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Abstract—Spectre attacks are critical transient execution attacks
affecting a wide range of microprocessors and potentially all
software executed on them, including embedded and safety-
critical software systems. In order to help eliminating Spectre
vulnerabilities at a reasonable human and performance cost, we
propose to build on an efficient industrial code analyzer, such as
Astrée, which enables an automatic analysis of big complex C
codes with high precision. Its main purpose is to discover run
time errors, but to do so, it computes precise over-approximations
of all the states reachable by a program. We enriched these
states with tainting information based on a novel tainting strategy
to detect Spectre v1, v1.1 and SplitSpectre vulnerabilities. The
selectivity and performance of the analysis is evaluated on the
embedded real-time operating system PikeOS, and on industrial
safety-critical embedded software projects from the avionics and
automotive domain.
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I. INTRODUCTION

In the past year, a series of cybersecurity attacks have been
publicly reported, which exploit transient instruction execution,
i.e., instructions which should not have an observable effect
since they are speculatively executed or have to be flushed
because of an exception [1] [2]. They have become known
as Spectre or Meltdown attacks and they are highly problem-
atic because they are rooted in hardware features present in
most current hardware architectures. They can be considered
confidentiality breaches: essentially, a malicious program can
exploit Meltdown and Spectre to get hold of secrets stored
in the memory of other running programs. Since the initial
publication of [1] [2] there was a continuous stream of novel
versions of transient execution attacks, so the full extend of
the problem is still not fully known.

In the past, security properties have mostly been rele-
vant for non-embedded and/or non-safety-critical programs.
Recently due to increasing connectivity requirements (cloud-
based services, car-to-car communication, over-the-air updates,
etc.), more and more security issues are rising in safety-critical
software as well. Security exploits like the Jeep Cherokee
hacks [3] which affect the safety of the system are becoming
more and more frequent. Because of the increasingly pervasive
monitoring of personal data including location data or health
information, confidentiality breaches in embedded systems like
mobile phones, automobiles, or airplanes have to be considered
increasingly critical. Furthermore, data leakage might also
have impact on safety, e.g., if administrator or maintenance
passwords are leaked.

While Meltdown (so far) has only been reported on Intel
and AMD processors, Spectre attacks affect a wide range of

target architectures. As of today, four different classes of Spec-
tre attacks have been reported, some of which comprise several
distinct attack vectors. For some of the attacks, mitigation
measures have been suggested that can be practically applied.
The Spectre v1, Spectre v1.1 and SplitSpectre attacks are based
on speculative execution, in particular, on branch prediction
on array bound index checks. Vulnerabilities to these kinds of
attacks can be discovered by static analysis. A naive mitigation
strategy consists of flushing the cache or inserting memory
barriers before every conditional instruction, which, however,
would cause unacceptable runtime overhead. In our work we
show that with low analysis effort it is possible to precisely
identify Spectre v1/v1.1 and SplitSpectre vulnerabilities: there
has to be an index bound check which depends on user-
supplied data such that the accessed array element is used to
access an element of another array. We will show that these
vulnerabilities can be detected with very low false alarm rates,
so that they can be safely mitigated with low runtime overhead.

The methodology we apply is abstract interpretation, a for-
mal method for sound semantics-based static program analysis
[4]. It supports formal soundness proofs (it can be proven
that no error is missed) and scales to real-life industry appli-
cations. Abstract interpretation-based static analyzers provide
full control and data coverage and allow conclusions to be
drawn that are valid for all program runs with all inputs.
Such conclusions may be that no timing or space constraints
are violated, or that runtime errors or data races are absent:
the absence of these errors can be guaranteed [5]. Nowadays,
abstract interpretation-based static analyzers that can detect
stack overflows [6] and violations of timing constraints [7] and
that can prove the absence of runtime errors and data races [8]
[9], are widely used for developing and verifying safety-critical
software.

A. Related Work

Related work on applying static analysis to detect Spectre
attacks has been reported in [10]. The difference to our
approach is that [10] works on binary code, using mainly
the BAP code analyzer [11], which cannot soundly analyze
all possible behaviors, but relies on bounds to unroll loops,
meaning that the approach cannot, in general, find all possible
vulnerabilities. Our approach works at the source code level
since here the analyzer can be sound and still be very precise
about function pointer calls and other pointer accesses which
reduces the false alarm rate, compared to approaches at the
binary level. Another difference is that in our work we could
also cover the SplitSpectre vulnerability which was made
public only a few months ago. Also the code under analysis is
different: we are focusing on real-life industrial code, which
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is at the same time safety-critical and subject to cybersecurity
requirements.

Taint analysis of big c programs was presented in [12], but
it was based on a type system, and still a prototype that did
not lead to an industrial quality tool.

B. Contributions
We discuss the impact of Spectre vulnerability on industrial

running code, and explain how it can be mitigated. The target
application used in our work is the real-time operating system
PikeOS, which is used in aerospace, medical, automotive, rail-
way, and industrial applications up to highest criticality levels.
An operating system deployed in highly critical aerospace
and automotive applications is subject to severe safety and
cybersecurity requirements. We demonstrate that – without
specific counter measures – even such a system is vulnerable
to Spectre attacks and we show that by using our static analysis
framework these vulnerabilities can be efficiently eliminated.
Apart from the OS layer, we also evaluate our approach
on real-life safety-critical applications from the avionics and
automotive sectors.

As discovering the places to insert the mitigations is non-
trivial (in fact, it can be proven to be undecidable), we propose
to extend the sound static analyzer Astrée with a dedicated
taint analysis, to help find a small number of places where
mitigations should be considered. Our contribution includes
the use of sets of taint hues, which allows to track complex
taint states, and provides more precise hints for Spectre vulner-
abilities. The precision and scalability of the tainting follows
from the precision and scalability of Astrée on industrial code.
Astrée runs on C programs, but the taint strategy presented in
this article is applicable to other programming languages as
well.

C. Overview
This article is structured as follows: in Section II we will

give an overview of the Spectre vulnerabilities, focusing on
the Spectre-PHT variants targeted by the approach presented
in this article. Section III describes the kernel structure of the
PikeOS operating system and discusses the basic concepts for
mitigating Spectre vulnerabilities. After a brief introduction of
static program analysis and abstract interpretation in Section
IV, we describe the design and the work flow of the Astrée
analyzer in Section V. Section VI starts with discussing
static analysis of cybersecurity properties in general, then
summarizes the key concepts of taint analysis, and concludes
with a precise description of our taint analysis-based Spectre
detection algorithm. The experimental results are presented in
Section VII, Section VIII concludes.

II. SPECTRE

In this section, we give an overview of Spectre attacks
with a focus on Spectre vulnerabilities and illustrate them
with typical code examples. In doing so we follow the system-
atization from [13]. Spectre belongs to the class of transient
execution attacks which use covert channels for transmitting
data from transient execution stages to a persistent architectural
state. Instructions whose execution has been started by the
CPU but whose results are never committed to the architec-
tural state are called transient instructions. They can occur
due to out-of-order execution, speculation, but also due to

exceptions and interrupts. Transient execution attacks trans-
fer microarchitectural state changes caused by the execution
of transient instructions to an observable architectural state.
Spectre-type attacks exploit branch misprediction events; in
contrast Meltdown-type attacks exploit transient out-of-order
instructions following a CPU exception. To overcome the
increasingly confusing naming of newly discovered transient
execution vulnerabilities the article [13] proposes a naming
scheme based on the microarchitectural element exploited by
the attack:
• Spectre-PHT: V1 (CVE-2017-5753, Bounds

Check Bypass) [14], V1.1 (CVE-2018-3693, Bounds
Check Bypass on Stores) [15], and the newly discov-
ered SplitSpectre [16] exploit the Pattern History Table
(PHT)

• Spectre-BTB: V2 (CVE-2017-5715, Branch Target
Injection) [14] exploits the Branch Target Buffer
(BTB)

• Spectre-STL: V4 (CVE-2018-3639, Speculative Store
Bypass) [17] exploits CPU memory disambiguation,
specifically store-to-load forwarding (STLF)

• Spectre-RSB: ret2spec [18] and Spectre-RSB [19]
exploit the Return Stack Buffer (RSB).

Note that Spectre V1.2 can actually be considered a Meltdown
attack since it depends on a #PF exception [13].

In our work we are targeting Spectre-PHT since other
vulnerabilies can be handled differently: Variant 2 can be fixed
in one central point or by switching on compiler mitigations,
so we need no analyzer. For V3 (Meltdown) and V3a, we
expect a microcode update, and otherwise, software cannot
protect against this anyway, so again, an analyzer does not
help. For V4, if the microcode permits it, we can use the
’speculative store bypass disable’. Otherwise, V4 would need
a binary analyzer, which is currently out of scope of this work.
Similarly, for Spectre-RSB a binary-level analyzer would be
required. The advantage of a source-level detection of Spectre
V1/V1.1/SplitSpectre vulnerabilities is that it is possible to
precisely and efficiently detect and mitigate them without the
imprecisions and manual interactions to be considered for
binary-level analysis.

The basic idea of Spectre v1/1.1 is to exploit that spec-
ulative execution of memory accesses modifies the cache
in trusted code, which can then be detected from untrusted
code using timing attacks, i.e., measuring timing of memory
accesses to determine what the trusted code accessed. The
vulnerability is a breach of security: the memory accesses
that cause the cache to be modified in trusted code are not
actually properly executed since they are protected by a range
check. They are only speculatively executed, i.e., the effect of
this speculative execution should have been discarded by the
processor. But despite being executed only speculatively, the
processor does not undo the effect on the cache. This, in effect,
allows the timing attack to see the result of memory accesses
that are properly protected by a check.

The scenario in which this vulnerability can be exploited is
the following: there is trusted code that has two array accesses,
the first of which is indexed based on data from untrusted code.
This happens frequently in communication between trusted and
untrusted code, e.g., with file handle ids, or other ids to address
resources in trusted code. An example is given in Figure 1:
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ErrCode vulnerable1(unsigned idx)
{

if (idx >= arr1.size) {
return E_INVALID_PARAMETER;

}
unsigned u1 = arr1.data[idx];
...
unsigned u2 = arr2.data[u1];
...

}

Figure 1. Code with Spectre vulnerability.

In the code listing of Figure 1, idx is untrusted data that
is used to index arr1. The array access is properly protected
by an if() on the array size and generates an error message,
so the code has no obviously broken security problems with
the array access. However, the processor may still, despite the
conditional, speculatively execute arr1.data[idx]. This
speculative execution is discarded later, when the code exits
the function with an error code, but the effect on the cache is
not undone. Since the index is out of range, the array access
can read much more memory that just the contents of arr1.
Usually, the whole address space may be speculatively read
by code like the above.

To read in user space what was the result of the access,
the second array access comes into play: the value read from
arr1 is used to index arr2, so depending on the value of the
first read, the second array access again modifies the cache.
Untrusted code can then time which cache lines were touched
to find out the value of u1, and since the index to arr1
is under the control of untrusted code, untrusted code can
effectively read any memory cell accessible in the trusted code.

All this is based on the speculative execution of the two
array accesses, the result of which are discarded, but the cache
effect is not undone, making this exploitable.

To fix this vulnerability in software, array indices in trusted
code, no matter how well protected by a range check, must
be fortified by mapping the array index into the array range.
This limits the scope of the attack to the array itself, which is
probably OK since with a value that is in range, trusted code
would have accessed the array anyway. E.g., assume we have a
function or macro FENCEIDX to map a value into 0..size−1,
we can rewrite the code from Figure 1 as shown in Figure 2
to protect against Spectre V1:

ErrCode vulnerable1(unsigned idx)
{

if (idx >= arr1.size) {
return E_INVALID_PARAMETER;

}
unsigned fidx =

FENCEIDX(idx, arr1.size);
unsigned u1 = arr1.data[fidx];
...
unsigned u2 = arr2.data[u1];
...

}

Figure 2. Code from Figure 1 with protection against Spectre.

If the array access in this code is speculatively executed,

the value of u1 will be read only from arr1.
FENCEIDX can be implemented very efficiently on many

architectures, so the impact on performance is negligible. The
real problem is finding which array accesses to fortify, because
a single missed vulnerable array access allows untrusted code
to break into the trusted address space.

III. PROTECTING PIKEOS AGAINST SPECTRE

PikeOS is SYSGO’s embedded operating system and hy-
pervisor. It is available for various 32-bit and 64-bit archi-
tectures: Intel and AMD x86, ARM, PowerPC, and SPARC.
Some of these are affected by the Spectre vulnerability.

The PikeOS kernel was chosen for this work as a use case
for examining how Spectre vulnerabilities can be detected with
a static analyzer. The kernel is well suited because it is exactly
functioning at different levels of trust, i.e., it receives via
system calls information from untrusted user code and works
with this information in the trusted kernel code. This is exactly
the scenario where Spectre and similar vulnerabilities can be
exploited. By being an operating system kernel for highly
critical embedded systems, this is an interesting industrial use
case.

A. Manual Spectre Mitigation
To examine how static analysis can help mitigate Spectre

vulnerabilities in software, the PikeOS was first manually
searched for patterns that are potentially vulnerable to Spectre
V1. It turns out that the PikeOS kernel has only 700 array
indirections, so manually checking each one for Spectre V1
is still feasible. When a potential vulnerability is identified,
the counter-measure is to introduce a macro call that maps
a user-provided array index to a value smaller than the array
size, i.e., to rewrite a[i] as a[FENCEIDX(i,n)] where n
is the array size. In the PikeOS kernel, we found 22 potential
Spectre V1 vulnerabilities that we fixed this way. Different
architectures implement FENCEIDX(i,n) in different ways
to be as efficient as possible, and unaffected architectures just
map it back to i.

The heuristics that was used for manual identification of
a vulnerability may have caused false positive identifications,
i.e., not all of these are guaranteed to be exploitable. This was
done so that no vulnerability was missed by using an overly
complicated identification strategy, i.e., we tried to make it
easy for humans to judge the absence of a vulnerability in order
to avoid mistakes. Whenever it looked like there could be one,
the FENCEIDX was introduced. Note that a single failure to
identify a vulnerability would leave the whole PikeOS kernel
vulnerable.

The most recently documented SplitSpectre attack is most
probably not applicable in PikeOS or any OS kernels, because
the two parts of the exploit are distributed among trusted and
untrusted code, separated by a system call layer in our case,
where no value is leaking even on speculative paths. It is more
likely to be exploitable in just-in-time compilation scenarios.

B. Kernel Code Structure
One complication for a static analyzer in the case of an

operating system kernel is that the kernel is not a sequential
application. So the typical static analyzer for application code
will not be able to be applied directly the PikeOS kernel code.
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On the other hand, the PikeOS kernel is a typical target for
Spectre vulnerabilities, so adapting the static analyzer to the
structure of an operating system kernel is another necessary
step for a Spectre analyzer.

The structure of a kernel is typically split into two parts:
the boot phase, where the kernel initializes data and hardware.
This part is sequential, and the static analyzer needs this phase
for its own boot-strapping of the values and contexts that the
kernel executes in. In this phase, there is no user input, so no
Spectre vulnerabilities can be found here. After the boot phase,
the kernel basically turns into a library of callbacks that are
triggered either by user-requests in the form of system calls,
or by system events like interrupts. The system calls are the
interesting ones for the Spectre analysis, as it is here where
user provided data enters the PikeOS kernel.

IV. STATIC PROGRAM ANALYSIS

Some years ago, static analysis meant manual review
of programs. Nowadays, automatic static analysis tools are
gaining popularity in software development as they offer a
tremendous increase in productivity by automatically checking
the code under a wide range of criteria. Here, the term static
analysis is used to describe a variety of program analysis
techniques with the common property that the results are only
based on the software structure.

Purely syntactical methods can be applied to check syn-
tactical coding rules as contained in coding guidelines, such
as MISRA C [20], SEI CERT C [21], or Common Weakness
Enumeration (CWE) [22]. They aim at a programming style
that improves clarity and reduces the risk of introducing bugs.
Compliance checking by static analysis tools has become com-
mon practice. Some of the rules require a deeper understanding
of the code as they focus on semantical properties which
requires knowledge about variable values, pointer targets etc.

To address such rules, and – even more importantly – to
identify semantical code defects, semantics-based static anal-
yses can be applied. Semantics-based methods can be further
grouped into unsound vs. sound approaches, the essential
difference being that in sound methods there are no false
negatives, i.e., no defect will be missed (from the class of
defects under consideration). Abstract interpretation is a formal
method for sound semantics-based static program analysis [4].
It supports formal correctness proofs: it can be proved that an
analysis will terminate and that it is sound, i.e., that it computes
an over-approximation of the concrete semantics. Imprecisions
can occur, but it can be shown that they will always occur on
the safe side.

The difference between syntactical, unsound semantical
and sound semantical analysis can be illustrated at the example
of division by 0. In the expression x/0 the division by zero can
be detected syntactically, but not in the expression a/b. When
an unsound analyzer does not report a division by zero in a/b
it might still happen in scenarios not taken into account by the
analyzer. When a sound analyzer does not report a division by
zero in a/b, this is a proof that b can never be 0.

V. ASTRÉE

One example of a sound static runtime error analyzer is the
Astrée analyzer [9] [23]. Its main purpose is to report program
defects caused by unspecified and undefined behaviors accord-
ing to the C norm (ISO/IEC 9899:1999 (E)). The reported code

defects include integer/floating-point division by zero, out-of-
bounds array indexing, erroneous pointer manipulation and
dereferencing (buffer overflows, null pointer dereferencing,
dangling pointers, etc.), data races, lock/unlock problems,
deadlocks, etc.

The design of the analyzer aims at reaching the zero false
alarm objective. For keeping the initial number of false alarms
low, a high analysis precision is mandatory. To achieve high
precision Astrée provides a variety of predefined abstract do-
mains, e.g.: The interval domain approximates variable values
by intervals, the octagon domain [24] covers relations of the
form x ± y ≤ c for variables x and y and constants c. The
memory domain empowers Astrée to exactly analyze pointer
arithmetic and union manipulations. It also supports a type-safe
analysis of absolute memory addresses. With the filter domain
digital filters can be precisely approximated, the interpolation
domain tracks table lookups and interpolation functions. An
automaton domain is available for precisely and efficiently
analyzing finite-state machines. Floating-point computations
are precisely modeled while keeping track of possible rounding
errors.

Any remaining alarm has to be manually checked by the
developers – and this manual effort should be as low as
possible. Astrée explicitly supports investigating alarms in
order to understand the reasons for them to occur. Alarm
contexts can be interactively explored, the computed value
ranges of variables can be displayed for each different context,
the call graph is visualized, and a program slicer is available to
identify the program parts contributing to a selected defect. By
fine-tuning the precision of the analyzer to the software under
analysis the number of false alarms can be further reduced.

To deal with concurrency defects, Astrée implements a
sound low-level concurrent semantics [25] which provides
a scalable sound abstraction covering all possible thread
interleavings. The interleaving semantics enables Astrée, in
addition to the classes of runtime errors found in sequential
programs, to report data races, and lock/unlock problems, i.e.,
inconsistent synchronization. The set of shared variables does
not need to be specified by the user: Astrée assumes that every
global variable can be shared, and discovers which ones are
effectively shared, and on which ones there is a data race. After
a data race, the analysis continues by considering the values
stemming from all interleavings. Since Astrée is aware of all
locks held for every program point in each concurrent thread,
Astrée can also report all potential deadlocks.

Practical experience on avionics and automotive industry
applications are given in [9] [26] [27]. They show that industry-
sized programs of millions of lines of code can be analyzed
in acceptable time with high precision for runtime errors and
data races.

VI. TAINT ANALYSIS-BASED SPECTRE-DETECTION

Taint analysis was first introduced as a dynamic analysis
technique (e.g., in PERL), to try to find out which part of a
code could be affected by some inputs. The original technique
consisted in flipping normally unused bits, that would be
copied around by operations and assignments. The same idea
can be extended to static analysis by enhancing the concrete
semantics of programs with tainting, the formal equivalent
of the unused flipped bit in the dynamic approach. In the
context of abstract interpretation, it is easy to abstract this
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extra information in an efficient and sound way, using dedi-
cated abstract domains. Conceptually, taint analysis consists
in discovering data dependencies using the notion of taint
propagation. Taint propagation can be formalized using a non-
standard semantics of programs, where an imaginary taint
is associated to some input values. Considering a standard
semantics using a successor relation between program states,
and considering that a program state is a map from memory
locations (variables, program counter, etc.) to values in V , the
tainted semantics relates tainted states, which are maps from
the same memory locations to V × {taint, notaint}, and such
that if we project on V we get the same relation as with the
standard semantics.

To define what happens to the taint part of the tainted value,
one must define a taint policy. The taint policy specifies:

• Taint sources which are a subset of input values or
variables such that in any state, the values associated
with that input values or variables are always tainted.

• Taint propagation describes how the tainting gets
propagated. Typical propagation is through assign-
ment, but more complex propagation can take more
control flow into account, and may not propagate the
taint through all arithmetic or pointer operations.

• Taint cleaning is an alternative to taint propagation,
describing all the operations that do not propagate the
taint. In this case, all assignments not containing the
taint cleaning will propagate the taint.

• Taint sinks is an optional set of memory locations.
This has no semantical effect, except to specify condi-
tions when an alarm should be emitted when verifying
a program (an alarm must be emitted if a taint sink
may become tainted for a given execution of the
program).

A. Taint Analysis in Astrée
Astrée has been equipped with a generic abstract domain

for taint analysis. It allows Astrée to perform normal code
analysis, with its usual process-interleaving, interprocedural
and memory layout precision, while carrying and computing
taint information at the byte level. Any number of taint hues
can be tracked by Astrée, and their combinations will be
soundly abstracted.

Tainted input is specified through directives attached to pro-
gram locations. Such directives can precisely describe which
variables, and which part of those variables is to be tainted,
with the given taint hues, each time this program location is
reached. Any assignment is interpreted as propagating the join
of all taint hues from its right-hand side to the targets of its left-
hand side. In addition, specific directives may be introduced
to explicitly modify the taint hues of some variable parts. This
is particularly useful to model cleansing function effects or to
emulate changes of security levels in the code.

The result of the analysis with tainting can be explored
in the Astrée GUI via tooltips for all expressions appearing
in the code, or explicitly dumped using dedicated directives.
Finally, the taint sink directives may be used to declare that
some parts of some variables must be considered as taint sinks
for a given set of taint hues. When a tainted value is assigned
to a taint sink, then Astrée will emit a dedicated alarm, and
remove the sinked hues, so that only the first occurrence has

to be examined to fix potential issues with the security data
flow.

The main intended use of taint analysis in Astrée is to
expose potential vulnerabilities with respect to security policies
or resilience mechanisms. Thanks to the intrinsic soundness of
the approach, no tainting can be forgotten, and that without
any bound on the number of iterations of loops, size of data
or length of the call stack. It seems particularly well suited to
help detecting Spectre-PHT vulnerabilities, as these only occur
in places where user input may interfere.

B. Detecting Spectre Vulnerabilities by Taint Analysis
The first step in Spectre-PHT vulnerabilities is to be able

to control a variable through user (or public) input. Finding
such variables can be approximated using tainting, so we first
introduce tainting directives for identified public input. In the
case of PikeOS, this is easily done, as the project analyzed by
Astrée consists in one big loop with random calls to the OS:
for each such call, we taint the parameters. In the code excerpt

void main(void)
{
while (1) {
switch (rand) {
case 1:

unsigned page;
__ASTREE_initialize((page));
__ASTREE_taint((page; controlled));
os_call(page);
break;

...
case 148:
int p;
unsigned size;
__ASTREE_initialize((p,size));
__ASTREE_taint((p, size; controlled));
os_call148(&p, size);

}
}

}

Figure 3. Example code with taint sources marked.

of Figure 3, page, p, and size are helper variables which
are considered initialized with some unknown value. The
Astrée directive __ASTREE_initialize models this effect
and prevents alarms about uninitialized variable accesses. The
directive __ASTREE_taint takes a comma-separated list
of variables to be tainted and the taint hue to be used as
parameters. The effect is that the system calls are analyzed
with unknown, possibly attacker-controlled values.

The second condition is that such data controlled by the
attacker are compared to a bound, so that speculative execution
can be exploited. The idea here is to use the facility for Astrée
to deal with more than one taint hue, to distinguish between
possibly controlled, and possibly controlled and tested to be
smaller than a bound. Since it would be quite demanding to
manually add tainting directives for that to the source code
under analysis, we added inside Astrée an automatic detection
of comparison with bounds, which automatically changes the
taint from controlled to dangerous.

Now the question is, how far in the code should variables
stay dangerous? Speculative execution does not last forever,
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and in all known attacks so far, the memory access using
dangerous variables must occur during speculative execution,
which is one of the reasons why [10] introduced their spec-
ulative execution window. But we work on the source code
level, and we aim at target architecture independence. One
reasonable limit, though, is the length of the branches: when
there is a test, there are two possible outcome, the branches,
and when the control flow becomes the same whatever the
outcome (the branches are merged) then the variable should
not be considered dangerous anymore. The implementation
challenge with that view, is that tainting, by design, cannot
be removed on joins. So, we came up with some non-standard
use of the multi-hues tainting facilities offered by Astrée: we
decided to taint public input with two hues (let’s call them
1 and 2), and that flagging a memory location as dangerous
consists in removing a hue (let’s say it is hue 2). In that way, as
long as the memory is tainted with only hue 1, it is considered
dangerous, but as soon as we merge with a context where it
is tainted with hue 1 and 2, it becomes merely controlled by
the attacker again.

The third step is that the dangerous variable must be used to
compute some memory address. Once again, we automatically
discover in Astrée when a dangerous value is used to compute
a memory location, and in that case, flag that address with a
new taint hue. At each place where an address tainted with that
hue is dereferenced, we emit a Spectre vulnerability alarm,
and remove the tainting for that address, so that end-users
can concentrate on the first occurrence, where they can, e.g.,
introduce fences that will anyway mitigate the vulnerability
for all subsequent dereferences of the same address.

To illustrate the tainting algorithm we use the following
example code shown in Figure 4:

Figure 4. Code excerpt with taint coloring.

In that code, val is tainted with hues 1 and 2, to denote
that it may be controlled by the attacker. The taint is prop-
agated to argument x of the victim function, and when x is
compared to the size of the array, the tainting is transformed
into hue 1 (hue 2 is removed from the tainting of x). This
means that x is considered dangerous after the test. Then
when x is used to compute an offset of array1 before
dereferencing, Astrée emits a Spectre vulnerability alarm.

It should be noted that we warn as soon as we find a single
dereference of a dangerous address, whereas Spectre 1 requires
two dereferences, but in practice that did not cause many false
positives, and it seems that this criterion is necessary anyway

to be safe with respect to SplitSpectre.

Figure 5. Astrée GUI showing Spectre vulnerability alarm

A screen shot of a Spectre vulnerability alarm in Astrée
is shown in Fig.5. The taint hues derived for variables in the
code are shown in the tool tips.

This approach does not provide absolute safety from Spec-
tre attacks. The first limitation is that tainting can only taint
reachable code, and Spectre may be exploited on unreach-
able code (speculative execution may cause the execution
of normally unreachable code). Note that Astrée displays
unreachable code as parts of its normal output. If needed, the
code can be made reachable to be covered by the analysis.
Second, it targets a specific set of Spectre vulnerabilities,
not all possible flavors of Spectre vulnerabilities. It embeds
the Spectre detection into the runtime error analysis which
is needed in safety-critical systems anyway, and reports vul-
nerabilities with high precision and on the basis of a sound
analysis. This helps to significantly reduce the attack surface
with little overhead.

VII. EXPERIMENTS

Our main experiment runs on the PikeOS sources, which
are about 400 000 lines of preprocessed C code. Astrée can
run with different levels of precision. Using a low precision
level doesn’t seem to hurt the precision of Spectre detection
too much. In such mode, Astrée analyzes the whole code in
2h30, using 17 GB of memory. During the analysis, Astrée
does much more than warn about Spectre vulnerabilities, it also
checks for compliance to coding rules, or warns about potential
runtime errors. But the extra precision needed for that analysis
is not lost, as it allows the detection of Spectre vulnerabilities
to be very targeted: Astrée only reports 68 locations with
possible Spectre vulnerabilities.

A. Reviewing the Spectre Alarms
A very interesting aspect of that experiment is that PikeOS

was already carefully analyzed by experts to root out all pos-
sible vulnerabilities. As expected due to Astrée’s soundness,
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all vulnerabilities found by the experts were also reported by
Astrée. The precision of the analysis allowed the locations
reported by Astrée to be reviewed in less than an hour. The
review led to interesting conclusions:

• A number of false positives corresponded to places
where the index used for the array access was shifted
(using a right shift operation), so that even when the
test for rang of the index failed, the final array access
was always in range. In most case, the actual size of
the array used in the code was not available to Astrée,
so that Astrée could not have concluded that here were
no vulnerability. It was a simple matter for the experts
to assert that the right shift was enough to prevent a
Spectre vulnerability, but we found that is was a good
thing that such accesses be checked.

• A couple of alarms corresponded to calls from trusted
code, so the data should be protected early enough,
but it seemed to the expert that it would be a good
idea to add fences for that cases anyway (which they
hadn’t before running Astrée).

• One interesting alarm exposed a possible Spectre 1.1
vulnerability. It was quite hard to discover, as the test
on the input variable occurred two calls before its
use in an array access. That makes it likely that the
branch speculation would be finished before reaching
the arrays access, but not impossible. It is one of
those cases where a human can easily get lost with
indirections and complex control flow, but where an
automatic analyzer prevails.

B. Analysis Overhead
In order to asses the efficiency of our approach, we also ran

an analysis of PikeOS without Spectre detection enabled, and
finished only 5 minutes faster (2h25 instead of 2h30), using
the same amount of memory.

In addition to the analyses of PikeOS we ran experiments
on industrial avionics and automotive code. In both cases
we manually selected some global variables as taint sources
since no information about actual user-controlled values was
available to us.

The avionics project consists of 2 million lines of prepro-
cessed C code. It ran through in 2h43 (21 GB), compared to
2h36 without Spectre detection. The run with Spectre detection
enabled found 113 possible vulnerabilities.

The automotive project consists of about 2.7 million lines
of preprocessed C code. Without Spectre detection, it ran
through in 1h42, and in 1h47 with Spectre detection enabled,
and found 1271 vulnerabilities.

The immediate conclusion is that adding taint analysis in
general, and Spectre detection in particular is quite costless
for Astrée. Also, it seems that we found a good granularity
for our detection criteria, since the number of findings is quite
small with respect to the size of the code.

C. Further Experiments
For lack of time, we did not run the analysis of PikeOS

with its mitigations yet, but that will be simple enough, as
we will just include an Astrée untainting directive inside the
fence macros used by Sysgo. This way Astrée will be able to

confirm that the mitigation implemented in the code covers the
Spectre attacks under consideration.

We also ran Astrée on simple code snippets on Spectre
vulnerability published on Paul Kocher’s web page [28], and
Astrée shows the vulnerabilities in less than a second.

VIII. CONCLUSION

Spectre belongs to the recently discovered class of tran-
sient execution attacks which exploit common performance-
enhancing microprocessor features. It can cause confidentiality
breaches by leaking secret data through covert channels from
transient execution stages to observable architectural states. It
affects a wide range of microprocessors, including processors
used for safety-critical embedded applications, trusted with
particularly sensitive information.

In this article we have discussed the impact of Spectre
on the safety-critical real-time embedded operating system
PikeOS and outlined a mitigation strategy based on static
taint analysis. We have presented a novel tainting strategy
to detect Spectre V1, V1.1 and SplitSpectre vulnerabilities
and discussed its implementation in the sound static analyzer
Astrée. We have conducted experiments on the source code
of the PikeOS operating system where the analyzer detects all
vulnerabilities existing in the code while producing only few
false alarms. Additional experiments on industrial avionic and
automotive software confirm that the analysis is applicable to
industry-size safety-critical application software at very little
overhead.
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