
A Universal Mechanism to Handle ION Packets in SDN Network

Lixuan Wu1, Jiang Liu1,2 , Tao Huang1,2 , Weihong Wu1 , Bin Da3

1State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications

Beijing, China
2Beijing Advanced Innovation Center for Future Internet Technology

Beijing, China
3 Network Technology Laboratory, 2012 Laboratories

Beijing Huawei Digital Technologies Co., Ltd.
Beijing, China

Emails: {shinning@bupt.edu.cn , liujiang@bupt.edu.cn, htao@bupt.edu.cn, 344259446@qq.com, dabin@huawei.com}

Abstract—Identity Oriented Networks (ION) provide
mechanisms for scalability, mobility and operations across
heterogeneous entities by disseminating unique identity of end
points from their position in the network. However, current
devices cannot parse the newly added ID field in 3.5 layer. This
paper puts forward a universal Software Defined Networking
(SDN)-based packet processing mechanism to parse
information in high layers and exchange redundant
information in low layers with key information in high layers
at the entrances of network. Thus, the key field in high layer is
visible in low layer and can be parsed by current protocol and
routing devices. The article takes GPRS Tunneling Protocol
(GTP) packets for example to explain the packet processing
method. Besides, delay caused by the packet processing module
is measured and an experiment is made to verify that parsing
high-layer field succeeds and strategies on high-layer field can
be made.

Keywords-ION; SDN; OpenFlow; GTP; TEID.

I. INTRODUCTION
With the development of network technologies and user

requirements, mobility has been a significant trend. Firstly,
the number of mobile devices including M2M modules
keeps increasing and is expected to be 11.6 billion by 2020.
Secondly, mobile traffic has grown faster year by year.
Mobile traffic content also tends to carry more video traffic
including streaming video, which requires high bandwidth
transmission capabilities. Thirdly, offload mobile traffic
(traffic from dual-mode devices over Wi-Fi or small-cell
networks) is taking more and more proportion of the whole
traffic. In 2015, mobile offload traffic exceeded cellular
traffic for the first time. In general, more devices, more
traffic and more offload connectivity pattern should be taken
into consideration in next-generation network.

In 5G era, network has five performance requirements: 1)
bandwidth and speed throughput: 10Gps; 2) latency: less
than 1ms; 3) scale: 10-100 times than Long Term Evolution
(LTE) [1]; 4) session continuity: ubiquitous; 5) mobility
speed: 500km/h. However, current LTE architecture has
many constraints. The handoff delay and latency is

noticeable. Due to requirement of global IP addresses, multi-
homing features make IP addresses aggregation difficult and
lead to large RT on routers.

In the context, Identity Oriented Networks (ION) has
been put forward to improve mobility performance. The
fundamental premise of ION is the one that provides
mechanisms for scalability, mobility and operations across
heterogeneous entities by disseminating unique identity of
end points from their position in the network. A 3.5 layer is
added between the IP layer and the TCP/UDP layer. An
identity field is carried in the new layer to identify a node, an
app or anything. ID can be bond with an IP address locator to
complement forwarding. Thus, network has the following
improvements: 1) native mobility; 2) ID-based Apps; 3)
multi-homing ID with global scope; 4) context awareness
based on ID profile; 5) ID-based security.

Although ION improves network performance in many
ways, current switching and routing devices can only parse
information no higher than the IP layer. The long-term trend
is to develop new devices that are capable to parse the 3.5 ID
layer information. However, it will take a long time to update
all routing devices and Capital Expenditure (CAPEX) should
also be considered. To solve the issue, this article put
forward a universal SDN-based packet processing
mechanism to parse information in high layers and exchange
redundant information in low layers with key information in
high layers. Thus, the key field in high layer is visible in low
layer and can be parsed by current protocol and routing
devices.

The paper is organized as follows. Section II introduces
related knowledge of the example case. Section III
specifically explains the SDN-based packet processing
mechanism to parse the high-layer field incompatible with
OpenFlow protocol and utilizes the field to control network
at a smaller granularity. Section IV measures the delay
caused by the packet processing module and verifies the
success of parsing high-layer field and making strategies
based on the high-layer field. Finally, conclusions are
presented in Section V.

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

II. RELATED KNOWLEDGE
Since ION is in conceptual phase, this paper takes GTP

packets for example to explain the packet processing of
parsing high-layer information and utilizing high-layer
information to handle packets. The augment supporting the
analogy is that GTP packets face the similar problem in
incapability of recognizing high layer information when
being processed by OpenFlow [2] devices.

GTP is an IP-based communication protocol in Evolved
Packet Core (EPC) [3]. The protocol consists of GTP-C,
GTP-U and GTP’, which are respectively used in the GTP
control plane, GTP user plane and charging data
transmission. Since this paper studies packet processing in
data plane, GTP-U is the core concern. GTP-U protocol
stack is shown in Figure 1. For uplink packets, the radio
layer ends in eNodeB. ENodeB encapsulates GTP packets
and establishes the GTP tunnel to S-GW. S-GW establishes
the GTP tunnel to P-GW and P-GW decapsulates GTP
packets and forwards it to Internet. For downlink packets, the
processing procedures are reversed. There is a key field
named Tunnel endpoint identifier (TEID) in GTP-U header.
TEID is used to multiplex different connections in the same
GTP tunnel. A GTP connection is uniquely confirmed by a
source tunnel IP, a destination tunnel IP and a TEID. In this
article, GTP packets refer to GTP-U packets without special
statement.

Figure 1. GTP-U protocol stack

Software-defined networking (SDN) [4] is an emerging

solution for fine-grained control and management of
networks. It separates the control plane (SDN controller) and
data plane (switching and routing devices) of network.
OpenFlow is a generally accepted southbound protocol
between the controller and switching devices. There is a
widely agreed trend that SDN should be integrated into 5G
core network. However, GTP-U header locates over UDP
layer. In current OpenFlow protocol, only information below
layer 4 (including layer 4) can be parsed. Therefore, TEID is
invisible in OpenFlow and GTP connection could not be
recognized by OpenFlow switches. To address the problem,
a packet processing method is put forward to parse the high
layer field and exchange it with redundant fields in low layer.

III. PACKET PROCESSING IMPLEMENTATION
By analyzing the packet transmission within GTP tunnels,

it could be found that forwarding decisions are made
depending on the destination tunnel endpoint IP address.
Therefore, during transmission in GTP tunnels, the source IP
address is redundant information. Besides, both source IP
address field and TEID field have a length of 32 bit in
common. As a result, exchanging TEID field with source IP
address field at the tunnel entrance would expose useful

TEID field when forwarding the GTP packets in GTP tunnel
without influencing normal processing mechanisms of GTP
packets. Moreover, OpenFlow devices work normally
complying with OpenFlow protocol since TEID field is
already in layer 3 and could be parsed by OpenFlow protocol.

A. Architecture
In Evolved Packet Core (EPC) architecture, control

functions and forwarding functions of S/P-GW are coupled,
which restricts core network flexibility. Thus, separating
control functions and forwarding functions of S/P-GW is a
main trend of 5G mobile core network developments. Base
on that, this article designs the core network architecture in
Figure 2. This architecture retains most structure of the
current EPC architecture. The major differences are: 1)
separating the control functions and forwarding functions of
S/P-GW; 2) introducing SDN controller to cooperate with
S/P-GWc to manage the network between S-GWs and P-
GWs; 3) data plane are OpenFlow-enabled and comply with
the control of SDN controller.

The data plane consists of S/P-GW’s user plane devices
and OpenFlow devices, while the control plane consists of
SDN controller, S/P-GW’s control plane, Mobility
Management Entity (MME), Home Subscriber Server (HSS)
and Policy Control and Charging Rules Function (PCRF). In
this case, MME works the same in EPC. It manages mobility,
chooses S-GW for user equipment (UE) and establishes the
GTP tunnel between eNodeB and S-GW. The control
functions of S/P-GWs operate over SDN controller and
communicate with it by JSONRPC messages to swap UE
information and S/P-GW information. The S/P-GW control
plane strategies are implemented in coordination with MME,
HSS and PCRF, including user IP allocation and traffic flow
template (TFT) assignment. SDN controller controls data
plane devices with OpenFlow protocol and manage TFT
with S/P-GW. S/P-GWs provide terminal of GTP tunnels
and anchor GTP tunnels during handoff. Applying SDN to
manage the transmission network makes it convenient to
realize overhead control and routing optimization. Besides,
this architecture is compatible with current 3GPP [5]
standards, which is the smooth evolution for mobile core
network to integrate SDN.

Mobility
Management
Entity(MME)

Home
Subscriber

Server(HSS)

Policy Control
and Charging

Rules Function
(PCRF)

SDN
Controller

Control Plane

Data Plane

User
Equipment

(UE)
Station

(eNodeB)

Base

S-GWu P-GWu))))))))

S-GWc P-GWc

Packet in
GTP format

JSONRPC JSONRPC

GTP
Processing

Module

OpenFlow

GTP
Processing

Module Packet in
GTP format

OpenFlow Enabled
Switch/Router

 Figure 2. SDN-based mobile core network architecture

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

B. Data Plane Implementation
To parse the high layer information of TEID, a GTP

processing module is attached to a logical port of an
OpenFlow device at the entrances of S/P-GWs, cooperating
with OpenFlow pipeline processing to handle GTP packets.
The OpenFlow device with GTP processing module can be
regarded as an extension of gateway functions. For uplink
GTP packets at S-GWs and downlink GTP packets at P-
GWs, TEID field and source IP address field should be
exchanged to make the TEID field visible to SDN controller
and OpenFlow devices between S-GWs and P-GWs. Thus,
for downlink GTP packets at S-GWs and uplink GTP
packets at P-GWs, TEID field and source IP address field
should be exchanged to restore the previous packets.

The OpenFlow devices utilize OpenFlow pipeline
processing to handle packets. There are at least five flow
tables in the OpenFlow device. Table 0 has the highest
priority. It matches GTP packets (udp_port is 2152) whose
in_port is not connected to the GTP processing module and
then sends them to the GTP processing module. Table 1 has
the second highest priority. It matches GTP packets whose
in_port is connected to GTP processing module and sends
them to Table 2, otherwise it sends them to Table 3. Table 2
has the third highest priority. It matches GTP packets whose
source MAC address is the S/P-GW to which it connects and
sends them to Table 4, otherwise it outputs them to the
connected S/P-GW. Table 3 forwards regular packets except
GTP packets and Table 4 forwards GTP packets to be sent to
the core network. The GTP processing module implements
the exchange of high-layer TEID field and low-layer source
IP field. Firstly, it parses the high-layer TEID field. Then, it
exchanges TEID field with the low-layer source IP field.
Lastly, it sends the processed packet back to the logical port
where the packet comes. The OpenFlow multi-stage flow
tables at entrances of S/P-GWs are shown in Figure 3.

Start

Match Table 0?GTP processing
module

Yes

Match Table 1?

No

Modified data
packet

YesNo

Table3:Default

End

Match Table 2?

Yes

Yes

Table 4: GTP
forwarding

Output to
connected S/P-

GW
No

Figure 3. OpenFlow multi-stage flow tables at entrances of S/P-GW

After the packet processing at the entrance of core

network, OpenFlow devices and SDN controller could have
access to TEID field of GTP packets in the network between
S-GWs and P-GWs. Thus, strategies based on TEID field are
easy to implement.

C. Control Plane Implementation
As a result of exchange processing at GTP tunnel

entrances, traffic control (routing optimization, Qos, etc.) at
the granularity of GTP connections could be realized without
changing working principles of OpenFlow devices and SDN
controller.

Varieties of applications could be developed and run over
SDN controller. Those applications leverage TEID field in
layer 3 and make specific decisions on different TEIDs. An
example of routing optimization based on TEID is given in
Figure 4. Leveraging the advantage of the global view of
SDN controller, different routing planning can be easily
implemented.

 Considering that different GTP connections have
different routing demands, three routing planning modules
are added to SDN controller. One implements shortest path
planning, one implements maximum bandwidth path
planning and another implements minimum delay path
planning. When the controller receives packet-in messages, it
matches TEID field and invokes corresponding path
planning module for different TEIDs. The designed route is
distributed to the network by flow-mod messages.

Match TEIDMatch TEID

Shortest
path

planning

Shortest
path

planning

Maximum
bandwidth

path
planning

Maximum
bandwidth

path
planning

Routing planning

SDN controller

Flow-modPacket-in

Minimum
delay path
planning

Minimum
delay path
planning

Figure 4. Routing planning example based on TEID

Routing modules based on different demands can be

developed by similar methods.

IV. EVALUATION
Introducing GTP processing module into the network

would cause extra delay during packet transmission. Thus,
evaluation on delay should be taken into consideration.
Besides, whether traffic control at the granularity of TEID is
realized or not is also to be proved.

A. Experimental Setup
The experimental system is set on Ubuntu 14.04 LTS.

Mininet [6] 2.3.0d1 was utilized to simulate the network and

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

Ryu [7] was utilized as an SDN controller. The topology is
shown in Figure 5. SGW1 and PGW1 are two virtual
machines which generate GTP packets. MS1 and MS2 are
set to send GTP packets to a logical port attached by the GTP
processing module. MH1 and MH2 are two network
namespaces and work as GTP processing modules,
respectively attached to the logical port of MS1 and MS2. S1,
S2, S3, S4 and S5 work as switches in the core network.

Figure 5. Experiment topology

• SGW1 and PGW1
OpenGGSN-0.91 [8] is used to build GTP tunnels. The

PGW1 serves as a GGSN node that has one tunnel IP, and
the SGW1 serves as an SGSN node that has several tunnel
IPs. The TEID of each tunnel is allocated by orders. For the
purpose of a simple design, the IP address of SGW1 and
PGW1 are 10.0.0.1 and 10.0.0.2, and the MAC addresses are
00:00:00:00:00:01 and 00:00:00:00:00:02.

• MH1 and MH2
MH1 and MH2 work as the GTP processing module,

aiming at exchanging source IP field with TEID field. There
are two network devices in MH1, including eth0 and
etSGW1. EtSGW1 works in a promisc mode to get each
packet it receives. And eth0 works in multicast mode and has
an IP address of 10.0.0.3 and a MAC address of
00:00:00:00:00:03. A python application named
gtp_modify.py is running on MS1 to realize the GTP process
module’s functions. The application firstly captures a GTP
packet from etSGW1, and then it cuts out the data segment
and parses TEID field by counting the bit position. After
getting the TEID, it exchanges the TEID field with source IP
address field, and finally sends the packet back to the
network through eth0.

Except that MH2’s eth0 has an IP address of 10.0.0.4 and
a MAC address of 00:00:00:00:00:03, the other settings and
working pattern of MH2 are the same as MH1’s.

• MS1 and MS2
MS1 is located between SGW1 and core networks,

connected to MH1. And MS2 is located between PGW1 and
core network, connected to MH2. The flow tables in MS1
and MS2 are described in Section III. GTP-U packets that
should be sent into or out of core network will be delivered
to GTP processing module.

• Ryu controller
Ryu serves as a SDN controller and is mainly responsible

to set flow tables to OpenFlow switches. It will create a
default route at exactly the time when the network is built, so
that some control message like GTP-C can be forwarded
successfully.

B. Result Analysis
In order to verify traffic control abilities at the granularity

of GTP connections, there are three GTP connections in our
scenario. The PGW1 has one tunnel IP of 192.168.0.1, while
SGW1 has three tunnel IPs: 192.168.0.2 for tunnel1,
192.168.0.3 for tunnel2 and 192.168.0.4 for tunnel3. Besides,
tunnel1’s TEID is 0x00000001, and tunnel2’s is 0x00000002,
and tunnel3’s is 0x00000003. Iperf [9] is utilized to generate
traffic flows. Flow1 is sent at a speed of 100kbps in tunnel1,
while flow2 is at a speed of 80kbps in tunnel2 and flow3 is at
a speed of 60kbps in tunnel3. Based on TEID and destination
IP address, different routes are designed. Flow1 is designed
to go through s1->s4->s3, while flow2 is designed to go
through s1->s2->s3 and flow3 is designed to go through s1-
>s5->s3. Traffic bandwidth is measured in each route, and
the delay caused by MH1’s GTP processing module is also
detected.

Figure 6 shows the delay caused by GTP processing
module in MH1. It can be seen that the delay range from
46ms to 98ms. The average delay is approximately 75ms.
The delay value is a bit large. However, the delay will only
be generated at the entrance of the whole network and the
value is relatively stable regardless of the network scale.
When network scale expands and the whole delay increases,
the delay caused by GTP processing module tends to have a
smaller influence to the whole network. Besides, the delay
can be diminished by promoting the hardware performance.

Figure 6. Delay caused by GTP processing module in MH1

Figure 7 shows traffic bandwidth in route s1->s4->s3, s1-

>s2->s3 and s1->s5->s3. It can be seen that the average
bandwidth on the three routes are approximately 100kbps,
80kbps and 60kbps. It matches the bandwidth of flow1,
flow2 and flow3, which illustrates the route design based on
TEID is realized. Besides, Wireshark [10] is also utilized to
capture packets at switch s2, s4 and s5. The results show that
only packets with TEID 1 appear at switch s4, while only
packets with TEID 2 appear at switch s2 and only packets
with TEID 3 appear at switch s5. It further verifies that
traffic control at the granularity of GTP connections is
realized.

Figure 7. Traffic bandwidth on three different routes

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

Results show that traffic control abilities at the
granularity of GTP connections are achieved.

V. CONCLUSIONS
This paper designs a universal SDN-based mechanism to

handle packets containing high-layer field incompatible with
OpenFlow protocol, without extending protocols or
upgrading devices. An example of handling GTP packets is
shown to explain the processing mechanism. Besides, the
processing delay is measured and an experiment verifies that
TEID field is successfully parsed and strategies at the
granularity of TEID can be made. By utilizing the packet
processing mechanism, ION packets can be transferred in
SDN network and strategies at the granularity of ID field can
be made. The mechanism could be universally utilized to
tackle the problem of parsing a relatively small field
incompatible with OpenFlow protocol as a temporary
solution.

ACKNOWLEDGMENT
The authors thank Fei Yang and several engineers from

Huawei for their valuable knowledge support.

REFERENCES
[1] “LTE”, [Online]. Available from:

http://www.3gpp.org/technologies/keywords-acronyms/98-lte
2017.04.01

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, et al, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, 2008, pp. 69-74

[3] “EPC”, [Online]. Available from:
http://www.3gpp.org/technologies/keywords-acronyms/100-
the-evolved-packet-core 2017.04.01

[4] N. McKeown, "Software-defined networking,” INFOCOM
keynote talk, vol. 17, no. 2, 2009, pp. 30-32.

[5] “3GPP”, [Online]. Available from: http://www.3gpp.org/
2017.04.01

[6] “Mininet”, [Online]. Available from: http://mininet.org/
2017.04.01

[7] “Ryu”, [Online]. Available from: https://osrg.github.io/ryu/
2017.04.01

[8] “OpenGGSN”, [Online]. Available from:
https://sourceforge.net/projects/ggsn/ 2017.04.01

[9] “iPerf”, [Online]. Available from: https://iperf.fr/ 2017.04.01
[10] “Wireshark”, [Online]. Available from: http://wireshark.com/

2017.04.01

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-550-0

CTRQ 2017 : The Tenth International Conference on Communication Theory, Reliability, and Quality of Service

	I. Introduction
	II. Related Knowledge
	III. Packet Processing Implementation
	A. Architecture
	B. Data Plane Implementation
	C. Control Plane Implementation

	IV. Evaluation
	A. Experimental Setup
	B. Result Analysis

	V. Conclusions
	Acknowledgment
	References

