized as follows. Section II introduces 
related knowledge of the example case. Section III 
specifically explains the SDN-based packet processing 
mechanism to parse the high-layer field incompatible with 
OpenFlow protocol and utilizes the field to control network 
at a smaller granularity. Section IV measures the delay 
caused by the packet processing module and verifies the 
success of parsing high-layer field and making strategies 
based on the high-layer field. Finally, conclusions are 
presented in Section V. 
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II. RELATED KNOWLEDGE 
Since ION is in conceptual phase, this paper takes GTP 

packets for example to explain the packet processing of 
parsing high-layer information and utilizing high-layer 
information to handle packets. The augment supporting the 
analogy is that GTP packets face the similar problem in 
incapability of recognizing high layer information when 
being processed by OpenFlow [2] devices. 

GTP is an IP-based communication protocol in Evolved 
Packet Core (EPC) [3]. The protocol consists of GTP-C, 
GTP-U and GTP’, which are respectively used in the GTP 
control plane, GTP user plane and charging data 
transmission. Since this paper studies packet processing in 
data plane, GTP-U is the core concern. GTP-U protocol 
stack is shown in Figure 1. For uplink packets, the radio 
layer ends in eNodeB. ENodeB encapsulates GTP packets 
and establishes the GTP tunnel to S-GW. S-GW establishes 
the GTP tunnel to P-GW and P-GW decapsulates GTP 
packets and forwards it to Internet. For downlink packets, the 
processing procedures are reversed. There is a key field 
named Tunnel endpoint identifier (TEID) in GTP-U header. 
TEID is used to multiplex different connections in the same 
GTP tunnel. A GTP connection is uniquely confirmed by a 
source tunnel IP, a destination tunnel IP and a TEID. In this 
article, GTP packets refer to GTP-U packets without special 
statement. 

 
Figure 1. GTP-U protocol stack 

 
Software-defined networking (SDN) [4] is an emerging 

solution for fine-grained control and management of 
networks. It separates the control plane (SDN controller) and 
data plane (switching and routing devices) of network. 
OpenFlow is a generally accepted southbound protocol 
between the controller and switching devices. There is a 
widely agreed trend that SDN should be integrated into 5G 
core network. However, GTP-U header locates over UDP 
layer. In current OpenFlow protocol, only information below 
layer 4 (including layer 4) can be parsed. Therefore, TEID is 
invisible in OpenFlow and GTP connection could not be 
recognized by OpenFlow switches. To address the problem, 
a packet processing method is put forward to parse the high 
layer field and exchange it with redundant fields in low layer. 

III. PACKET PROCESSING IMPLEMENTATION 
By analyzing the packet transmission within GTP tunnels, 

it could be found that forwarding decisions are made 
depending on the destination tunnel endpoint IP address. 
Therefore, during transmission in GTP tunnels, the source IP 
address is redundant information. Besides, both source IP 
address field and TEID field have a length of 32 bit in 
common. As a result, exchanging TEID field with source IP 
address field at the tunnel entrance would expose useful 

TEID field when forwarding the GTP packets in GTP tunnel 
without influencing normal processing mechanisms of GTP 
packets. Moreover, OpenFlow devices work normally 
complying with OpenFlow protocol since TEID field is 
already in layer 3 and could be parsed by OpenFlow protocol.  

A. Architecture 
In Evolved Packet Core (EPC) architecture, control 

functions and forwarding functions of S/P-GW are coupled, 
which restricts core network flexibility. Thus, separating 
control functions and forwarding functions of S/P-GW is a 
main trend of 5G mobile core network developments. Base 
on that, this article designs the core network architecture in 
Figure 2. This architecture retains most structure of the 
current EPC architecture. The major differences are: 1) 
separating the control functions and forwarding functions of 
S/P-GW; 2) introducing SDN controller to cooperate with 
S/P-GWc to manage the network between S-GWs and P-
GWs; 3) data plane are OpenFlow-enabled and comply with 
the control of SDN controller. 

The data plane consists of S/P-GW’s user plane devices 
and OpenFlow devices, while the control plane consists of 
SDN controller, S/P-GW’s control plane, Mobility 
Management Entity (MME), Home Subscriber Server (HSS) 
and Policy Control and Charging Rules Function (PCRF). In 
this case, MME works the same in EPC. It manages mobility, 
chooses S-GW for user equipment (UE) and establishes the 
GTP tunnel between eNodeB and S-GW. The control 
functions of S/P-GWs operate over SDN controller and 
communicate with it by JSONRPC messages to swap UE 
information and S/P-GW information. The S/P-GW control 
plane strategies are implemented in coordination with MME, 
HSS and PCRF, including user IP allocation and traffic flow 
template (TFT) assignment. SDN controller controls data 
plane devices with OpenFlow protocol and manage TFT 
with S/P-GW. S/P-GWs provide terminal of GTP tunnels 
and anchor GTP tunnels during handoff. Applying SDN to 
manage the transmission network makes it convenient to 
realize overhead control and routing optimization. Besides, 
this architecture is compatible with current 3GPP [5] 
standards, which is the smooth evolution for mobile core 
network to integrate SDN. 
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 Figure 2. SDN-based mobile core network architecture 
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B. Data Plane Implementation 
To parse the high layer information of TEID, a GTP 

processing module is attached to a logical port of an 
OpenFlow device at the entrances of S/P-GWs, cooperating 
with OpenFlow pipeline processing to handle GTP packets. 
The OpenFlow device with GTP processing module can be 
regarded as an extension of gateway functions. For uplink 
GTP packets at S-GWs and downlink GTP packets at P-
GWs, TEID field and source IP address field should be 
exchanged to make the TEID field visible to SDN controller 
and OpenFlow devices between S-GWs and P-GWs. Thus, 
for downlink GTP packets at S-GWs and uplink GTP 
packets at P-GWs, TEID field and source IP address field 
should be exchanged to restore the previous packets.  

The OpenFlow devices utilize OpenFlow pipeline 
processing to handle packets. There are at least five flow 
tables in the OpenFlow device. Table 0 has the highest 
priority. It matches GTP packets (udp_port is 2152) whose 
in_port is not connected to the GTP processing module and 
then sends them to the GTP processing module. Table 1 has 
the second highest priority. It matches GTP packets whose 
in_port is connected to GTP processing module and sends 
them to Table 2, otherwise it sends them to Table 3. Table 2 
has the third highest priority. It matches GTP packets whose 
source MAC address is the S/P-GW to which it connects and 
sends them to Table 4, otherwise it outputs them to the 
connected S/P-GW. Table 3 forwards regular packets except 
GTP packets and Table 4 forwards GTP packets to be sent to 
the core network. The GTP processing module implements 
the exchange of high-layer TEID field and low-layer source 
IP field. Firstly, it parses the high-layer TEID field. Then, it 
exchanges TEID field with the low-layer source IP field. 
Lastly, it sends the processed packet back to the logical port 
where the packet comes. The OpenFlow multi-stage flow 
tables at entrances of S/P-GWs are shown in Figure 3. 
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Figure 3. OpenFlow multi-stage flow tables at entrances of S/P-GW 

 
After the packet processing at the entrance of core 

network, OpenFlow devices and SDN controller could have 
access to TEID field of GTP packets in the network between 
S-GWs and P-GWs. Thus, strategies based on TEID field are 
easy to implement. 

C. Control Plane Implementation 
As a result of exchange processing at GTP tunnel 

entrances, traffic control (routing optimization, Qos, etc.) at 
the granularity of GTP connections could be realized without 
changing working principles of OpenFlow devices and SDN 
controller. 

Varieties of applications could be developed and run over 
SDN controller. Those applications leverage TEID field in 
layer 3 and make specific decisions on different TEIDs. An 
example of routing optimization based on TEID is given in 
Figure 4. Leveraging the advantage of the global view of 
SDN controller, different routing planning can be easily 
implemented. 

 Considering that different GTP connections have 
different routing demands, three routing planning modules 
are added to SDN controller. One implements shortest path 
planning, one implements maximum bandwidth path 
planning and another implements minimum delay path 
planning. When the controller receives packet-in messages, it 
matches TEID field and invokes corresponding path 
planning module for different TEIDs. The designed route is 
distributed to the network by flow-mod messages. 
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Figure 4. Routing planning example based on TEID 

 
Routing modules based on different demands can be 

developed by similar methods. 

IV. EVALUATION 
Introducing GTP processing module into the network 

would cause extra delay during packet transmission. Thus, 
evaluation on delay should be taken into consideration. 
Besides, whether traffic control at the granularity of TEID is 
realized or not is also to be proved. 

A. Experimental Setup 
The experimental system is set on Ubuntu 14.04 LTS. 

Mininet [6] 2.3.0d1 was utilized to simulate the network and 
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Ryu [7] was utilized as an SDN controller. The topology is 
shown in Figure 5. SGW1 and PGW1 are two virtual 
machines which generate GTP packets. MS1 and MS2 are 
set to send GTP packets to a logical port attached by the GTP 
processing module. MH1 and MH2 are two network 
namespaces and work as GTP processing modules, 
respectively attached to the logical port of MS1 and MS2. S1, 
S2, S3, S4 and S5 work as switches in the core network. 

 
Figure 5. Experiment topology 

 
• SGW1 and PGW1 
OpenGGSN-0.91 [8] is used to build GTP tunnels. The 

PGW1 serves as a GGSN node that has one tunnel IP, and 
the SGW1 serves as an SGSN node that has several tunnel 
IPs. The TEID of each tunnel is allocated by orders. For the 
purpose of a simple design, the IP address of SGW1 and 
PGW1 are 10.0.0.1 and 10.0.0.2, and the MAC addresses are 
00:00:00:00:00:01 and 00:00:00:00:00:02. 

• MH1 and MH2 
MH1 and MH2 work as the GTP processing module, 

aiming at exchanging source IP field with TEID field. There 
are two network devices in MH1, including eth0 and 
etSGW1. EtSGW1 works in a promisc mode to get each 
packet it receives. And eth0 works in multicast mode and has 
an IP address of 10.0.0.3 and a MAC address of 
00:00:00:00:00:03. A python application named 
gtp_modify.py is running on MS1 to realize the GTP process 
module’s functions. The application firstly captures a GTP 
packet from etSGW1, and then it cuts out the data segment 
and parses TEID field by counting the bit position. After 
getting the TEID, it exchanges the TEID field with source IP 
address field, and finally sends the packet back to the 
network through eth0. 

Except that MH2’s eth0 has an IP address of 10.0.0.4 and 
a MAC address of 00:00:00:00:00:03, the other settings and 
working pattern of MH2 are the same as MH1’s. 

• MS1 and MS2 
MS1 is located between SGW1 and core networks, 

connected to MH1. And MS2 is located between PGW1 and 
core network, connected to MH2. The flow tables in MS1 
and MS2 are described in Section III.  GTP-U packets that 
should be sent into or out of core network will be delivered 
to GTP processing module. 

• Ryu controller 
Ryu serves as a SDN controller and is mainly responsible 

to set flow tables to OpenFlow switches. It will create a 
default route at exactly the time when the network is built, so 
that some control message like GTP-C can be forwarded 
successfully. 

B. Result Analysis 
In order to verify traffic control abilities at the granularity 

of GTP connections, there are three GTP connections in our 
scenario. The PGW1 has one tunnel IP of 192.168.0.1, while 
SGW1 has three tunnel IPs: 192.168.0.2 for tunnel1, 
192.168.0.3 for tunnel2 and 192.168.0.4 for tunnel3. Besides, 
tunnel1’s TEID is 0x00000001, and tunnel2’s is 0x00000002, 
and tunnel3’s is 0x00000003. Iperf [9] is utilized to generate 
traffic flows. Flow1 is sent at a speed of 100kbps in tunnel1, 
while flow2 is at a speed of 80kbps in tunnel2 and flow3 is at 
a speed of 60kbps in tunnel3. Based on TEID and destination 
IP address, different routes are designed. Flow1 is designed 
to go through s1->s4->s3, while flow2 is designed to go 
through s1->s2->s3 and flow3 is designed to go through s1-
>s5->s3. Traffic bandwidth is measured in each route, and 
the delay caused by MH1’s GTP processing module is also 
detected. 

Figure 6 shows the delay caused by GTP processing 
module in MH1. It can be seen that the delay range from 
46ms to 98ms. The average delay is approximately 75ms. 
The delay value is a bit large. However, the delay will only 
be generated at the entrance of the whole network and the 
value is relatively stable regardless of the network scale. 
When network scale expands and the whole delay increases, 
the delay caused by GTP processing module tends to have a 
smaller influence to the whole network. Besides, the delay 
can be diminished by promoting the hardware performance. 

 
Figure 6. Delay caused by GTP processing module in MH1 

 
Figure 7 shows traffic bandwidth in route s1->s4->s3, s1-

>s2->s3 and s1->s5->s3. It can be seen that the average 
bandwidth on the three routes are approximately 100kbps, 
80kbps and 60kbps. It matches the bandwidth of flow1, 
flow2 and flow3, which illustrates the route design based on 
TEID is realized. Besides, Wireshark [10] is also utilized to 
capture packets at switch s2, s4 and s5. The results show that 
only packets with TEID 1 appear at switch s4, while only 
packets with TEID 2 appear at switch s2 and only packets 
with TEID 3 appear at switch s5. It further verifies that 
traffic control at the granularity of GTP connections is 
realized. 

 
Figure 7. Traffic bandwidth on three different routes 
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Results show that traffic control abilities at the 
granularity of GTP connections are achieved. 

V. CONCLUSIONS 
This paper designs a universal SDN-based mechanism to 

handle packets containing high-layer field incompatible with 
OpenFlow protocol, without extending protocols or 
upgrading devices. An example of handling GTP packets is 
shown to explain the processing mechanism. Besides, the 
processing delay is measured and an experiment verifies that 
TEID field is successfully parsed and strategies at the 
granularity of TEID can be made. By utilizing the packet 
processing mechanism, ION packets can be transferred in 
SDN network and strategies at the granularity of ID field can 
be made. The mechanism could be universally utilized to 
tackle the problem of parsing a relatively small field 
incompatible with OpenFlow protocol as a temporary 
solution. 
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