
Torrent Forensics: Are your Files Being Shared in the
BitTorrent Network?

Ali Alhazmi

Department of Information Systems
Jazan University

Jazan, Saudi Arabia 45142
Email: alihazmi@jazanu.edu.sa

José Camacho

Network Engineering and Security Group, CITIC-UGR
University of Granada
Granada, Spain 18071

Email: josecamacho@ugr.es

Gabriel Maciá-Fernández

Network Engineering and Security Group, CITIC-UGR
University of Granada
Granada, Spain 18071
Email: gmacia@ugr.es

Saeed Salah

Department of Computer Science
Al-Quds University

Abu Dees, Palestine 20002
Email: sasalah@staff.alquds.edu

Abstract—BitTorrent is the most common protocol for
file sharing nowadays. Due to its distributed nature,
monitoring BitTorrent is a difficult task. Under this
perception of anonymity, BitTorrent has motivated the
rise of criminal activities such as copyright infringement
or the sharing of stolen secret documents. This work-in-
progress paper focuses on identifying whether a given
resource has been shared in the BitTorrent network.
We have termed this problem torrent forensics. We
propose a methodology to solve this problem as well
as the design of an operational system to implement
the solution. The system is run in two different phases.
First, we monitor the network and collect .torrent files
that describe the resources being shared. Second, a
detection module analyzes a given resource and decides
if it was observed in the network. We carry out prelim-
inary experiments to support the hypotheses for the
design of the system.

Keywords–BitTorrent; P2P; Torrent Forensics.

I. Introduction
Recently, Recently, peer-to-peer (P2P) has become

popular for sharing-files around the world. P2P networks
are often used to share diverse digital contents such as
movies, music, books, and software. According to Cisco’s
estimation in 2015, P2P file-sharing users consumed 5,965
petabytes of traffic per month, which was about 15% of
all the Internet traffic [1]. BitTorrent is the most common
P2P file sharing nowadays. It is estimated to be responsible
for more than 50% of file-sharing bandwidth and 3.35%
of all total bandwidth [2]. There are millions of users
sharing a huge amount of resources everyday. According to
[3], BitTorrent had 15-27 million concurrent users at any
time in 2013. In addition, BitTorrent Inc. claims that more
than 170 million people use BitTorrent products every
month [4].

The widespread popularity of BitTorrent has attracted
the attention of many researchers, with the aim of studying

the nature of shared resources and developing monitoring
methodologies to understand the traffic evolution [5]–
[8]. Bauer et al. [9] proposed active methods to monitor
extremely large BitTorrent swarms using trackers. They
developed an active probing framework called BitStalker
that identifies active peers and collects concrete forensic
evidences showing that they were involved in the sharing
of a particular resource. Additionally, there exist some
works focused on crawling torrent-discovery sites [7]. In the
previous reference work, five of the most popular torrent-
discovery sites were crawled over a nine-month period,
identifying 4.6M of torrents and 38,996 trackers. They also
obtained peer lists from the Vuze and Mainline Distributed
Hash Tables (DHTs) in order to investigate the nature of
the exchanged contents. Authors of [10] worked on large-
scale monitoring of BitTorrent, crawling resources from
two torrent-discovery sites: Pirate Bay and Mininova. They
collected 148M of IP addresses and 2M resources over 103
days in order to identify content providers and highly-
active users. Other works focus on the crawling of Mainline
DHT [5] [11]. Authors in [11] collected 10M magnet links
and received over 264M get peers messages from more
than 57M unique peers over 10 days in order to provide
statistical information. In their resultsthey found that, for
example, Russian and China were playing dominant roles
in Mainline DHT, contributing 35% of peers, and that 5%
Internet users using Mainline came from Europe.

The major contribution of this work-in-progress paper
is different from those in the mentioned works. It focuses
on the specific problem of identifying whether a given
resource has been shared in the BitTorrent network. We
have termed this problem torrent forensics, due to its
forensic nature. To our knowledge, there is no previous
published research on this topic. From a cyber security
perspective, many participants can take advantage of a
solution to this problem. The most widespread interest
comes from end users, who may be interested in identifying

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

Figure 1. Architecture of the torrent forensics system.

if their private files or images are being shared in the
BitTorrent network; another example is that of companies
that have confidential documents and could also be inter-
ested in monitoring possible information leakages; finally,
identifying the sharing of copyright materials is essential
for many industries.

We propose a methodology to solve the problem of
torrent forensics and an operational system to implement
this solution. The proposed system considers two different
phases. First, .torrent files that describe the resources
being shared in the network are collected by monitoring
both torrent-discovery sites and the BitTorrent DHT net-
work. Subsequently, we build a database with the relevant
features of the resources previously monitored. A main
advantage of this approach is that only metadata of the
resources, and not the resources themselves, need to be
downloaded from the network. This saves time and storage
space. In a second phase, we design a module capable of
analyzing a given document and deciding if it is present in
our database by comparing its features with those in the
database. In this work-in-progress paper, there are some
preliminary experiments to validate the main hypotheses
under which our system is built.

The remainder of this paper is organized as follows.
Section II discusses the design of our system and explains
its components. Section III describes the experiments to
evaluate the main hypotheses our system is based on.
Finally, we draw conclusions and outline some future work
in Section IV.

II. Torrent Forensics System
Here, we describe the design of the torrent forensics

system and discuss the details and hypotheses in which it
is based on. As shown in Figure 1, the system contains two
main modules:
• A monitoring module: It is responsible for moni-

toring the BitTorrent network in order to obtain
.torrent files of the resources being shared in the
network. This module is also in charge of extract-
ing some features from these files and building a
database containing the monitored information.

• A detection module: It runs in parallel with the
other module. It takes a given document as input,

processes it and detects if it has been shared in
the network by comparing its features with those
saved in the database of monitored resources.

A. Monitoring Module
The monitoring module for our system is based on

three submodules: (a) a torrent-discovery sites crawler, (b)
a BitTorrent DHT crawler and (c) a feature extraction
module.

1) Torrent-Discovery Sites Crawler: The purpose of the
torrent-discovery sites crawler is to obtain .torrent files of
resources that are being published in the BitTorrent net-
work. Recall that torrent-discovery sites publish .torrent
files that are previously uploaded by users or transferred
from other torrent discovery sites. These sites usually have
a query interface that allows users to get information by
using an Application Program Interface (API).

In order to obtain .torrent files from these sites, two
different strategies follow:
• Passive search: when available, Rich Site Summary

(RSS) feeds to get updated information from the
site about new .torrent files announced in the
network.

• Active search: it is possible to use active crawl-
ing navigation of the web pages of the torrent-
discovery sites or use APIs provided by these sites
to query for existing .torrent files.

2) BitTorrent DHT Crawler: The main goal of this
module is to obtain .torrent files of resources being an-
nounced in the BitTorrent DHT. For this module, we use a
similar strategy to that used by the authors in [12], namely,
we adapt the crawling mechanism to enable the collection
of features that are used in our detection algorithm. Note
that the process followed is specific for Mainline DHT,
although minor modifications can be extended to the Vuze
DHT [13].

The crawling process is as follows. It first gets a list
of the active nodes in a specific zone of the network by
sending find node messages to a list of bootstrap nodes.
Bootstrap nodes are used to join the network initially.
Their addresses can either be hardcoded in the client
software or looked up in a known directory. Subsequently,
we keep active communications with them by sending ping
messages periodically. Then, a great amount of sybil nodes
are inserted as neighbors in the chosen zone of the network,
in order to be included in the routing tables of known nodes
in that zone. At this point, when legitimate nodes share a
resource, they send announce peer messages periodically,
containing the infohash for that resource.

Once a new infohash is observed, the associated .tor-
rent file must be collected. For this purpose, we send a
get peers message for that infohash, obtaining the list
of peers in the swarm. Then, we query those peers so
that they send us the .torrent file. For this purpose, the
BitTorrent extension for peers to send metadata files [14] is
used, in a similar way as magnet links are used to download
a resource.

3) Feature Extraction: This module takes .torrent files
as inputs from the crawling modules, and extract some
features from them. A parser processes these files to read
bencoded information and extract these features: (i) the
name of the resource as identified in the .torrent file; (ii)

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

1: function generate SHA1 list(resource)
2: Initialize piece size list
3: SHA1 list = ∅
4: for piece size in piece size list do
5: pieces ← split(resource,piece size)
6: SHA1 list + = SHA-1(pieces)
7: end for
8: return SHA1 list
9: end function
Figure 2. Algorithm to generate SHA1 list for a given resource.

the length of the resource in bytes; (iii) the piece size;
and (iv) a Secure Hash Algorithm SHA1 list, i.e., a list of
SHA-1 hashes, one for every piece that forms the resource.
Finally, all this information is logged into a database,
where each record includes the mentioned features for
every .torrent file.

B. Detection module
The main aim of this module is to identify if the

features obtained for a given resource are present in
the monitored resources database. It is composed of two
submodules: a resource feature generation module and a
detection algorithm module.

1) Resource Feature Generation: This module takes the
resource of interest, that is the one we are looking, as
an input. In it, we emulate the data processing prior to
uploading the file to the Bittorrent network. The goal is to
generate the set of features that will allow the next module
(detection algorithm) to find if the resource is present in
the database or not. Obtaining the length and the name
of the resource is straightforward. In order to obtain the
SHA1 list, the resource is needed to be split into pieces of
piece size bytes and the corresponding hashes need to be
calculated. The problem here is that the piece size that
was used in case the resource was uploaded to the network
is unknown. As a matter of fact, as we will show later, the
same resource may have been uploaded several times to the
network with different piece size values. For this reason,
a list of possible candidate values for piece size is selected
and an SHA1 list is generated for every considered value.
The final SHA1 list is compiled by joining all these SHA1
lists into a single one (see Figure 2). In Section III, we
discuss a selection method for the candidate values for
piece size.

2) Detection algorithm: The main aim of this module
is to detect whether the set of features obtained by the
previous module are present in the monitored resources
database. The algorithm used is shown in Figure 3. Recall
that our database contains, for every resource, a record
with the name, length, piece size and SHA1 list fea-
tures. length and piece size will first be used to narrow
our search and speed up the searching process, selecting
only those resources with exact match. Note also that
the SHA1 list is considered instead of the infohash of
the resource. The main reason is that, as it is shown
in Section III, BitTorrent clients might generate different
infohashes even for a same resource. On the contrary, the
SHA1 list remains unaltered when generating a .torrent
file with different BitTorrent clients. Observe that the

name is not considered in the search. Actually this feature
is included to add semantic information in case a resource
was renamed before being shared in BitTorrent.

Finally, our proposed system is highly dependent on
two algorithms i.e. generate SHA1 list and search algo-
rithm. Therefore, if any of two algorithms does not work
for any reason, the proposed system will be useless.

1: function search(length,piece size,SHA1 list)
2: records ← getRecordsFromDB(length,piece size)
3: for record in records do
4: if record.SHA1-l in SHA1 list then
5: return True
6: end if
7: end for
8: return False
9: end function

Figure 3. Algorithm to search in the database for features extracted
of a given resource.

III. Preliminary Experiments
As indicated in our introduction, in this work-in-

progress paper we are only interested in verifying that
the main hypotheses for the design of our torrent forensic
system are validated by experimental support.

First, we check how infohashes for a same resource are
distinct when different BitTorrent clients are used and the
reasons behind that. This supports our design decision to
search information in the database based on the SHA1 list
instead of using infohashes.

Nowadays, there exist more than 50 BitTorrent clients
that are freely available [15]. To check that infohashes
generated by different clients for a single resource are not
necessarily the same, the four most used BitTorrent clients
have been selected [16] in their current versions: uTorrent
v3.5 [17], Deluge v1.3.12 [18], Vuze v5.7.5.0/4 [19], and
bitComet v1.45 [20]. Then, a PDF file with size 96 MB
has been uploaded to every selected BitTorrent client.
We choose 128 KB as piece size for all clients, obtaining
the corresponding .torrent files with the values shown in
Table I. The table shows that the infohashes are different.

TABLE I. INFOHASHES FOR A 96MB PDF FILE

BT client Infohash

uTorrent c31527aa36f7f27744c653e216b9c175223e8672
Deluge 381b9a152f902faf16a39bebd1a72cc56f946756
Vuze b36f6aa3fbed37108a0af3eb07f4d8b7c139c38a

BitComet feb8aaa48eac7a6a33c61270459194f2feb233da

We have investigated the reasons behind these dif-
ferences in the infohashes among BitTorrent clients. We
found that there are some differences in the info section
generated for the .torrent file. First, a private parameter
is added in Deluge client, even when the torrent is not
private. Second, the name of the file is inserted by the
Vuze client in a different place than in the others, locating
it after the SHA1 list of hashes. Finally, the order of
other parameters, such as the name, length and piece’s
length also lead to different infohashes for our selected

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

BitTorrent clients. In conclusion, these minor differences
in the info section lead to different infohashes. Yet, in
all our experiments, we have checked that the SHA1 list
for all the pieces remains the same with all the clients.
Therefore, infohashes cannot be used for torrent forensics,
while the SHA1 list can.

The second hypothesis that this paper is interested to
validate is with regard to the need of generating different
SHA1 lists for every piece size in the ‘document feature
generation’ module. The selection of a value for the piece
size is a matter of optimizing the transfer speed for the
download of the resource. According to the recommen-
dation in [21], a torrent should have 1000-1500 pieces in
order to get reasonably small torrent file pieces and an
efficient download. In many clients, there is an auto-size
option that generates .torrent files choosing the piece size
parameter automatically. In our experiment, we check if
all the BitTorrent clients implement the auto-size option
in a similar way or they differ. We upload a file of size 175
MB to the same selected BitTorrent clients except Deluge
because it does not have the auto-size option. The results
from this experiment show that Vuze splits our file by
128 KB while uTorrent and BitComet choose to split it by
256KB even though the size of the file is the same. Thus, we
confirm the need to generate different SHA1 lists for every
possible piece size in the ‘document feature generation’
module.

Finally, regarding the initialization of the piece size
candidate list parameter in Figure 2, we consider

that a good set of values are those offered to the users
by these set of BitTorrent clients, i.e., the set given
by j · 16KB, j ∈ [1, 11] (most common clients) and
j · 48 KB, j ∈ [1, 7] (only Vuze client).

IV. Conclusions and Future Work
In this paper, we have suggested a methodology and

designed a system to identify whether a given resource
has been shared in the BitTorrent network. The system
is based on two main modules:(i) a monitoring module to
crawl the network and obtain .torrent files of shared re-
sources, extracting features and saving them in a database;
and (ii) a detection module, that finds if a given resource
has been observed during the monitoring of the network.

Our system is currently a prototype that shows the
feasibility of a partial solution for the Torrent Forensics
problem. Some scale experiments should be done to com-
plete the conclusions obtained in this paper. In addition,
as future work, we plan to deal with the problem when the
resources are modified before being shared in the network.

Acknowledgment
This work is supported by Jazan University through

the Saudi Arabian Cultural Mission in Spain, the Spanish
Ministry of Economy, and FEDER funds through project
TIN2014-60346-R.

References
[1] “White paper: Cisco vni forecast and methodology

2015-2020,” http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, [retrieved: September,
2017].

[2] M. Scanlon and H. Shen, “An analysis of bittorrent cross-
swarm peer participation and geolocational distribution,” in
Computer Communication and Networks (ICCCN), 2014 23rd
International Conference on. IEEE, 2014, pp. 1–6.

[3] L. Wang and J. Kangasharju, “Measuring large-scale dis-
tributed systems: case of bittorrent mainline dht,” in Peer-to-
Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on. IEEE, 2013, pp. 1–10.

[4] “Bittorrent.” [Online]. Available: http://www.bittorrent.com/
company/about [retrieved: September, 2017].

[5] R. A. Rodŕıguez-Gómez, G. Maciá-Fernández, L. Sánchez-
Casado, and P. Garćıa-Teodoro, “Analysis and modelling of
resources shared in the bittorrent network,” Transactions on
Emerging Telecommunications Technologies, vol. 26, no. 10,
2015, pp. 1189–1200.

[6] N. Andrade, E. Santos-Neto, F. Brasileiro, and M. Ripeanu,
“Resource demand and supply in bittorrent content-sharing
communities,” Computer Networks, vol. 53, no. 4, 2009, pp.
515–527.

[7] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling
the bittorrent ecosystem,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 7, 2011, pp. 1164–1177.

[8] P. K. Hoong, I. K. Tan, and C. Y. Keong, “Bittorrent network
traffic forecasting with arma,” arXiv preprint arXiv:1208.1896,
2012.

[9] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker, “Bitstalker:
Accurately and efficiently monitoring bittorrent traffic,” in
Information Forensics and Security, 2009. WIFS 2009. First
IEEE International Workshop on. IEEE, 2009, pp. 181–185.

[10] S. L. Blond, A. Legout, F. L. Fessant, W. Dabbous, and M. A.
Kaafar, “Spying the world from your laptop–identifying and
profiling content providers and big downloaders in bittorrent,”
arXiv preprint arXiv:1004.0930, 2010.

[11] Z. Xinxing, T. Zhihong, and Z. Luchen, “A measurement
study on mainline dht and magnet link,” in Data Science in
Cyberspace DSC, IEEE International Conference on. IEEE,
2016, pp. 11–19.

[12] R. A. Rodŕıguez-Gómez, G. Maciá-Fernández, P. Garćıa-
Teodoro, M. Steiner, and D. Balzarotti, “Resource monitoring
for the detection of parasite p2p botnets,” Computer Networks,
vol. 70, 2014, pp. 302–311.

[13] S. Wolchok and J. a. Halderman, “Crawling bittorrent dhts
for fun and profit,” Proc 4th USENIX Workshop on Offensive
Technologies, 2010, pp. 1–8.

[14] G. Hazel and A. Norberg, “Bittorrent specification. extension
for peers to send metadata files,” 2017. [Online]. Available: http:
//bittorrent.org/beps/bep 0009.html [retrieved: September,
2017].

[15] “Bittorrent clients.” [Online]. Available: http://en.wikipedia.
org/wiki/BitTorrent client [retrieved: September, 2017].

[16] W. Mazurczyk and P. Kopiczko, “Understanding bittorrent
through real measurements,” China Communications, vol. 10,
no. 11, 2013, pp. 107–118.

[17] “utorrent.” [Online]. Available: http://www.utorrent.com/
[retrieved: September, 2017].

[18] “Deluge.” [Online]. Available: http://deluge-torrent.org/
[retrieved: September, 2017].

[19] “Vuze.” [Online]. Available: http://www.vuze.com/ [retrieved:
September, 2017].

[20] “Bitcomet.” [Online]. Available: https://www.bitcomet.com/
en/downloads [retrieved: September, 2017].

[21] “Torrent piece size.” [Online]. Available: http://wiki.vuze.com/
w/Torrent Piece Size [retrieved: September, 2017].

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

	Introduction
	Torrent Forensics System
	Monitoring Module
	Torrent-Discovery Sites Crawler
	BitTorrent DHT Crawler
	Feature Extraction

	Detection module
	Resource Feature Generation
	Detection algorithm

	Preliminary Experiments
	Conclusions and Future Work
	References

