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Abstract—There are bypass mechanisms to Natural Language 
Processing capabilities, such as the usage of irony, sarcasm, and 
satire, particularly as pertains to Computer-Mediated 
Communications. The problem then is that of the gradations 
between irony, sarcasm, and satire. Irony is used to convey, 
usually, the opposite meaning of the actual things said, but its 
purpose is not necessarily intended to hurt the target. The 
purpose of sarcasm, unlike irony, is to hurt the target. Satire 
might utilize irony, exaggeration, ridicule, and/or humor to 
expose and criticize shortcomings and/or vices of the target. The 
detection of these usages is an intriguing challenge. For example, 
sarcasm detection is difficult as there are several gradations; 
sarcasm might be comprised of real sarcasm, semi-irony, or 
friendly sarcasm. Determining the cognitive context, which 
triggered the original manifestation remains a bridge to be 
solidified. Also, sarcasm detection often exceeds even the 
concept of context, as it can be distorted by either the sender 
and/or receiver. This remains a herculean challenge in the 
domain, as others remain focused on first-order 
metarepresentations (e.g., analogies), while the challenges of 
second-order metarepresentations are more sparsely addressed. 
This paper presents a possible framework to address the 
problem by utilizing Bi-Normal Separation Feature Scaling for 
informing a Modified Association Matrix as contrasted to a 
framework utilizing Inverse Document Frequency and a 
prototypical Association Matrix. It is posited that the former 
will exhibit faster convergence and accuracy for enhanced 
detection of irony, sarcasm, as well as satire, and preliminary 
results seem to indicate this. The main output of the paper is a 
potential solution stack that directly contends with the second-
order metarepresentation issue. 

Keywords-Satire; Natural Language Processing; Deep 
Learning; Dimensionality Reduction; Bi-Normal Separation 
Feature Scaling; Modified Association Matrix. 

I. INTRODUCTION 
Computer-Mediated Communication (CMC) has become 

prevalent (e.g., in-game text-based chat) in Massively 
Multiplayer Online Games (MMOGs) (e.g., World of 
Warcraft) and digital media entertainment services (e.g., 
Playstation Network). This trend is increasing as various 
open-source chat Software Development Kits and 
Application Programming Interfaces (e.g., PubNub 

ChatEngine) become available for the developers in a 
growing gaming industry. The vulnerabilities presented by 
CMC are discussed within literature.  In an academic sense, 
if Natural Language Processing (NLP) were applied to this 
type of chat traffic, the analysis would be more challenging 
due to the variety of newly coined jargon words, etc. that 
continually emerge in this domain. However, the use of 
elevated language conjoined with satire constitutes an even 
greater challenge and a recipe for an anti-NLP (making a 
comparison to Anti-Face) mechanism that potentially poses a 
threat that impacts “trusted” cyberspace. 

The remainder of this paper is organized as follows: 
Section II provides a primer by discussing some advantages 
of Inverse Document Frequency (IDF) over the simplicity of 
the Poisson distribution. Subsequently, Section III provides 
additional background information by discussing some 
advantages of neural embeddings (a.k.a. word embeddings) 
over n-grams. Then, Section IV delves into the complexities 
of the computational processing associated with figurative 
language as compared to literal language. Section V discusses 
some advantages of transfer learning (with bi-normal 
separation feature scaling) over deep learning in addressing 
the challenges of figurative language as well as posited 
improvements over IDF. Section VI discusses optimizing the 
[deep] transfer learning convolutional neural network 
inference engine, which was discussed in Section V. Section 
VII further discusses optimizing the inference engine with a 
modified association matrix. Section VIII posits a framework 
for the enhanced experimental inference engine, particularly 
as pertains to irony, sarcasm, and satire detection. Section IX 
presents the experimental results from the experimental 
inference engine solution stack, which incorporates the 
elements discussed in Section V, Section VI, and Section VII.  
Finally, the paper reviews and emphasizes key points within 
Section X, the conclusion. 

II. FROM POISSON TO INVERSE DOCUMENT FREQUENCY 

NLP pertains to the interactions between computers and 
human languages. In the operationalization of primordial 
NLP, word frequency is often practiced, as the following 
logic is utilized: “Low frequency words tend to be rich in 
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content, and vice versa” [3]. This logic focuses upon “rare 
words,” and there is an implicit assumption that words (e.g., 
n-grams) are distributed by a single parameter distribution, 
such as a Poisson process or a binomial. However, these 
distributions do not fit data very well; in fact, the Poisson 
distribution predicts that “lightning is unlikely to strike twice 
(or half a dozen times) in a single document” [4]. According 
to this logic, there should not be an expectation of seeing two 
or more instances of a “rare word” in a single document 
(unless there is some sort of hidden dependency that goes 
beyond the Poisson [4]; generally speaking, the utilization of 
Poisson for modeling the distribution of words [e.g., n-
grams] fails to fit the data except in the case wherein there 
are almost no interesting dependencies). Yet, dependencies 
are indeed prevalent [8], and many NLP applications 
endeavor to discriminate documents on the basis of certain 
hidden variables, such as topic, author, genre, style, and the 
like [9].  The more that a keyword (e.g., n-gram) deviates 
from Poisson, the stronger the dependence on hidden 
variables, and the more useful, potentially, the n-gram is for 
discriminating documents on the basis of these hidden 
dependencies.  

In the modern age of search engine optimization (which 
will include, among other techniques, keyword density), the 
likelihood of seeing a “rare word” is actually quite high. 
Hence, the employing of word frequency (a.k.a. raw 
frequency) has an inherent deficiency for the task-at-hand, as 
all terms are arbitrarily given equal weighting as pertains to 
assessing relevancy for a query. For example, a collection of 
documents discussing the “game” industry is likely to have 
the term “game” in almost every document. To mitigate this 
particular effect of certain “rare words” (a.k.a. “rare terms”), 
which occur too frequently within the collection (so as to be 
meaningful for relevance determination), an IDF mechanism 
is often utilized. Indeed, much better fits are obtained by 
introducing a second parameter, such as IDF, which is 
defined as -log2dfw/D, where D is the number of documents 
in the collection and dfw is the document frequency (i.e., the 
number of documents, which contain w); observationally 
speaking (e.g., as contrasted to Poisson), the IDF for a “rare 
term” is high, whereas the IDF of a “frequent term” is likely 
to be low [10]. This is consistent with the current notion that 
words with larger IDF tend to have more inherent content, 
and a good “[rare] word” should be located farther from the 
chance of Poisson [11]. 

III. FROM N-GRAMS TO NEURAL EMBEDDINGS 

This paper endeavors to address a key NLP problem known 
as sarcasm detection by utilizing a combination of models 
based upon, among others, specifically engineered 
Convolutional Neural Networks (CNNs). The automated 
detection for an expression of sarcasm is non-trivial and, in 
many cases, involves a reversal of the polarity of a sentence. 
By way of example, “I love working eighty hours a week to 
be this poor” is such an expression of sarcasm. Another 

commonly cited example is “I love the pain of breakup” [12]. 
In both cases, it is difficult to extract the requisite crystalline 
aspects needed to determine the presence of sarcasm within 
the sentence. The example, “I love working eighty hours a 
week” provides aspects of an expressed sentiment (in this 
case, that of a positive nature), and “to be this poor” describes 
a contradicting sentiment (that of a negative nature). Hence, 
we dissect these amalgams. 

In the realm of language, a simile compares one thing to 
another (similes are more likely to utilize the words “like” 
and “as,” which a metaphor does not utilize. 
Verbal irony refers to the use of vocabulary to describe 
something in a way that is other than what it seems; indeed, 
verbal irony can consist of “ironic similes,” which are 
comparisons between two items that are not alike at all [e.g., 
“fire and ice”]). Hao and Veale conducted various 
experiments over a corpus of “ironic similes” in which the 
authors found that most of the examined ironic comparisons 
utilize a precursor positive sentiment to impart a negative 
view (∼70%) [13]. They found that sarcasm is very topic-
dependent and highly contextual. Thus, sentiment and other 
contextual clues are vital for sarcasm detection, and this is at 
the core of anaphora resolution.  

Certain features (e.g., n-grams), although somewhat useful 
for sarcasm detection, produce very sparse (often too sparse) 
feature vector representations or sparse vectors, and this had 
led to a surge of work centered upon representing words as 
dense feature vector representations or dense vectors. These 
representations, referred to as “word embeddings” or “neural 
embeddings,” have been shown to perform well for a variety 
of NLP tasks. For example, in the often utilized word2vec, a 
distributed representation of a word is used in the form of a 
vector with many dimensions. Each word is represented by a 
distribution of weights across those elements. Hence, instead 
of a one-to-one mapping between an element in the vector 
and a word, the representation of a word is spread across all 
of the elements within the vector, and each element in the 
vector contributes to the definition of many words. The multi-
dimensional vector comes to represent, abstractly, the 
“meaning” of a word. In essence, there is a word-context 
matrix M for which each row i corresponds to a word, each 
column j corresponds to a context for which the word has 
appeared, and each matrix entry Mij corresponds to some 
association measure between the word and the context. 
Words are then represented as rows in M or in a 
dimensionality-reduced matrix based upon M. By examining 
a large corpus of text, it is possible to ascertain word vectors 
that are able to capture relationships between words in a 
surprisingly expressive way. Along this vein, these vectors 
can be utilized as inputs to a deep learning CNN. It is found 
that these CNN-learned word representations well capture 
meaningful syntactic and semantic regularities [14]. Along 
this vein, many NLP tasks benefit from word representations 
that do not treat individual words as unique symbols, but 
instead reflect similarities and dissimilarities between them. 
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The common paradigm for deriving such representations is 
based upon the distributional hypothesis of Harris [15], 
which asserts that words in similar contexts have similar 
meanings. Dingemanse et al. claim that universal words (e.g., 
“huh”) occur in a large sample of unrelated languages and 
have similar contexts [16]; consequently, affirmation of 
context (e.g., same contexts in different languages) can be 
useful. 

 Specifically, the regularities observed are translated into 
constant vector offsets between pairs of words sharing a 
particular relationship. In fact, these vectors are very good at 
answering analogy questions of the form a is to b as c is to ?. 
However, CNNs are time-consuming to train, so other 
models are often utilized that might not be able to represent 
the data as precisely as CNNs but can often be trained 
efficiently on much more data. By way of example, the 
previously discussed word2vec is similar to an autoencoder. 
However, rather than training against the input words, via 
reconstruction, as a restricted Boltzmann machine does, 
word2vec trains words against other neighboring words in the 
input corpus, via two exemplar models: (1) Continuous Bag-
of-Words (CBOW), using context to predict a target word, 
and (2) Skip-Gram, using a word to predict a target context. 
The latter model is often utilized, as it produces more 
accurate results on large datasets. 

IV. FROM LITERAL TO FIGURATIVE LANGUAGE 
In NLP, Word Sense Disambiguation (WSD) is the 

challenge of determining which “sense” (i.e., meaning) of 
a word is activated by the use of the word in a particular 
context. Literal language means exactly what it says. In 
contrast, figurative language represents one of the most 
difficult tasks for NLP. Several types of figurative language 
include personification, hyperbole, idioms, onomatopoeia, 
simile, and metaphor. Lakoff and Johnson assert that 
metaphor is a method for transferring knowledge from a 
concrete domain to an abstract domain (a first-order 
metarepresentation), and they posit that the degree of 
abstractness in a word’s context is correlated with the 
likelihood that the word is used metaphorically [17]. 
Consider the following sentences: (L) He shot down my 
plane, and (M) He shot down my argument. The literal sense 
of “shot down” in L invokes knowledge from the domain of 
war [17]. The metaphorical usage of “shot down” in M 
transfers knowledge from the concrete domain of war to the 
abstract domain of debate [17]. Danesi contends that 
metaphor transfers associations from the source domain to 
the target domain [18]. Accordingly, the metaphorical usage 
of “shot down” in M carries associations that are not 
conveyed by L. To contend with the abstractness, various 
approaches are utilized for textual inference; one such 
approach is that of Recognizing Textual Entailment (RTE) 
[19]. To posit correct inferences, as pertains to RTE, systems 
must be able to distinguish between the literal and 
metaphorical senses of a word, and the degree of abstractness 
of words is one approach. For instance, the “plane” in L is 

rated with a lower number (i.e., relatively concrete), whereas 
“argument” in M is rated with a higher number (i.e., relatively 
abstract), which suggests that the verb “shot down” is used 
literally in L, whereas it is used metaphorically in M [17]. 
Turney and Littman rated words according to their semantic 
orientation, such as denotative (i.e., literal) or connotative 
(i.e., non-literal, metaphorical); by way of example, “deep 
mud” is labeled as denotative, and “deep gratitude” is labeled 
as connotative.  

Unlike literal language, figurative language utilizes 
linguistic devices (e.g., simile, metaphor) to communicate 
indirect meanings (e.g., sarcasm) which, usually, are not 
readily interpreted by simply decoding syntactic or semantic 
information. Indeed, figurative language reflects patterns of 
thought that are not only challenging in their linguistic 
representations, but also for the involved requisite 
computational processing; figurative language processing 
can involve a variety of processes, such as sentiment analysis 
or opinion mining. Katz et al. posit that irony tends to be more 
difficult to comprehend than metaphor because irony requires 
the ability to recognize, at the very least, a second-order 
metarepresentation [20]. This same notation applies to 
sarcasm and satire; accordingly, irony, sarcasm, and satire 
constitute second-order metarepresentations. 

V. FROM PROTOTYPICAL DEEP LEARNING TO TRANSFER 
LEARNING WITH BI-NORMAL SEPARATION FEATURE SCALING 

To address the aforementioned challenges, deep learning 
is often utilized. Prototypical deep learning can be broken 
down into two parts: training and inference. When the deep 
learning CNN has been well trained on what to detect, 
the inference engine proceeds to make inferences or 
predictions based upon the input data. In general, deep 
learning requires a prodigious amount of data for training. 
Unfortunately, collecting this data for niche areas, where data 
is typically sparse, is challenging. One approach towards 
resolving this dilemma is known as Transfer Learning, 
wherein the model becomes trained on other datasets (i.e., 
pre-training), and weights for each layer are assigned in a 
“rough-tuned” fashion, iteratively. Hence, instead of 
initializing the weights for each layer randomly, as is 
typically done for models being trained from scratch, the 
learned weights for each layer of the pre-trained model are 
“fine-tuned” during the training on the sparse data. 
Theoretically, this TL paradigm has a better chance of 
converging much more quickly, and it is typically achieved, 
via the following pathways: 

A. Continuous Back Propagation 
The involved pre-trained model can be further “fine-

tuned” by continuing the back propagation and updating the 
weights of all the layers. Alternatively, only certain layers 
may be “fine-tuned.” Comprehensively, the “fine-tuning” can 
start at the highest-level layer and progress towards the 
lowest-level layer with a continuous assessment of the 
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performance and determinations made accordingly along the 
way in terms of tuning. 

B. Hybridizing CNN with Support Vector Machine 
The involved pre-trained model can also serve as a feature 

extractor for the data. These features can then be fed into a 
linear classifier, such as a Support Vector Machine (SVM). 
This hybridized approach is ideal if the dataset is particularly 
sparse and “fine-tuning” the model is likely to result in over-
fitting. 

C. Bi-Normal Separation Feature Scaling 
The described pre-trained model can, ideally, infer — by 

way of example — what decision is likely to be made next. 
Ideally, the pre-trained model can make robust inferences 
from new data based upon its prior training. In the realm of 
NLP, wherein the numerical feature value for a given 
word/term is often represented by its Term Frequency (TF) 
(within the given text) multiplied by its IDF (within the entire 
corpus), the “TF·IDF” combinatorial has become a prevalent 
representation [21]. However, IDF is oblivious to the training 
class labels and will, as a consequence, scale some features 
inappropriately. In contrast, Bi-Normal Separation (BNS) 
feature scaling has been shown to outperform other feature 
representation schemes for a wide range of text classification 
tasks. The superiority of BNS is especially pronounced for 
collections with a low proportion of positive class instances. 
With BNS, features are allocated a weight according to |F-

1(tpr) – F-1(fpr)|, where   F-1 is the Inverse Normal Cumulative 
Distribution Function (INCDF), tpr is the true positive rate 
(P(feature|positive class)), and fpr is the false positive rate 
(P(feature|negative class)). BNS produces the highest 
weights for features that are strongly correlated with either 
the negative or positive class. Features that occur fairly 
evenly across the training instances are given the lowest 
weight. Furthermore, BNS scaling has yielded better 
performance even without feature selection, potentially 
obviating the need for such [21]. This accelerates the 
performance of the inference engine. 

VI. OPTIMIZING THE TRANSFER LEARNING CNN 
There are two main approaches to modifying the TL CNN 

for reducing latency, particularly in the case of applications 
operating across other networks. The first approach is that of 
eliminating layers of the CNN that are not activated after 
training. The second approach is that of combining various 
layers of the CNN into a single computational step. These 
approaches should result in a similar accuracy of prediction, 
but simplified, compressed, and optimized for runtime 
performance (some compare this to the case of optimizing 
[i.e., compressing] an image for the WWW; ideally, the 
differences between the uncompressed and compressed 
image will be indistinguishable to the human eye) [22]. In 
essence, this further accelerates the performance of the 
inference engine. 

VII. MODIFIED ASSOCIATION MATRIX 

A final accelerant for the inference engine comes by way 
of a Modified Association Matrix (MAM). A typical 
Association Matrix (AM) is a 2-dimensional matrix, wherein 
each cell cij represents the correlation factor between the 
terms in the query and the terms in the documents. This 
matrix is used to reformulate an original query to improve its 
performance [23]. Each correlation factor, denoted as cij is 
calculated in accordance with (1):  

 cij =   Σ  fik	×fjk (1) 
																																																																											dk	∈D 

where cij is the correlation factor between term i and term j, 
and f ik is the frequency of term i in document k. Additionally, 
these correlation values are used to calculate the normalized 
association matrix in accordance with (2):  
 
 sij =  cij/(cii + cjj – cij) (2) 
																																																																											 
where sij denotes the normalized association score, and cij 

represents the correlation factor between term i and term j. A 
higher normalized association score implies a higher degree 
of correspondence with the original query [23]. Words with 
the highest association scores are selected to be added back 
into the original query, and this new query (instead of the 
original query) is utilized to calculate cosine similarity. This 
new query, theoretically, should have a similar profile to the 
intent of the formulation of the query, and this will be 
reflected, via cosine similarity [24]. 

With regards to intent, Hancock had examined differences 
in verbal irony usage, via face-to-face and CMC, and found 
that irony (specifically, sarcasm) was more common in CMC 
settings and was primarily signaled through punctuation [25]. 
Reyes & Rosso utilized a corpus of review comments 
regarding products on Amazon.com, and they utilized six 
factors for their model: N-Grams (NG) (i.e., recurrent word 
combinations), Part-of-Speech (POS) N-Grams (POSNG) 
(i.e., recurrent POS combinations), words with semantic 
characteristics of sexuality or relationships (using values 
from WordNet), Positive and Negative Values (PNV) of 
words (using values from the Macquarie Semantic 
Orientation Lexicon [MSOL]), Pleasantness Value (PV) of 
words (using values from Whissel’s Dictionary of Affect in 
Language [WDAL]), and Affective words Demonstrating 
Subjectivity (ADS) (using values from WordNet) [25]. The 
model utilized for this paper had some deletions and 
incorporated some modifications to the Reyes & Rosso 
model. For example, the MSOL was conjoined with the Yelp 
Restaurant Sentiment Lexicon (YRSL) and the Amazon 
Laptop Sentiment Lexicon (ALSL). The WDAL was 
complemented by the National Research Council (NRC) 
[Canada] Hashtag Emotion Lexicon (HEL) and the NRC 
Word-Emotion Association Lexicon (WEAL).  
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By applying specific scaling methods on an association 
matrix, unigrams were placed into a higher dimensional 
space, such that the unigrams with similar associative 
patterns were placed in similar regions of the dimensional 
space. This resultant space is referred to as the Word 
Association Space (WAS). The number of dimensions will 
vary depending on how much of the information of the free 
association database is compressed, but intermediate values 
between 200 and 500 are to be expected [26]. Typically, the 
dimensionality of the WAS equates to the number of features 
for the unigrams. Of note, with too few dimensions, the 
similarity structure of the resulting vectors does not capture 
enough granularity of the original associative structure within 
the free association database. With too many dimensions 
(e.g., the number of dimensions approaches the number of 
features), the information is not compressed enough, and the 
similarity structure of the vectors does not capture enough of 
the indirect relationships regarding the associations between 
the involved unigrams. Overall, this modified association 
matrix results in an enhancement of the first-order 
metarepresentation. In addition, the associations between the 
first-order metarepresentations are enhanced. Accordingly, 
the reversals of the polarity of sentences are better detected by 
the MSOL, YRSL, and ALSL-trained CNN. These lexical 
databases provide a more robust corpus for the sentiment of 
various words and are further buttressed by WDAL, HEL, and 
WEAL-training. By way of example, “I love working eighty 
hours a week to be this poor” can now be identified as an 
amalgam of two first-order representations that involve a 
reversal of polarity. Given this reversal of polarity 
identification, the involved first-order metarepresentations 
can be tagged and associated with sarcasm. This then segues 
to an improvement of the second-order metarepresentation 
for sarcasm detection. 

VIII. POSITED FRAMEWORK FOR AN ENHANCED INFERENCE 
SYSTEM, PARTICULARLY FOR IRONY, SARCASM, AND SATIRE 

DETECTION 
A prototypical Deep Learning Engine (Training Engine 

and Inference Engine) with the specified components for the 
experiment is as delineated in Figure 1. Several exemplar 
layers (NG, POSNG, PNV, PV, and ADS) are provided for 
the Training Engine.  These same exemplar layers are utilized 
for both the Forward Propagation “Rough-Tuning” for the 
Training Model as well as the Continuous Back Propagation 
“Fine-Tuning” for the Pre-Trained Model. As discussed 
previously in Sections II through VII, BNS and MAM may 
be leveraged as accelerants for the inference engine. When 
combined with a specifically chosen datasets to assist in the 
pre-training, the Transfer Learning is enhanced. By way of 
explanation, the Untrained Model eventually becomes a 
“Rough-Tuned” Trained Model (upon ingestion of the initial 
Training Dataset and Forward Propagation). Further “Rough 
Tuning” can be achieved by training specific layers, such as 
PNV and PV (e.g., via MSOL and WDAL, respectively).  
Eventually, the Trained Model becomes a Pre-Trained 

Model, and “Fine-Tuning” can be achieved by Continuous 
Back Propagation and optimizing at certain training layers, 
such as PNV (e.g., via YRSL and ALSL), and PV (e.g., via 
HEL and WEAL). The Pre-Trained Model is then further 
optimized when the New Dataset is Ingested. To avoid over-
fitting, the Pre-Trained Model of the CNN can also serve as 
a feature extractor for which the features can be fed into an 
SVM. Collectively, the hitherto described constituent 
components constitute the posited framework for an 
enhanced TL CNN inference engine for sarcasm detection. 

 

 
 

Figure 1.   Posited Experimental Framework For an Enhanced Inference 
System, Particularly for Irony, Sarcasm, and Satire Detection.  

Overall, the posited experimental framework comprised of 
a prototypical Deep Learning Engine (Training Engine and 
Inference Engine) with various enhanced layers (NG, 
POSNG, PNV, PV, and ADS) for the Training Engine seems 
to be quite useful for the Forward Propagation “Rough-
Tuning” process for the Training Model as well as the 
Continuous Back Propagation “Fine-Tuning” process for the 
Pre-Trained Model. 
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IX. PRELIMINARY RESULTS FROM THE EXPERIMENTAL 
INFERENCE ENGINE SOLUTION STACKS 

The hitherto described solution stacks are as follows: (1) 
Solution Stack #1: IDF & AM, and (2) Solution Stack #2: 
BNS & MAM. This is shown in Figure 2 below as Phase 1 of 
the experiment for Solution Stack #1 and Phase 2 of the 
experiment for Solution Stack #2. The preliminary results are 
also shown in Figure 2 and indicate a 9% performance edge 
by Solution Stack #2 over Solution Stack #1 when 
benchmarked against the Self-Annotated Reddit Corpus 
(SARC), a corpus of 1.3 million sarcastic remarks. SARC 
was chosen as it had both sarcastic and non-sarcastic 
comments, thereby allowing for learning in both balanced 
and unbalanced label regimes [27]. However, there are also 
deficiencies with SARC. By way of explanation, Reddit users 
have adopted a common method for sarcasm annotation 
consisting of adding the marker “/s” to the end of sarcastic 
statements (this originates from the HTML usage 
<sarcasm>...</sarcasm>). As with Twitter hashtags, using 
the markers “/s” as indicators of sarcasm “is noisy, for many 
users do not use the marker, do not know about it, or only use 
it where sarcastic intent is not otherwise obvious” [27]. The 
experiment also has not yet treated the case of false positives 
and false negatives. Further investigation is needed, as these 
are preliminary results only, and only one “New Dataset” was 
utilized for testing.   

 

Figure 2.   Solution Stack #1 (IDF & AM) versus Solution Stack #2 (BNS 
& MAM): Solution Stack #2 demonstrates a 9% performance edge over 

Solution Stack #1 (for a single test case).  

Overall, Solution Stack #2 from Phase 2 of the experiment 
seems to have an advantage over Solution Stack #1 from 
Phase 1 of the experiment when benchmarked against the 
SARC.  However, there is much more work to be done 
regarding false positives and false negatives. 

X. CONCLUSION 
This paper presents the benchmarked performance results 

of a posited framework for an enhanced inference system. 
The premise for devising such a system was predicated on the 
problems with sarcasm detection (i.e., detecting for a second-
order metarepresentation) within the NLP arena. The 
described work utilized SARC as well as a variety of datasets 
for a Pre-Trained Model. The preliminary results of an 
approximately 9% performance edge by Solution Stack #2 
(BNS & MAM) over Solution Stack #1 (IDF & AM) seem 
promising, but only one test was performed. Future work 
necessitates a further investigation with a much more robust 
performance metric and benchmarking paradigm, as well as 
the potential involvement of other useful viable datasets for 
fine-tuning of the CNN Pre-Trained Model. An updated 
literature review will be performed for updated techniques 
and methodologies. 
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