
Detecting Safety- and Security-Relevant Programming Defects
by Sound Static Analysis

Daniel Kästner, Laurent Mauborgne, Christian Ferdinand

AbsInt GmbH
Science Park 1, 66123 Saarbrücken, Germany

Email: kaestner@absint.com, mauborgne@absint.com, ferdinand@absint.com

Abstract—Static code analysis has evolved to be a standard
technique in the development process of safety-critical software.
It can be applied to show compliance to coding guidelines,
and to demonstrate the absence of critical programming errors,
including runtime errors and data races. In recent years, security
concerns have become more and more relevant for safety-critical
systems, not least due to the increasing importance of highly-
automated driving and pervasive connectivity. While in the
past, sound static analyzers have been primarily applied to
demonstrate classical safety properties they are well suited also
to address data safety, and to discover security vulnerabilities.
This article gives an overview and discusses practical experience.

Keywords–static analysis; abstract interpretation; runtime er-
rors; security vulnerabilities; functional safety; cybersecurity.

I. INTRODUCTION

Some years ago, static analysis meant manual review
of programs. Nowadays, automatic static analysis tools are
gaining popularity in software development as they offer a
tremendous increase in productivity by automatically checking
the code under a wide range of criteria. Many software devel-
opment projects are developed according to coding guidelines,
such as MISRA C [1], SEI CERT C [2], or CWE (Common
Weakness Enumeration) [3], aiming at a programming style
that improves clarity and reduces the risk of introducing bugs.
Compliance checking by static analysis tools has become
common practice.

In safety-critical systems, static analysis plays a particularly
important role. A failure of a safety-critical system may
cause high costs or even endanger human beings. With the
growing size of software-implemented functionality, prevent-
ing software-induced system failures becomes an increasingly
important task. One particularly dangerous class of errors are
runtime errors which include faulty pointer manipulations,
numerical errors such as arithmetic overflows and division
by zero, data races, and synchronization errors in concurrent
software. Such errors can cause software crashes, invalidate
separation mechanisms in mixed-criticality software, and are
a frequent cause of errors in concurrent and multi-core appli-
cations. At the same time, these defects are also at the root
of many security vulnerabilities, including exploits based on
buffer overflows, dangling pointers, or integer errors.

In safety-critical software projects, obeying coding guide-
lines such as MISRA C is strongly recommended by all current
safety standards, including DO-178C [4], IEC-61508 [5], ISO-
26262 [6], and EN-50128 [7]. In addition, all of them consider
demonstrating the absence of runtime errors explicitly as a ver-
ification goal. This is often formulated indirectly by addressing
runtime errors (e.g., division by zero, invalid pointer accesses,
arithmetic overflows) in general, and additionally consider-
ing corruption of content, synchronization mechanisms, and

freedom of interference in concurrent execution. Semantics-
based static analysis has become the predominant technology
to detect runtime errors and data races.

Abstract interpretation is a formal methodology for
semantics-based static program analysis [8]. It supports formal
soundness proofs (it can be proven that no error is missed) and
scales to real-life industry applications. Abstract interpretation-
based static analyzers provide full control and data coverage
and allow conclusions to be drawn that are valid for all
program runs with all inputs. Such conclusions may be that
no timing or space constraints are violated, or that runtime
errors or data races are absent: the absence of these errors
can be guaranteed [9]. Nowadays, abstract interpretation-based
static analyzers that can detect stack overflows and violations
of timing constraints [10] and that can prove the absence of
runtime errors and data races [11][12], are widely used for
developing and verifying safety-critical software.

In the past, security properties have mostly been rele-
vant for non-embedded and/or non-safety-critical programs.
Recently due to increasing connectivity requirements (cloud-
based services, car-to-car communication, over-the-air updates,
etc.), more and more security issues are rising in safety-critical
software as well. Security exploits like the Jeep Cherokee
hacks [13] which affect the safety of the system are becom-
ing more and more frequent. In consequence, safety-critical
software development faces novel challenges which previously
only have been addressed in other industry domains.

On the other hand, as outlined above, safety-critical soft-
ware is developed according to strict guidelines which effec-
tively reduce the relevant subset of the programming language
used and improve software verifiability. As an example dy-
namic memory allocation and recursion often are forbidden or
used in a very limited way. In consequence, for safety-critical
software much stronger code properties can be shown than for
non-safety-critical software, so that also security vulnerabilities
can be addressed in a more powerful way.

The topic of this article is to show that some classes
of defects can be proven to be absent in the software so
that exploits based on such defects can be excluded. On
the other hand, additional syntactic checks and semantical
analyses become necessary to address security properties that
are orthogonal to safety requirements. Throughout the article
we will focus on software aspects only, without addressing
safety or security properties at the hardware level. While we
focus on the programming language C, the basic analysis
techniques described in this article are applicable to other
programming languages as well.

The article is structured as follows: Section II discusses the
relation between safety and security requirements. The role of
coding standards is discussed in Section II-A, a classification

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

of vulnerabilities is given in Section II-B, and Section II-C
focuses on the analysis complexity of safety and security prop-
erties. Section III gives an overview of abstract interpretation
and its application to runtime error analysis, using the sound
analyzer Astrée as an example. Section IV gives an overview of
control and data flow analysis with emphasis on two advanced
analysis techniques: program slicing (cf. Section IV-A) and
taint analysis (cf. Section IV-B). Section V concludes.

II. SECURITY IN SAFETY-CRITICAL SYSTEMS

Functional safety and security are aspects of dependability,
in addition to reliability and availability. Functional safety is
usually defined as the absence of unreasonable risk to life and
property caused by malfunctioning behavior of the software.
The main goals of information security or cybersecurity (for
brevity denoted as “security” in this article) traditionally are
to preserve confidentiality (information must not be disclosed
to unauthorized entities), integrity (data must not be modified
in an unauthorized or undetected way), and availability (data
must be accessible and usable upon demand).

In safety-critical systems, safety and security properties are
intertwined. A violation of security properties can endanger
the functional safety of the system: an information leak could
provide the basis for a successful attack on the system, and
a malicious data corruption or denial-of-service attack may
cause the system to malfunction. Vice versa, a violation of
safety goals can compromise security: buffer overflows belong
to the class of critical runtime errors whose absence have to
be demonstrated in safety-critical systems. At the same time,
an undetected buffer overflow is one of the main security
vulnerabilities which can be exploited to read unauthorized
information, to inject code, or to cause the system to crash [14].
To emphasize this, in a safety-critical system the definition of
functional safety can be adapted to define cybersecurity as
absence of unreasonable risk to life and property caused by
malicious misusage of the software.

The convergence of safety and security properties also
becomes apparent in the increasing role of data in safety-
critical systems. There are many well-documented incidents
where harm was caused by erroneous data, corrupted data,
or inappropriate use of data – examples include the Turkish
Airlines A330 incident (2015), the Mars Climate Orbiter
crash (1999), or the Cedars Sinai Medical Centre CT scanner
radiation overdose (2009) [15]. The reliance on data in safety-
critical systems has significantly grown in the past few years,
cf. e.g., data used for decision-support systems, data used in
sensor fusion for highly automatic driving, or data provided
by car-to-car communication or downloaded from a cloud. As
a consequence of this there are ongoing activities to provide
specific guidance for handling data in safety-critical systems
[15]. At the same time, these data also represent safety-relevant
targets for security attacks.

A. Coding Guidelines

The MISRA C standard [1] has originally been developed
with a focus on automotive industry but is now widely rec-
ognized as a coding guideline for safety-critical systems in
general. Its aim is to avoid programming errors and enforce
a programming style that enables the safest possible use of
C. A particular focus is on dealing with undefined/unspecified

behavior of C and on preventing runtime errors. As a conse-
quence, it is also directly applicable to security-relevant code.

The most prominent coding guidelines targeting security
aspects are the ISO/IEC TS 17961 [16], the SEI CERT C
Coding Standard [2], and the MITRE Common Weakness
Enumeration CWE [3].

The ISO/IEC TS 17961 C Secure Coding Rules [16]
specifies rules for secure coding in C. It does not primarily
address developers but rather aims at establishing requirements
for compilers and static analyzers. MISRA C:2012 Addendum
2 [17] compares the ISO/IEC TS 17961 rule set with MISRA
C:2012. Only 4 of the C Secure rules are not covered by the
first edition of MISRA C:2012 [1], however, with Amendment
1 to MISRA C:2012 [18] all of them are covered as well. This
illustrates the strong overlap between the safety- and security-
oriented coding guidelines.

The SEI CERT C Coding Standard belongs to the CERT
Secure Coding Standards [19]. While emphasizing the security
aspect CERT C [2] also targets safety-critical systems: it
aims at “developing safe, reliable and secure systems”. CERT
distinguishes between rules and recommendations where rules
are meant to provide normative requirements and recommenda-
tions are meant to provide general guidance; the book version
[2] describes the rules only. A particular focus is on eliminating
undefined behaviors that can lead to exploitable vulnerabilities.
In fact, almost half of the CERT rules (43 of 99 rules) are
targeting undefined behaviors according to the C norm.

The Common Weakness Enumeration CWE is a software
community project [3] that aims at creating a catalog of soft-
ware weaknesses and vulnerabilities. The goal of the project is
to better understand flaws in software and to create automated
tools that can be used to identify, fix, and prevent those
flaws. There are several catalogues for different programming
languages, including C. In the latter one, once again, many
rules are associated with undefined or unspecified behaviors.

B. Vulnerability Classification
Many rules are shared between the different coding guide-

lines, but there is no common structuring of security vul-
nerabilities. The CERT Secure C roughly structures its rules
according to language elements, whereas ISO/IEC TS 17961
and CWE are structured as a flat list of vulnerabilities. In the
following we list some of the most prominent vulnerabilities
which are addressed in all coding guidelines and which belong
to the most critical ones at the C programming level. The
presentation follows the overview given in [14].

1) Stack-based Buffer Overflows: An array declared as
local variable in C is stored on the runtime stack. A C program
may write beyond the end of the array due to index values
being too large or negative, or due to invalid increments of
pointers pointing into the array. A runtime error then has
occurred whose behavior is undefined according to the C
semantics. As a consequence the program might crash with
bus error or segmentation fault, but typically adjacent memory
regions will be overwritten. An attacker can exploit this by
manipulating the return address or the frame pointer both
of which are stored on the stack, or by indirect pointer
overwriting, and thereby gaining control over the execution
flow of the program. In the first case the program will jump
to code injected by the attacker into the overwritten buffer

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

instead of executing an intended function return. In case
of overflows on array read accesses confidential information
stored on the stack (e.g., through temporary local variables)
might be leaked. An example of such an exploit is the well-
known W32.Blaster.Worm [20].

2) Heap-based Buffer Overflows: Heap memory is dy-
namically allocated at runtime, e.g., by calling malloc()
or calloc() implementations provided by dynamic memory
allocation libraries. There may be read or write operations
to dynamically allocated arrays that access beyond the array
boundaries, similarly to stack-allocated arrays. In case of a
read access information stored on the heap might be leaked
– a prominent example is the Heartbleed bug in OpenSSL
(cf. CERT vulnerability 720951 [21]). Via write operations
attackers may inject code and gain control over program
execution, e.g., by overwriting management information of
the dynamic memory allocator stored in the accessed memory
chunk.

3) General Invalid Pointer Accesses: Buffer overflows are
special cases of invalid pointer accesses, which are listed
here as separate points due to the large number of attacks
based on them. However, any invalid pointer access in general
is a security vulnerability – other examples are null pointer
accesses or dangling pointer accesses. Accessing such a pointer
is undefined behavior which can cause the program to crash,
or behave erratically. A dangling pointer points to a memory
location that has been deallocated either implicitly (e.g., data
stored in the stack frame of a function after its return) or ex-
plicitly by the programmer. A concrete example of a dangling
pointer access is the double free vulnerability where already
freed memory is freed a second time. This can be exploited
by an attacker to overwrite arbitrary memory locations and
execute injected code [14].

4) Uninitialized Memory Accesses: Automatic variables
and dynamically allocated memory have indeterminate values
when not explicitly initialized. Accessing them is undefined
behavior. Uninitialized variables can also be used for security
attacks, e.g., in CVE-2009-1888 [22] potentially uninitialized
variables passed to a function were exploited to bypass the
access control list and gain access to protected files [2].

5) Integer Errors: Integer errors are not exploitable vulner-
abilities by themselves, but they can be the cause of critical
vulnerabilities like stack- or heap-based buffer overflows.
Examples of integer errors are arithmetic overflows, or invalid
cast operations. If, e.g., a negative signed value is used as an
argument to a memcpy() call, it will be interpreted as a large
unsigned value, potentially resulting in a buffer overflow.

6) Format String Vulnerabilities : A format string is copied
to the output stream with occurrences of %-commands repre-
senting arguments to be popped from the stack and expanded
into the stream. A format string vulnerability occurs, if attack-
ers can supply the format string because it enables them to
manipulate the stack, once again making the program write to
arbitrary memory locations.

7) Concurrency Defects: Concurrency errors may lead to
concurrency attacks which allow attackers to violate confiden-
tiality, integrity and availability of systems [23]. In a race
condition the program behavior depends on the timing of
thread executions. A special case is a write-write or read-
write data race where the same shared variable is accessed

by concurrent threads without proper synchronization. In a
Time-of-Check-to-Time-of-Use (TOCTOU) race condition the
checking of a condition and its use are not protected by a
critical section. This can be exploited by an attacker, e.g., by
changing the file handle between the accessibility check and
the actual file access. In general, attacks can be run either by
creating a data race due to missing lock-/unlock protections,
or by exploiting existing data races, e.g., by triggering thread
invocations.

Most of the vulnerabilities described above are based on
undefined behaviors, and among them buffer overflows seem
to play the most prominent role for real-live attacks. Most
of them can be used for denial-of-service attacks by crashing
the program or causing erroneous behavior. They can also be
exploited to inject code and cause the program to execute it,
and to extract confidential data from the system. It is worth
noticing that from the perspective of a static analyzer most
exploits are based on potential runtime errors: when using an
unchecked value as an index in an array the error will only
occur if the attacker manages to provide an invalid index value.
The obvious conclusion is that safely eliminating all potential
runtime errors due to undefined behaviors in the program
significantly reduces the risk for security vulnerabilities.

C. Analysis Complexity

While semantics-based static program analysis is widely
used for safety properties, there is practically no such ana-
lyzer dedicated to specific security properties. This is mostly
explained by the difference in complexity between safety and
security properties. From a semantical point of view, a safety
property can always be expressed as a trace property. This
means that to find all safety issues, it is enough to look at
each trace of execution in isolation.

This is not possible any more for security properties. Most
of them can only be expressed as set of traces properties, or
hyperproperties [24]. A typical example is non-interference
[25]: to express that the final value of a variable x can only
be affected by the initial value of y and no other variable, one
must consider each pair of possible execution traces with the
same initial value for y, and check that the final value of x is
the same for both executions. It was proven in [24] that any
other definition (tracking assignments, etc) considering only
one execution trace at a time would miss some cases or add
false dependencies. This additional level of sets has direct
consequences on the difficulty to track security properties
soundly.

Other examples of hyperproperties are secure information
flow policies, service level agreements (which describe accept-
able availability of resources in term of mean response time or
percentage uptime), observational determinism (whether a sys-
tem appears deterministic to a low-level user), or quantitative
information flow.

Finding expressive and efficient abstractions for such prop-
erties is a young research field (see [26]), which is the reason
why no sound analysis of such properties appear in industrial
static analyzers yet. The best solution using the current state
of the art consists of using dedicated safety properties as an
approximation of the security property in question, such as the
taint propagation described in Section IV-B.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

III. PROVING THE ABSENCE OF DEFECTS

In safety-critical systems, the use of dynamic memory
allocation and recursions typically is forbidden or only used
in limited ways. This simplifies the task of static analysis
such that for safety-critical embedded systems it is possible
to formally prove the absence of runtime errors, or report all
potential runtime errors which still exist in the program. Such
analyzers are based on the theory of abstract interpretation [8],
a mathematically rigorous formalism providing a semantics-
based methodology for static program analysis.

A. Abstract Interpretation
The semantics of a programming language is a formal

description of the behavior of programs. The most precise se-
mantics is the so-called concrete semantics, describing closely
the actual execution of the program on all possible inputs. Yet
in general, the concrete semantics is not computable. Even
under the assumption that the program terminates, it is too
detailed to allow for efficient computations. The solution is to
introduce an abstract semantics that approximates the concrete
semantics of the program and is efficiently computable. This
abstract semantics can be chosen as the basis for a static
analysis. Compared to an analysis of the concrete semantics,
the analysis result may be less precise but the computation
may be significantly faster.

A static analyzer is called sound if the computed results
hold for any possible program execution. Abstract interpreta-
tion supports formal correctness proofs: it can be proved that
an analysis will terminate and that it is sound, i.e., that it
computes an over-approximation of the concrete semantics.
Imprecision can occur, but it can be shown that they will
always occur on the safe side. In runtime error analysis, sound-
ness means that the analyzer never omits to signal an error that
can appear in some execution environment. If no potential error
is signaled, definitely no runtime error can occur: there are no
false negatives. If a potential error is reported, the analyzer
cannot exclude that there is a concrete program execution
triggering the error. If there is no such execution, this is a
false alarm (false positive). This imprecision is on the safe
side: it can never happen that there is a runtime error which
is not reported.

B. Astrée
In the following we will concentrate on the sound static

runtime error analyzer Astrée [12][27]. It reports program
defects caused by unspecified and undefined behaviors ac-
cording to the C norm (ISO/IEC 9899:1999 (E)), program
defects caused by invalid concurrent behavior, violations of
user-specified programming guidelines, and computes program
properties relevant for functional safety. Users are notified
about: integer/floating-point division by zero, out-of-bounds
array indexing, erroneous pointer manipulation and derefer-
encing (buffer overflows, null pointer dereferencing, dangling
pointers, etc.), data races, lock/unlock problems, deadlocks,
integer and floating-point arithmetic overflows, read accesses
to uninitialized variables, unreachable code, non-terminating
loops, violations of optional user-defined static assertions,
violations of coding rules (MISRA C, ISO/IEC TS 17961,
CERT, CWE) and code metric thresholds.

Astrée computes data and control flow reports containing
a detailed listing of accesses to global and static variables

sorted by functions, variables, and processes and containing a
summary of caller/called relationships between functions. The
analyzer can also report each effectively shared variable, the
list of processes accessing it, and the types of the accesses
(read, write, read/write).

The C99 standard does not fully specify data type sizes,
endianness nor alignment which can vary with different targets
or compilers. Astrée is informed about these target ABI
settings by a dedicated configuration file in XML format and
takes the specified properties into account.

The design of the analyzer aims at reaching the zero false
alarm objective, which was accomplished for the first time
on large industrial applications at the end of November 2003.
For keeping the initial number of false alarms low, a high
analysis precision is mandatory. To achieve high precision
Astrée provides a variety of predefined abstract domains,
e.g.: The interval domain approximates variable values by
intervals, the octagon domain [28] covers relations of the
form x ± y ≤ c for variables x and y and constants c. The
memory domain empowers Astrée to exactly analyze pointer
arithmetic and union manipulations. It also supports a type-
safe analysis of absolute memory addresses. With the filter
domain digital filters can be precisely approximated. Floating-
point computations are precisely modeled while keeping track
of possible rounding errors.

To deal with concurrency defects, Astrée implements a
sound low-level concurrent semantics [29] which provides
a scalable sound abstraction covering all possible thread
interleavings. The interleaving semantics enables Astrée, in
addition to the classes of runtime errors found in sequential
programs, to report data races, and lock/unlock problems, i.e.,
inconsistent synchronization. The set of shared variables does
not need to be specified by the user: Astrée assumes that every
global variable can be shared, and discovers which ones are
effectively shared, and on which ones there is a data race. After
a data race, the analysis continues by considering the values
stemming from all interleavings. Since Astrée is aware of all
locks held for every program point in each concurrent thread,
Astrée can also report all potential deadlocks.

Thread priorities are exploited to reduce the amount of
spurious interleavings considered in the abstraction and to
achieve a more precise analysis. A dedicated task priority
domain supports dynamic priorities, e.g., according to the
Priority Ceiling Protocol used in OSEK systems [30]. Astrée
includes a built-in notion of mutual exclusion locks, on top
of which actual synchronization mechanisms offered by op-
erating systems can be modeled (such as POSIX mutexes or
semaphores).

Programs to be analyzed are seldom run in isolation; they
interact with an environment. In order to soundly report all
runtime errors, Astrée must take the effect of the environment
into account. In the simplest case the software runs directly
on the hardware, in which case the environment is limited to
a set of volatile variables, i.e., program variables that can be
modified by the environment concurrently, and for which a
range can be provided to Astrée by formal directives written
manually, or generated by a dedicated wrapper generator. More
often, the program is run on top of an operating system, which
it can access through function calls to a system library. When
analyzing a program using a library, one possible solution is to

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

include the source code of the library with the program. This is
not always convenient (if the library is complex), nor possible,
if the library source is not available, or not fully written in C, or
ultimately relies on kernel services (e.g., for system libraries).
An alternative is to provide a stub implementation, i.e., to
write, for each library function, a specification of its possible
effect on the program. Astrée provides stub libraries for the
ARINC 653 standard, and the OSEK/AUTOSAR standards.
In case of OSEK systems, Astrée parses the OIL (OSEK
Implementation Language) configuration file and generates the
corresponding C implementation automatically.

Practical experience on avionics and automotive industry
applications are given in [12][31]. They show that industry-
sized programs of millions of lines of code can be analyzed
in acceptable time with high precision for runtime errors and
data races.

IV. CONTROL AND DATA FLOW ANALYSIS

Safety standards such as DO-178C and ISO-26262 require
to perform control and data flow analysis as a part of software
unit or integration testing and in order to verify the software
architectural design. Investigating control and data flow is also
subject of the Data Safety guidance [15], and it is a prerequisite
for analyzing confidentiality and integrity properties as a part
of a security case. Technically, any semantics-based static
analysis is able to provide information about data and control
flow, since this is the basis of the actual program analysis.
However, data and control flow analysis has many aspects, and
for some of them, tailored analysis mechanisms are needed.

Global data and control flow analysis gives a summary of
variable accesses and function invocations throughout program
execution. In its standard data and control flow reports Astrée
computes the number of read/write accesses for every global or
static variable and lists the location of each access along with
the function from which the access is made and the thread in
which the function is executed. The control flow is described
by listing all callers and callees for every C function along
with the threads in which they can be run. Indirect variable
accesses via pointers as well as function pointer call targets
are fully taken into account.

More sophisticated information can be provided by two
dedicated analysis methods: program slicing and taint analysis.
Program slicing [32] aims at identifying the part of the program
that can influence a given set of variables at a given program
point. Applied to a result value, e.g., it shows which functions,
which statements, and which input variables contribute to its
computation. Taint analysis tracks the propagation of specific
data values through program execution. It can be used, e.g.,
to determine program parts affected by corrupted data from
an insecure source. In the following we give a more detailed
overview of both techniques.

A. Program Slicing
A slicing criterion of a program P is a tuple (s, V) where

s is a statement and V is a set of variables in P . Intuitively, a
slice is a subprogram of P which has the same behavior than
P with respect to the slicing criterion (s, V). Computing a
statement-minimal slice is an undecidable problem, but using
static analysis approximative slices can be computed. As an
example, Astrée provides a program slicer which can produce
sound and compact slices by exploiting the invariants from

Astrée’s core analysis including points-to information for vari-
able and function pointers. A dynamic slice does not contain all
statements potentially affecting the slicing criterion, but only
those relevant for a specific subset of program executions, e.g.,
only those in which an error value can result.

Computing sound program slices is relevant for demon-
strating safety and security properties. It can be used to show
that certain parts of the code or certain input variables might
influence or cannot influence a program section of interest.
B. Taint Analysis

In literature, taint analysis is often mentioned in combina-
tion with unsound static analyzers, since it allows to efficiently
detect potential errors in the code, e.g., array-index-out-of-
bounds accesses, or infeasible library function parameters [2],
[16]. Inside a sound runtime error analyzer this is not needed
since typically more powerful abstract domains can track all
undefined or unspecified behaviors. Inside a sound analyzer,
taint analysis is primarily a technique for analyzing security
properties. Its advantage is that users can flexibly specify taints,
taint sources, and taint sinks, so that application-specific data
and control flow requirements can be modeled.

In order to be able to leverage this efficient family of
analyses in sound analyzers, one must formally define the
properties that may be checked using such techniques. Then it
is possible to prove that a given implementation is sound with
respect to that formal definition, leading to clean and well
defined analysis results. Taint analysis consists of discovering
data dependencies using the notion of taint propagation. Taint
propagation can be formalized using a non-standard semantics
of programs, where an imaginary taint is associated to some
input values. Considering a standard semantics using a suc-
cessor relation between program states, and considering that
a program state is a map from memory locations (variables,
program counter, etc.) to values in V , the tainted semantics
relates tainted states which are maps from the same memory
locations to V × {taint, notaint}, and such that if we project
on V we get the same relation as with the standard semantics.

To define what happens to the taint part of the tainted value,
one must define a taint policy. The taint policy specifies:

Taint sources which are a subset of input values or variables
such that in any state, the values associated with that input
values or variables are always tainted.

Taint propagation describes how the tainting gets propa-
gated. Typical propagation is through assignment, but
more complex propagation can take more control flow
into account, and may not propagate the taint through all
arithmetic or pointer operations.

Taint cleaning is an alternative to taint propagation, describ-
ing all the operations that do not propagate the taint. In
this case, all assignments not containing the taint cleaning
will propagate the taint.

Taint sinks is an optional set of memory locations. This has
no semantical effect, except to specify conditions when
an alarm should be emitted when verifying a program (an
alarm must be emitted if a taint sink may become tainted
for a given execution of the program).

A sound taint analyzer will compute an over-approximation
of the memory locations that may be mapped to a tainted value
during program execution. The soundness requirement ensures
that no taint sink warning will be overlooked by the analyzer.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

The tainted semantics can easily be extended to a mix of
different hues of tainting, corresponding to an extension of
the taint set associated with values. Then propagation can get
more complex, with tainting not just being propagated but also
changing hue depending on the instruction. Such extensions
lead to a rather flexible and powerful data dependency analysis,
while remaining scalable.

V. CONCLUSION

In this article, we have given an overview of code-level
defects and vulnerabilities relevant for functional safety and
security. We have shown that many security attacks can be
traced back to behaviors undefined or unspecified according
to the C semantics. By applying sound static runtime error
analyzers, a high degree of security can be achieved for
safety-critical software since the absence of such defects
can be proven. In addition, security hyperproperties require
additional analyses to be performed which, by nature, have
a high complexity. We have given two examples of scalable
dedicated analyses, program slicing and taint analysis. Applied
as extensions of sound static analyzers, they allow to further
increase confidence in the security of safety-critical embedded
systems.

ACKNOWLEDGMENT

This work was funded within the project ARAMiS II by
the German Federal Ministry for Education and Research with
the funding ID 01—S16025. The responsibility for the content
remains with the authors.

REFERENCES

[1] MISRA (Motor Industry Software Reliability Association) Working
Group, MISRA-C:2012 Guidelines for the use of the C language in
critical systems, MISRA Limited, Mar. 2013.

[2] Software Engineering Institute SEI – CERT Division, SEI CERT C
Coding Standard – Rules for Developing Safe, Reliable, and Secure
Systems. Carnegie Mellon University, 2016.

[3] The MITRE Corporation, “CWE – Common Weakness Enumeration.”
[Online]. Available: https://cwe.mitre.org [retrieved: Sep. 2017].

[4] Radio Technical Commission for Aeronautics, “RTCA DO-178C. Soft-
ware Considerations in Airborne Systems and Equipment Certification,”
2011.

[5] IEC 61508, “Functional safety of electrical/electronic/programmable
electronic safety-related systems,” 2010.

[6] ISO 26262, “Road vehicles – Functional safety,” 2011.
[7] CENELEC EN 50128, “Railway applications – Communication, sig-

nalling and processing systems – Software for railway control and
protection systems,” 2011.

[8] P. Cousot and R. Cousot, “Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints,” in Proc. of
POPL’77. ACM Press, 1977, pp. 238–252. [Online]. Available:
http://www.di.ens.fr/˜cousot/COUSOTpapers/POPL77.shtml [retrieved:
Sep. 2017].

[9] D. Kästner, “Applying Abstract Interpretation to Demonstrate Func-
tional Safety,” in Formal Methods Applied to Industrial Complex
Systems, J.-L. Boulanger, Ed. London, UK: ISTE/Wiley, 2014.

[10] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, and R. Heck-
mann, “Computing the worst case execution time of an avionics
program by abstract interpretation,” in Proceedings of the 5th Intl
Workshop on Worst-Case Execution Time (WCET) Analysis, 2005, pp.
21–24.

[11] D. Delmas and J. Souyris, “ASTRÉE: from Research to Industry,” in
Proc. 14th International Static Analysis Symposium (SAS2007), ser.
LNCS, no. 4634, 2007, pp. 437–451.

[12] D. Kästner, A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,
A. Schmidt, H. Hille, S. Wilhelm, and C. Ferdinand, “Finding All
Potential Runtime Errors and Data Races in Automotive Software,” in
SAE World Congress 2017. SAE International, 2017.

[13] Wired.com, “The jeep hackers are back to prove car
hacking can get much worse,” 2016. [Online]. Avail-
able: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-
steering-acceleration-hacks/ [retrieved: Sep. 2017]

[14] Y. Younan, W. Joosen, and F. Piessens, “Code injection in c and
c++ : A survey of vulnerabilities and countermeasures,” Departement
Computerwetenschappen, Katholieke Universiteit Leuven, Tech. Rep.,
2004.

[15] SCSC Data Safety Initiative Working Group [DSIWG], “Data Safety
(Version 2.0) [SCSC-127B],” Safety-Critical Systems Club, Tech. Rep.,
Jan 2017.

[16] ISO/IEC, “Information Technology – Programming Languages, Their
Environments and System Software Interfaces – Secure Coding Rules
(ISO/IEC TS 17961),” Nov 2013.

[17] MISRA (Motor Industry Software Reliability Association) Working
Group, MISRA-C:2012 – Addendum 2. Coverage of MISRA C:2012
against ISO/IEC TS 17961:2013 ”C Secure”, MISRA Limited, Apr.
2016.

[18] MISRA (Motor Industry Software Reliability Association) Working
Group , MISRA-C:2012 Amendment 1 – Additional security guidelines
for MISRA C:2012, MISRA Limited, Apr. 2016.

[19] CERT – Software Engineering Institute, Carnegie Mellon University,
“SEI CERT Coding Standards Website.” [Online]. Available:
https://www.securecoding.cert.org [retrieved: Sep. 2017].

[20] Wikipedia, “Blaster (computer worm).” [Online]. Available:
https://en.wikipedia.org/wiki/Blaster (computer worm) [retrieved: Sep.
2017].

[21] CERT – Vulnerability Notes Database, “Vulnerability Note
VU#720951 – OpenSSL TLS heartbeat extension read
overflow discloses sensitive information.” [Online]. Available:
http://www.kb.cert.org/vuls/id/720951 [retrieved: Sep. 2017].

[22] NIST – National Vulnerability Database, “CVE-2009-1888:
SAMBA ACLs Uninitialized Memory Read.” [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2009-1888 [retrieved: Sep. 2017].

[23] J. Yang, A. Cui, J. Gallagher, S. Stolfo, and S. Sethumadhavan,
“Concurrency attacks,” in In the Fourth USENIX Workshop on Hot
Topics in Parallelism (HOTPAR12), 2012.

[24] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, 2010, pp. 1157–1210.

[25] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, 2003, pp. 5–19.

[26] M. Assaf, D. A. Naumann, J. Signoles, E. Totel, and F. Tronel,
“Hypercollecting semantics and its application to static analysis
of information flow,” CoRR, vol. abs/1608.01654, 2016. [Online].
Available: http://arxiv.org/abs/1608.01654 [retrieved: Sep. 2017].

[27] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner,
S. Wilhelm, and C. Ferdinand, “Taking Static Analysis to the Next
Level: Proving the Absence of Run-Time Errors and Data Races with
Astrée,” Embedded Real Time Software and Systems Congress ERTS2.

[28] A. Miné, “The Octagon Abstract Domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, 2006, pp. 31–100.

[29] A. Miné, “Static analysis of run-time errors in embedded real-time
parallel C programs,” Logical Methods in Computer Science (LMCS),
vol. 8, no. 26, Mar. 2012, p. 63.

[30] OSEK/VDX, OSEK/VDX Operating System. Version 2.2.3.,
http://www.osek-vdx.org, 2005.

[31] A. Miné and D. Delmas, “Towards an Industrial Use of Sound Static
Analysis for the Verification of Concurrent Embedded Avionics Soft-
ware,” in Proc. of the 15th International Conference on Embedded
Software (EMSOFT’15). IEEE CS Press, Oct. 2015, pp. 65–74.

[32] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
pp. 439–449.

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-605-7

CYBER 2017 : The Second International Conference on Cyber-Technologies and Cyber-Systems

